
Monatsh Math (2016) 181:451–471
DOI 10.1007/s00605-016-0911-3

On some extensions of the Ailon–Rudnick theorem

Alina Ostafe1

Received: 31 May 2015 / Accepted: 18 April 2016 / Published online: 30 April 2016
© Springer-Verlag Wien 2016

Abstract In this paper we present some extensions of the Ailon–Rudnick theorem,
which says that if f, g ∈ C[T ], then gcd( f n −1, gm −1) is bounded for all n,m ≥ 1.
More precisely, using a uniform bound for the number of torsion points on curves and
results on the intersection of curves with algebraic subgroups of codimension at least
2, we present two such extensions in the univariate case. We also give two multivariate
analogues of the Ailon–Rudnick theorem based on Hilbert’s irreducibility theorem
and a result of Granville and Rudnick about torsion points on hypersurfaces.
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1 Introduction

1.1 Motivation

Let a, b bemultiplicatively independent positive integers and ε > 0. Bugeaud et al. [9]
have proved that

gcd
(
an − 1, bn − 1

) ≤ exp(εn)
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as n tends to infinity. Corvaja andZannier [10] have generalised this result and replaced
an, bn with multiplicatively independent S-units u, v ∈ Z.

In the function field case, Ailon and Rudnick [1, Theorem 1] proved that if f, g ∈
C[T ] are multiplicatively independent polynomials, then there exists h ∈ C[T ] such
that

gcd( f n − 1, gn − 1) | h (1.1)

for all n ≥ 1. Examining their argument one can easily see that the same statement
holds in a larger generality; namely there exists h̃ ∈ C[T ] such that

gcd( f n − 1, gm − 1) | h̃ (1.2)

for all n,m ≥ 1.
In the case of finite fields Fq of characteristic p, Silverman [36] proves that even

more restrictions on the polynomials f, g ∈ Fq [T ] do not allow a similar conclusion
as the result of [1]. In particular, Silverman proves that the analogue of (1.1) is false
in a very strong sense: there exists a constant c( f, g; q), depending only on f , g and
q, such that

deg gcd( f n − 1, gn − 1) ≥ c( f, g; q)n

for infinitely many n.
More results in positive characteristic are obtained in [13,15], as well as variants

for elliptic divisibility sequences [37,38].
In this paper we present some extensions of the Ailon–Rudnick Theorem [1, The-

orem 1] over C, both in the univariate and multivariate cases. Although the method
of proof in the univariate case is similar to, or reduces to using [1], we find these
extensions exciting and we hope they will be of independent interest. Moreover, as we
explain below, in certain situation we reduce our problem to applying [1, Theorem 1],
however for this we need a uniform bound for (1.1) that depends only on the degree
of the polynomials f and g.

Besides the generality of results, the new ingredients of the paper are employing
results [5–7,27] on the number of points on intersections of curves in then-dimensional
multiplicative torus Gn

m with algebraic subgroups. We also present two multivariate
generalisations that are based on the use of Hilbert’s irreducibility theorem [31] and
a transformation using the Kronecker substitution to reduce the problem to the uni-
variate case, as well as a result of Granville and Rudnick [20] about torsion points on
hypersurfaces.

1.2 Conventions and notation

We denote by C[X1, . . . , X�] the polynomial ring in � variables and C(X1, . . . , X�)

the field of rational functions F/G, F,G ∈ C[X1, . . . , X�]. When working with
univariate polynomials we reserve the variable T . All polynomials inC[T ] are denoted
with small letters f, g, . . ., and for polynomials inC[X1, . . . , X�]weuse capital letters
F,G, . . ..
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Throughout the paper, for a univariate polynomial f ∈ C[T ], the notation d f is
used for the degree of f .

For a family of polynomials F1, . . . , Fs ∈ C[X1, . . . , X�], we denote by
Z(F1, . . . , Fs) their set of common zeros in C�.

Throughout the paper we assume that the greatest common divisor of two (or more)
polynomials is monic, so it is well-defined.

We also define here the main concept of this paper.

Definition 1.1 The polynomials F1, . . . , Fs ∈ C[X1, . . . , X�] are called multiplica-
tively independent if there does not exist a nonzero vector (ν1, . . . , νs) ∈ Z

s such that

Fν1
1 . . . Fνs

s = 1.

Similarly, we say that the polynomials F1, . . . , Fs ∈ C[X1, . . . , X�] are multiplica-
tively independent in the group C(X1, . . . , X�)

∗/C∗ if there do not exist a nonzero
vector (ν1, . . . , νs) ∈ Z

s and a ∈ C
∗ such that

Finally, we define Gk
m as the set of k-tuples of non-zero complex numbers equipped

with the group law defined by component-wise multiplication.We refer to [31, Appen-
dix by Umberto Zannier] for necessary definitions on algebraic subgroups.

Fν1
1 . . . Fνs

s = a.

We present now in more details the main results of this paper.

1.3 Our results: univariate case

Section 2 is dedicated to outlining the tools and results needed along the paper. In
particular, in Sect. 2.1 we recall the result of [1, Theorem 1] and, using a uniform
bound for the number of points on a curve with coordinates roots of unity due to
Beukers and Smyth [5], we derive in Lemma 2.2 a version of (1.2) that gives an upper
bound on deg gcd( f n − 1, gm − 1) that depends only the degrees of f and g (rather
than on the polynomials themselves).

Such a uniform bound is crucial for some of our main results presented below and
proved in Sect. 3. In particular, our first extension of [1, Theorem 1], which is proved
in Sect. 3.1, is based on this uniform bound.

Theorem 1.2 Let f, g, h1, h2 ∈ C[T ]. If f and g are multiplicatively independent in
C(T )∗/C∗, then for all n,m ≥ 1 we have

deg gcd
(
h1

(
f n

)
, h2

(
gm

)) ≤ dh1dh2
(
11d∗(d f + dg)

2
)d∗

,

where d∗ = min{d f , dg}.
For the second extension of [1, Theorem 1], which is proved in Sect. 3.2, we apply

the finiteness result of [7,27], see also [6], for the number of points on the intersection
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of curves in G
n
m with algebraic subgroups, see Lemma 2.3. No uniform bounds are

known so far for such finiteness results.
We recall that for a polynomial f ∈ C[T ], we denote by Z( f ) the set of zeros of

f in C.

Theorem 1.3 Let f1, . . . , f�, ϕ1, . . . , ϕk, g1, . . . , gr , ψ1, . . . , ψs ∈ C[T ],�, k, r, s ≥
1, be multiplicatively independent polynomials such that

Z( f1 . . . f�) ∩ Z(ϕ1 . . . ϕk) = ∅, Z(g1 . . . gr ) ∩ Z(ψ1 . . . ψs) = ∅. (1.3)

Then we have:

1. For all n1, . . . , n�, ν1, . . . , νk,m1, . . . ,mr , μ1, . . . , μs ≥ 0, there exists a poly-
nomial h ∈ C[T ] such that

gcd

(
�∏

i=1

f nii −
k∏

i=1

ϕ
νi
i ,

r∏

i=1

gmi
i −

s∏

i=1

ψ
μi
i

)

| h.

2. If in addition

gcd( f1 . . . f� − 1, g1 . . . gr − 1) = 1,

then there exists a finite set S and monoids Lt ⊆ N
�+k+r+s , t ∈ S, such that the

remaining set

N = N
�+k+r+s\ ∪t∈S Lt

is of positive asymptotic density and for any vector

(n1, . . . , n�, ν1, . . . , νk,m1, . . . ,mr , μ1, . . . , μs) ∈ N

we have

gcd

(
�∏

i=1

f nii −
k∏

i=1

ϕ
νi
i ,

r∏

i=1

gmi
i −

s∏

i=1

ψ
μi
i

)

= 1.

Although we prefer to keep the language of polynomials, one can easily see that
Theorem 1.3 can be reformulated in terms of S-units in C[T ] and implies that for any
set of S-units, there exists a polynomial h ∈ C[T ] such that for any multiplicatively
independent S-units U, V we have

gcd (U − 1, V − 1) | h.

In particular, this extension of [1] is fully analogous to the aforementioned extension
of [10] over [9].
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On some extensions of the Ailon–Rudnick theorem 455

We also compare Theorem 1.3, which for multiplicatively independent S-units
U, V , gives a uniform bound for deg gcd(U − 1, V − 1), while the result of Corvaja
and Zannier [12, Corollary 2.3] gives

deg gcd(U − 1, V − 1) 
 max{degU, deg V }2/3.
However, [12, Corollary 2.3] applies to more general situations.

It is interesting to unify Theorems 1.2 and 1.3 and obtain a similar result for

gcd
(
h1

(
f n11 . . . f n�

�

)
, h2

(
gm1
1 . . . gmr

r

))
,

where h1, h2 ∈ C[T ]. Similar ideas may work for this case however they require
a uniform bound for the number of points on intersections of curves in G

�+r
m with

algebraic subgroups of dimension k ≤ � + r − 2 in Lemma 2.3. We note that for
� = r = 1 this was possible due to the uniform bounds of [5]. However, no such
bounds are available in the more general case that we need.

1.4 Our results: multivariate case

For our first result in the multivariate case, we reduce the problem to the univariate
case using Hilbert’s irreducibility theorem (see Sect. 2.4), and to control the degree
for such specialisation we also couple this approach with a transformation involving
the Kronecker substitution. We obtain:

Theorem 1.4 Let h1, h2 ∈ C[T ] and F,G ∈ C[X1, . . . , X�]. We define D =
maxi=1...,�

{
degXi

F, degXi
G

}
. If F,G aremultiplicatively independent inC(X1, . . . ,

X�)
∗/C∗, then for all n,m ≥ 1 we have

deg gcd
(
h1

(
Fn) , h2

(
Gm)) ≤ dh1dh2

(
44(D + 1)2�

)(D+1)�

.

We note that if h1 = h2 = T − 1 as in [1, Theorem 1], then in Theorem 1.4 we
need F,G to be just multiplicatively independent.

Theorem 1.4 is proved in Sect. 3.3.
Another natural extension of [1, Theorem 1] to the multivariate case is related to the

fact that the greatest common divisor of two univariate polynomials is given by their
common zeros. Thus [1, Theorem 1] says that the number of common zeros of f n −1
and gm − 1, for two polynomials f, g ∈ C[T ], is bounded by a constant depending
only on f and g for all n,m ≥ 1, and Lemma 2.2 gives a uniform bound.

For positive integers �, D ≥ 1, we denote

γ�(D) =
(

� + 1 + D�

� + 1

)
. (1.4)

We now obtain the following result proved in Sect. 3.4. This multivariate gener-
alisation is based on a result of Granville and Rudnick [20, Corollary 3.1], which
describes the structure of torsion points on hypersurfaces, see Lemma 2.5.
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Theorem 1.5 Let F1, . . . , F�+1 ∈ C[X1, . . . , X�] be multiplicatively independent
polynomials of degree at most D. Then

⋃

n1,...,n�+1∈N
Z

(
Fn1
1 − 1, . . . , Fn�+1

�+1 − 1
)

is contained in at most

N ≤ (0.792γ�(D)/ log (γ�(D) + 1))γ�(D)

algebraic varieties, each defined by at most � + 1 polynomials of degree at most
(� + 1)D�

∏
p≤γ�(D) p, where the product runs over all primes p ≤ γ�(D).

We recall that by the prime number theorem, for an integer k ≥ 1,
∏

p≤k

p = exp(k + o(k)).

We note that a bound on the number of algebraic subgroups that contain the points
onHwith coordinates roots of unity can also be derived from [2, Theorem 1.1], which
says that, for a hypersurface defined by H ∈ C[X1, . . . , Xs], s ≥ 2, of degree D, the
number of maximal torsion cosets contained inH is at most

c1(s)D
c2(s)

with

c1(s) = s
3
2 (2+s)5s and c2(s) = 1

16

(
49 · 5s−2 − 4s − 9

)
.

We also note that any argument that is based on the Bezout theorem ultimately leads
to bounds that depend on the exponents n1, . . . , n�+1, while the bounds of Theorem1.5
depend only on the initial data.

We conclude the paper with comments on future work.

2 Preliminaries

2.1 The Ailon–Rudnick theorem

The Ailon–Rudnick theorem is based on a well-known conjecture of Lang, proved by
Ihara, Serre and Tate [23], which says that a plane curve, which does not contain a
translate of an algebraic subgroup of G2

m , contains only finitely many torsion points.
In this case, Beukers and Smyth [5, Section 4.1] give a uniform bound for the number
of such points (see Lemma 2.1 below), and Corvaja and Zannier [11] give an upper
bound (actually for curves inGn

m) for the maximal order of torsion points on the curve.
We now present the result of Ailon and Rudnick [1, Theorem 1], coupled with the

result of Beukers and Smyth [5, Section 4.1], which we first mention separately.
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On some extensions of the Ailon–Rudnick theorem 457

Lemma 2.1 An algebraic curve H(X,Y ) = 0 has at most 11(deg H)2 points which
are roots of unity, unless H has a factor of the form Xi − ρY j or XiY j − ρ for some
nonnegative integers i, j not both zero and some root of unity ρ.

Using Lemma 2.1, we obtain the following more precise form of [1, Theorem 1].

Lemma 2.2 Let f, g ∈ C[T ] be non constant polynomials. If f and g are multiplica-
tively independent, then there exists a polynomial h ∈ C[T ] with

deg h ≤
(
11d∗(d f + dg)

2
)d∗

,

where d∗ = min{d f , dg}, such that

gcd( f n − 1, gm − 1) | h

for all n,m ≥ 1.

Proof The proof, except for the explicit bound for the degree, is given in [1, Theorem
1]. In particular, from the proof of [1, Theorem 1], the polynomial h ∈ C[T ] is defined
by

h(T ) =
∏

t∈S
(T − t)d∗ , (2.1)

where S is the finite set of t ∈ C such that both f (t) and g(t) are roots of unity.
To see the degree bound, we just apply Lemma 2.1. Our curve is given in parametric

form {( f (t), g(t)) : t ∈ C} and we need to find the degree of the implicit form H
such that H( f (t), g(t)) = 0, t ∈ C. This is obtained using resultants, that is,

H = ResT ( f (T ) − X1, g(T ) − X2) ,

which is a polynomial of degree dg in X1 and d f in X2. Thus, the total degree of H
is at most d f + dg .

Let H̃ be an absolutely irreducible factor of H and assume that H̃( f (t), g(t)) = 0
for infinitely many t ∈ C. As H̃( f (T ), g(T )) is a univariate polynomial , we must
have the identity H̃( f (T ), g(T )) = 0. Then, by Lemma 2.1 applied with the curve
defined by the polynomial H̃ , we obtain that H̃ is of the form Xn1

1 Xn2
2 = ω, for

some root of unity ω and integers n1, n2 not both zero. This implies that f, g are
multiplicatively dependent, which contradicts the hypothesis. Thus, there is no such
absolutely irreducible divisor of H .

Therefore, the number of torsion points of the form ( f (t), g(t)), t ∈ C, is at most
11(d f + dg)2. Taking into account that the largest possible number of preimages for
each pair ( f (t), g(t)) is at most d∗, we get the bound

#S ≤ 11d∗(d f + dg)
2.

The degree bound of the polynomial h now follows from (2.1). ��
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458 A. Ostafe

2.2 Intersection of curves with algebraic groups

One of the main tools in our paper is a result on the finiteness of the number of points
on the intersection of a curve inGk

m with algebraic subgroups of codimension at least
2, initially obtained in [6] for curves over Q, and later on extended over C, see [7,27]
and references therein. We present it in the following form.

Lemma 2.3 Let C ⊂ G
k
m, k ≥ 2, be an irreducible curve over C. Assume that for

every nonzero vector (r1, . . . , rk) ∈ Z
k the monomial Xr1

1 . . . Xrk
k is not identically 1

on C. Then there are finitely many points (x1, . . . , xk) ∈ C(C) for which there exist
linearly independent vectors (a1, . . . , ak), (b1, . . . , bk) in Zk such that

xa11 . . . xakk = xb11 . . . xbkk = 1.

Remark 2.4 As explained in [6], the condition of Lemma 2.3 that the monomial
Xr1
1 . . . Xrk

k is not identically 1 on C is equivalent with the curve not being contained
in a proper subtorus of Gk

m .

2.3 Torsion points on hypersurfaces

Results regarding uniformbounds on the number of torsion points in subvarieties ofGk
m

go back to work of Bombieri and Zannier [8], Schlickewei [32] and Evertse [14]. For
example, Evertse [14], improving bounds of Schlickewei [32], shows that the number
of non-degenerate solutions in roots of unity to the equation a1x1 + · · · + akxk = 1,
a1, . . . , ak ∈ C, is at most (k + 1)3(k+1)2 .

For our results we use the following result of Granville and Rudnick, see [20,
Corollary 3.1],which describes the structure of the algebraic subgroups that contain the
roots of unity on a hypersurface. Although the statement of their result does not contain
the bound for the degree or the number of the polynomials defining the algebraic
subgroups, this follows directly from or is explicitly stated in their proof. Moreover,
we recall this result only for the case of hypersurfaces, however their result holds for
any algebraic variety.

Lemma 2.5 Let H = Z(H) be a hypersurface in C
k defined by a polynomial H ∈

C[X1, . . . , Xk] of degree D and with s(H) terms. There exists a finite listB of at most

N (H) ≤ (0.792s(H)/ log (s(H) + 1))s(H)

integer k × k matrices B = (b j,i ), i, j = 1, . . . , k, and

|b j,i | ≤ D
∏

p≤s(H)

p,
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where the product runs over all primes p ≤ s(H), such that if ξ ∈ H is a torsion
point, then ξ ∈ ∪B∈BWB, where

WB =
k⋂

j=1

Z
(
X
bj,1
1 X

bj,2
2 . . . X

bj,k
k − 1

)
.

Proof The proof is essentially given in [20, Corollary 3.1]. Indeed, each matrix B
corresponds to a partition of the set {1, 2, . . . , s(H)}, and thus, the number of matrices
B in the set B is given by the number of such partitions, which, by [4, Theorem 2.1],
is at most N (H).

The number of rows nB of a matrix B ∈ B is not specified in [20, Corollary 3.1].
However, we can choose the largest linear independent set of these vectors b j , which is

of cardinality at most k, and all other varieties of the form Z
(
X
bi,1
1 X

bi,2
2 . . . X

bi,k
k − 1

)

are defined by combinations of these vectors. Thus,we can consider nB ≤ k. Repeating
some rows if necessary we can take nB = k which concludes the proof. ��

2.4 Hilbertian fields and multiplicative independence

For the first multivariate generalisation of [1, Theorem 1] we need a result which
says that given F1, . . . , Fs ∈ C[X1, . . . , X�] that are multiplicatively independent
in C(X1, . . . , X�)

∗/C∗, there exists a specialisation (α2, . . . , α�) ∈ C
�−1 such that

Fi (X1, α2, . . . , α�), i = 1, . . . , s, aremultiplicatively independent inC(X1)
∗/C∗ (see

Lemma 2.8 below). Such a result follows directly from [6, Theorem 1] which says
that the points lying in the intersection of a curve C, not contained in any translate of a
proper subtorus ofG�

m , with the union of all proper algebraic subgroups is of bounded
height (see also [6, Theorem 1]).

Furthermore, this also follows from previous work of Néron [28] (see also [33,
Chapter 11]), Silverman [34, Theorem C] and Masser [25] (see also [40, Notes to
Chapter 1]whereMasser’smethod is explained) on specialisations of finitely generated
subgroups of abelian varieties. In particular, Masser’s result [25] gives explicit bounds
for the least degree of a hypersurface containing the set of exceptional points, that is,
points that lead to multiplicative dependence, of bounded degree and height.

Although the above results are sufficient for our purpose, for the sake of complete-
ness we now give a simple self-contained proof that follows directly from Hilbert’s
irreducibility theorem, see [31, Theorem 46]. Moreover, this proof does not appeal
to the notion of height and applies to arbitrary Hilbertian fields (see Definition 2.6
below), rather than to just finite extensions of Q.

Definition 2.6 We say that a field K is Hilbertian if for any irreducible polynomials
P1, . . . , Pr ∈ K[X1, . . . , X�] overK there exists a specialisation (α2, . . . , α�) ∈ K

�−1

such that Pi (X1, α2, . . . , α�), i = 1, . . . , r , are all irreducible over K.

In particular, by the famous Hilbert’s irreducibility theorem, any finite extension
of Q is a Hilbertian field. Furthermore, by [31, Theorem 49] every finitely generated
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460 A. Ostafe

infinite field and every finitely generated transcendental extension of an arbitrary field
are Hilbertian.

We prove first the following simple fact.

Lemma 2.7 Let K be a field and F,G ∈ K[X1, . . . , X�]\K[X�] non-constant poly-
nomials such that F/G /∈ K(X�). Then, there are only finitely many α ∈ K such that
the polynomials F(X1, . . . , X�−1, α) and G(X1, . . . , X�−1, α) are proportional.

Proof We write

F(X1, . . . , X�−1, α) =
∑

i1,...,i�−1

fi1,...,i�−1(α)Xi1
1 . . . Xi�−1

�−1,

G(X1, . . . , X�−1, α) =
∑

j1,..., j�−1

g j1,..., j�−1(α)X j1
1 . . . X j�−1

�−1 , (2.2)

for some polynomials fi1,...,i�−1 , g j1,..., j�−1 ∈ K[X�].
We exclude finitely many α ∈ K for which the coefficients fi1,...,i�−1(α) and

g j1,..., j�−1(α) are zero. For the rest of α ∈ K, the polynomials F(X1, . . . , X�−1, α)

and G(X1, . . . , X�−1, α) are proportional if there exists a constant a ∈ K
∗ such that

F(X1, . . . , X�−1, α) = aG(X1, . . . , X�−1, α). (2.3)

If both F and G are monomials, then (2.3) is possible for either α = 0, or the case
when F/G ∈ K(X�), which contradicts our assumption.

If at least one of F and G is not a monomial, by comparing the coefficients of the
monomials in (2.3), we obtain at least one nontrivial equation of the type

fi1,...,i�−1(α)g j1,..., j�−1(α) = f j1,..., j�−1(α)gi1,...,i�−1(α),

for some vectors of indices (i1, . . . , i�−1), ( j1, . . . , j�−1)which define the monomials
of the polynomials in (2.2). As the number of solutions α to such univariate equations
is at most their degree, we conclude the proof. ��

We now have the following result which is essential for the proof of Theorem 1.4.

Lemma 2.8 LetK be a Hilbertian field and F1, . . . , Fs ∈ K[X1, . . . , X�]multiplica-
tively independent polynomials inK(X1, . . . , X�)

∗/K∗ such that all their irreducible
factors belong to K[X1, . . . , X�]\K[X2, . . . , X�]. Then, there exists a specialisation
(α2, . . . , α�) ∈ K

�−1 such that the polynomials Fi (X1, α2, . . . , α�), i = 1, . . . , s, are
multiplicatively independent in K(X1)

∗/K∗.

Proof We order all monomials lexicographically (with X1 being the leading vari-
able) which in a natural way leads to the notion of the leading coefficient. Thus
we say that F ∈ K[X1, . . . , X�] is monic if the leading coefficient is 1. Let
P1, . . . , Pr ∈ K[X1, . . . , X�]\K[X2, . . . , X�] be the distinct monic irreducible fac-
tors of F1, . . . , Fs , that is, we have the factorisation

Fi = ai P
ei,1
1 . . . P

ei,r
r , with ai ∈ K ∗, i = 1, . . . , s.
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On some extensions of the Ailon–Rudnick theorem 461

We note that the polynomials F1, . . . , Fs are multiplicatively independent in
K(X1, . . . , X�)

∗/K∗ if and only if the matrix (ei, j )1≤i≤s
1≤ j≤r

has full rank.

Since K is Hilbertian, there exists a specialisation (α2, . . . , α�) ∈ K
�−1 such that

Pj (X1, α2, . . . , α�), j = 1, . . . , r , are all distinct (up to a constant factor) and irre-
ducible over K. Indeed, this follows recursively from Hilbert’s irreducibility theorem
coupled with Lemma 2.7. First we specialise only the last variable X�, and byHilbert’s
irreducibility theorem there are infinitely many α� such that Pj (X1, . . . , X�−1, α�),
j = 1, . . . , r , are all irreducible. However, by Lemma 2.7 there are only finitely many
such α� leading to proportional polynomials, which concludes this case. We fix now
α� ∈ K such that Pj (X1, . . . , X�−1, α�), j = 1, . . . , r , are all distinct (up to a constant
factor) and irreducible over K and choose α�−1 in the same way. We continue till we
find (α2, . . . , α�) ∈ K

�−1 such that Pj (X1, α2, . . . , α�), j = 1, . . . , r , are all distinct
(up to a constant factor) and irreducible over K.

Thus, for i = 1, . . . , s, we have the factorisation

Fi (X1, α2, . . . , α�) = ai P1(X1, α2, . . . , α�)
ei,1 . . . Pr (X1, α2, . . . , α�)

ei,r .

If the polynomials Fi (X1, α2, . . . , α�), i = 1, . . . , s, are multiplicatively dependent
in K(X1)

∗/K∗, then there exist integers �1, . . . , �s , not all zero, such that

F1(X1, α2, . . . , α�)
�1 . . . Fs(X1, α2, . . . , α�)

�s = c

for some c ∈ K
∗. This is equivalent to the fact that the matrix (ei, j )1≤i≤r

1≤ j≤s
does not

have full rank, which contradicts the fact that the initial polynomials F1, . . . , Fs ∈
K[X1, . . . , X�] are multiplicatively independent in K(X1, . . . , X�)

∗/K∗. ��

2.5 Multiplicities of zeroes

To prove Theorem 1.3 we need a uniform bound for the multiplicities of zeros of
polynomials of the form f n11 . . . f n�

� − gm1
1 . . . gmr

r . We present such a result below,
as well as deduce as a consequence a similar uniform bound for rational functions,
which we hope to be of independent interest.

For a rational function h ∈ C(T ), we denote by M(h) the largest multiplicity of
the zeros of h and by Z(h) the set of zeros of h in C, respectively. We also recall that
for a polynomial f ∈ C[T ], we use the notation d f for the degree of f .

Lemma 2.9 Let f1, . . . , f�, g1, . . . , gr ∈ C[T ] be polynomials satisfying
Z( f1 . . . f�) ∩ Z(g1 . . . g�) = ∅. (2.4)

Then, for all n1, . . . , n�,m1, . . . ,mr ≥ 0, we have

M
(
f n11 . . . f n�

� − gm1
1 . . . gmr

r

) ≤
�∑

i=1

d fi +
r∑

j=1

dg j .
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Proof We denote n = (n1, . . . , n�) ∈ N
� and m = (m1, . . . ,mr ) ∈ N

r .
Writing the factorisation into linear factors, we have

f n11 . . . f n�

� − gm1
1 . . . gmr

r = an,m

∏

t∈Z
(
f
n1
1 ... f

n�
� −g

m1
1 ...gmr

r

)
(T − t)et ,

where an,m ∈ C is the leading coefficient of f n11 . . . f n�

� − gm1
1 . . . gmr

r .
For simplicity we write

Sn,m = Z
(
f n11 . . . f n�

� − gm1
1 . . . gmr

r

)
.

Let M = maxt∈Sn,m et be the largest multiplicity of the zeros of f n11 . . . f n�

� −
gm1
1 . . . gmr

r .
The bound for M follows immediately from the polynomial ABC theorem (proved

first by Stothers [39], and then independently by Mason [24] and Silverman [35]).
Indeed, we apply the polynomial ABC theorem with A = an,m

∏
t∈Sn,m

(T − t)et ,

B = f n11 . . . f n�

� and C = gm1
1 . . . gmr

r , which by (2.4) are pairwise coprime. We
obtain

∑

t∈Sn,m

et ≤
�∑

i=1

d fi +
r∑

j=1

dg j + #Sn,m − 1. (2.5)

Taking into account that
∑

t∈Sn,m

et ≥ M + #Sn,m − 1,

from (2.5) we obtain

M ≤
�∑

i=1

d fi +
r∑

j=1

dg j ,

which concludes the proof. ��
We present now a similar result for rational functions.

Corollary 2.10 Let h1, . . . , h� ∈ C(T ), hi = fi/gi , fi , gi ∈ C[T ], i = 1, . . . , �,
with Z( f1 . . . f�) ∩ Z(g1 . . . g�) = ∅. Then, for all n1, . . . , n� ≥ 0, we have

M
(
hn11 . . . hn�

� − 1
) ≤

�∑

i=1

(deg fi + deg gi ) .

Proof We note that Z
(
hn11 . . . hn�

� − 1
) = Z

(
f n11 . . . f n�

� − gn11 . . . gn�

�

)
. The result

now follows directly from Lemma 2.9 applied with r = � and mi = ni , i = 1, . . . , �.
��
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2.6 Algebraic dependence

We need the following result [29, Theorem 1.1] which gives a degree bound for the
annihilating polynomial of algebraically dependent polynomials, which is always the
case when the number of polynomials exceeds the number of variables. The result
holds over any field, but we present it only over C.

Lemma 2.11 Let F1, . . . , F�+1 ∈ C[X1, . . . , X�] be of degree at most D. Then there
exists a nonzero polynomial R ∈ C[Z1, . . . , Z�+1] of degree at most D� such that
R(F1, . . . , F�+1) = 0.

3 Proofs of main results

3.1 Proof of Theorem 1.2

We use the same idea as in the proof of [1, Theorem 1] and Lemma 2.2. Indeed, we
write the factorisation in linear factors,

h1 =
dh1∏

i=1

(T − ω1,i ), h2 =
dh2∏

i=1

(T − ω2,i ),

where ω1,i , ω2, j ∈ C, i = 1, . . . , dh1 , j = 1, . . . , dh2 .
Thus, we reduce the problem to estimating the degree of each

gcd
(
f n − ω1,i , g

m − ω2, j
)
.

For simplicity we use the notation ω1 and ω2 for any two roots of h1 and h2, respec-
tively, and we denote

Dn,m(ω1, ω2) = gcd
(
f n − ω1, g

m − ω2
)
.

For every n,m ≥ 1, we fix an element tn,m ∈ C such that

f (tn,m)n = ω1, g(tn,m)m = ω2 (3.1)

(if no such tn,m exists then we immediately have degDn,m(ω1, ω2) = 0). We define
new polynomials

f̃n,m(T ) = 1

f (tn,m)
f (T ) and g̃n,m(T ) = 1

g(tn,m)
g(T ).

As f and g are multiplicatively independent in C(T )∗/C∗, we obtain that f̃n,m and
g̃n,m are multiplicatively independent for every n,m.
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Thus, we can apply Lemma 2.2 and conclude that

deg gcd
(
f̃ nn,m − 1, g̃mn,m − 1

) ≤
(
11d∗(d f + dg)

2
)d∗

.

From (3.1) and the definition of f̃n,m and g̃n,m , we have

degDn,m(ω1, ω2) = deg gcd
(
f̃ nn,m − 1, g̃mn,m − 1

)
,

and thus, for every n,m ≥ 1, we obtain

degDn,m(ω1, ω2) ≤
(
11d∗(d f + dg)

2
)d∗

.

As this holds for any roots ω1, ω2 of h1 and h2, respectively, we obtain

deg gcd
(
h1

(
f n

)
, h2

(
gm

)) ≤ dh1dh2
(
11d∗(d f + dg)

2
)d∗

,

which concludes the proof. ��
3.2 Proof of Theorem 1.3

We use the same idea as in the proof of [1, Theorem 1] combined with Lemma 2.3.
First, we note that for any zero t ∈ C of

gcd

(
�∏

i=1

f nii −
k∏

i=1

ϕ
νi
i ,

r∏

i=1

gmi
i −

s∏

i=1

ψ
μi
i

)

the condition (1.3) ensures that ϕi (t), ψ j (t) �= 0, i = 1, . . . , l, j = 1, . . . , k. There-
fore each such zero t satisfies

�∏

i=1

fi (t)
ni ·

k∏

i=1

ϕi (t)
−νi =

r∏

i=1

gi (t)
mi ·

s∏

i=1

ψi (t)
−μi = 1. (3.2)

We apply Lemma 2.3 with k replaced by L = � + k + r + s and with the curve

C = {
( f1(t), . . . , f�(t), ϕ1(t), . . . , ϕk(t), g1(t), . . . , gr (t),

ψ1(t), . . . , ψs(t)) : t ∈ C
} ⊆ G

L
m .

Indeed, we write

a = (n1, . . . , n�,−ν1, . . . ,−νk), b = (m1, . . . ,mr ,−μ1, . . . ,−μs).

As the vectors

(a, 0), (0, b) ∈ Z
L
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are linearly independent, by Lemma 2.3 we obtain that there are only finitely many
t ∈ C such that (3.2) holds for some vectors a, b as above.

We denote by S the set of such t ∈ C. For vectors v ∈ N
�+k and w ∈ N

r+s given
by

v = (n1, . . . , n�, ν1, . . . , νk), w = (m1, . . . ,mr , μ1, . . . , μs),

we denote

Dv,w = gcd

(
�∏

i=1

f nii −
k∏

i=1

ϕ
νi
i ,

r∏

i=1

gmi
i −

s∏

i=1

ψ
μi
i

)

.

We see from the above that set of zeros Z(Dv,w) belongs to some fixed set that depends
only on the above curve C and thus only on the polynomials in the initial data. To
construct the required polynomial h ∈ C[T ] as in the statement of Theorem 1.3 we
only need to prove that the multiplicity of the roots t ∈ S of Dv,w can be bounded
uniformly for all vectors v, w as above. This is given by Lemma 2.9 applied with the
polynomials

∏�
i=1 f nii − ∏k

i=1 ϕ
νi
i and

∏r
i=1 g

mi
i − ∏s

i=1 ψ
μi
i .

Indeed, if we denote by M1 and M2 the largest multiplicity of roots in S of the first
and second polynomials, respectively, we get

M1 ≤
�∑

i=1

d fi +
k∑

i=1

dϕi , M2 ≤
r∑

i=1

dgi +
s∑

i=1

dψi .

Thus, there exists a polynomial h ∈ C[T ] defined by

h =
∏

t∈S
(T − t)d , d = min

{
�∑

i=1

d fi +
k∑

i=1

dϕi ,

r∑

i=1

dgi +
s∑

i=1

dψi

}

,

such that Dv,w | h for every vectors v, w as above. This concludes the proof of Part i.
For Part ii, for each t ∈ S, let

Lt = {(v, w) ∈ N
L : (T − t) | Dv,w}.

We note that Lt is actually a monoid as the sum of any two elements in Lt is also an
element of Lt . As the set S is finite, there are finitely many such monoids Lt , t ∈ S,
such that degDv,w ≥ 1 for any (v, w) ∈ Lt .

We are left to show that ∪t∈SLt is not the entire space N
L . Indeed, this

follows directly from [1, Theorem 1] as for the diagonal case, that is v =
n(1, . . . , 1︸ ︷︷ ︸

�

, 0, . . . , 0) ∈ N
�+k and w = n(1, . . . , 1︸ ︷︷ ︸

r

, 0, . . . , 0) ∈ N
r+s , we have

gcd
(
( f1 . . . f�)

n − 1, (g1 . . . gr )
n − 1

) = 1

infinitely often.
Thus, for any (v, w) outside∪t∈SLt , we haveDv,w = 1, andwe conclude the proof.

��

123



466 A. Ostafe

3.3 Proof of Theorem 1.4

The idea of the proof lies in applying Hilbert’s irreducibility theorem, and in par-
ticular Lemma 2.8, to reduce via specialisations to the univariate case and thus use
Theorem 1.2.

We denote d = D + 1, that is d > degX j
F, degX j

G for any j = 1, . . . , �. We
define the polynomials

F̃(X1, . . . , X�) = F
(
X1, X2 + Xd

1 , . . . , X� + Xd�−1

1

)
,

G̃(X1, . . . , X�) = G
(
X1, X2 + Xd

1 , . . . , X� + Xd�−1

1

)
.

The polynomials F̃, G̃ have the property that

deg F̃, deg G̃ ≤ D
d� − 1

d − 1
< (D + 1)�

and

deg F̃(X1, α2, . . . , α�) = deg F̃, deg G̃(X1, α2, . . . , α�) = deg G̃

for any specialisation (α2, . . . , α�) ∈ C
�−1.

Moreover, we note that the polynomials F̃, G̃ are also multiplicatively independent
in C(X1, . . . , X�)

∗/C∗. Indeed, if this would not be the case, then there would exist
i1, i2 not both zero and a ∈ C

∗ such that

F̃ i1 G̃i2 = a.

Composing this polynomial identity with the polynomial automorphism

(X1, . . . , X�) →
(
X1, X2 − Xd

1 , . . . , X� − Xd�−1

1

)
(3.3)

weobtain that the polynomials F,G aremultiplicatively dependent inC(X1, . . . , X�)
∗/

C
∗ and thus we get a contradiction.
Let K be the field extension of Q generated by the coefficients of the polyno-

mials F,G. By the Hilbert’s irreducibility theorem, see [31, Theorem 46], K is a
Hilbertian field. We apply now Lemma 2.8 with the polynomials F̃, G̃, and thus infer
that there exists a specialisation (α2, . . . , α�) ∈ K

�−1 such that F̃(X1, α2, . . . , α�) and
G̃(X1, α2, . . . , α�) aremultiplicatively independent inC(X1)

∗/C∗. For simplicity, we
put

f = F̃(X1, α2, . . . , α�) and g = G̃(X1, α2, . . . , α�).

We denote Dn,m = gcd (h1 (Fn) , h2 (Gm)). Moreover, we note that

Dn,m

(
X1, X2 + Xd

1 , . . . , X� + Xd�−1

1

)
= gcd

(
h1

(
F̃n) , h2

(
G̃m))

.
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We denote En,m = gcd
(
h1

(
F̃n

)
, h2

(
G̃m

))
, and for the specialisation (α2, . . . , α�)

one has

En,m(X1, α2, . . . , α�) | gcd (
h1

(
f n

)
, h2

(
gm

))
.

In particular, we have

degDn,m ≤ deg En,m ≤ deg gcd
(
h1

(
f n

)
, h2

(
gm

))
.

We make here the remark that using the automorphism (3.3) was essential to have
these degree inequalities, as if one just uses Hilbert’s irreducibility theorem applied
directly with the polynomials F and G, we cannot guarantee that when we make
specialisations we get that degDn,m ≤ deg gcd (h1 ( f n) , h2 (gm)).

We apply now Theorem 1.2 and using the fact that deg f, deg g < (D + 1)� we
conclude that

deg gcd
(
h1

(
f n

)
, h2

(
gm

)) ≤ dh1dh2(44(D + 1)2�)(D+1)� ,

which finishes the proof. ��

3.4 Proof of Theorem 1.5

We define

H = {(F1(α), . . . , F�+1(α)) | α ∈ C
�}.

By Lemma 2.11 there exists a polynomial R ∈ C[Z1, . . . , Z�+1] of degree at most
D� such that R(F1, . . . , F�+1) = 0. In other words, any point of H is a point on the
hypersurface defined by the zero set of R in C

�+1. In particular, any point α ∈ C
�

such that Fi (α)ni = 1, i = 1, . . . , � + 1, gives a point on the hypersurface defined by
the zero set of R with coordinates roots of unity.

From Lemma 2.5 we get that there are at most

N ≤ N (R) ≤ (0.792s(R)/ log (s(R) + 1))s(R)

algebraic subgroups, each defined by the zero set of at most �+1 Laurent polynomials
of the form

Z
b j,1
1 Z

b j,2
2 . . . Z

b j,�+1
�+1 − 1 ∈ C(Z1, . . . Z�+1)

with

�+1∑

i=1

|b j,i | ≤ (� + 1)D�
∏

p≤s(R)

p, j = 1, . . . , � + 1,
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where the product runs over all primes p ≤ s(R), that contain all the points in Z(R)

with coordinates roots of unity. In particular, all points (F1(α), . . . , F�+1(α)) such
that Fi (α)ni = 1, i = 1, . . . , � + 1, lie in these algebraic subgroups. It remains to
estimate s(R).

As R is a polynomial in �+1variables and deg R ≤ D�, we have that s(R) ≤ γ�(D),
where γ�(D) is defined by (1.4).

Thus, the points α such that Fi (α)ni = 1, i = 1, . . . , � + 1, lie in at most
N algebraic varieties, each defined by at most � + 1 Laurent polynomials of the

form F
bj,1
1 F

bj,2
2 . . . F

bj,�+1
�+1 − 1 (note that these polynomials are non constant since

F1, . . . , F�+1 are multiplicatively independent) of degree at most

�+1∑

i=1

|b j,i | deg Fi ≤ (� + 1)D�+1
∏

p≤γ�(D)

p, j = 1, . . . , � + 1,

where the product runs over all primes p ≤ γ�(D). ��

4 Final comments and questions

4.1 Extensions over C

Lemma 2.3 gives only the finiteness of the intersection of curves inG�
m with algebraic

subgroups. As already mentioned after Theorem 1.3, it is of high interest to have
available uniform bounds for the size of this intersection. This implies uniform bounds
on the degree of h in Theorem 1.3.

More generally, one can use bounds for the number of solutions to f (x, y) = 0,
with xn, ym ∈ S for some nonzero integers n and m, where S is the group of S-units
of some fixed number field, to obtain further generalisations. In fact such bounds are
known, for example see [30, Theorem 1.2] for a more general result.

It is certainly interesting to obtain a similar result as Theorem 1.4 for

gcd
(
H1

(
Fn1
1 , . . . , Fns

s

)
, H2

(
Gm1

1 , . . . ,Gmr
r

))
,

with polynomials H1 ∈ C[Y1, . . . ,Ys], H2 ∈ C[Z1, . . . , Zr ] and also F1, . . . , Fs,G1,

. . . ,Gr ∈ C[X1, . . . , X�].
If one chooses

H1 = Y1 . . . Ys − 1, H2 = Z1 . . . Zr − 1,

then following the same proof as for Theorem 1.4, we reduce (via specialisations) the
problem to Theorem 1.3, and thus get that

deg gcd
(
H1

(
Fn1
1 , . . . , Fns

s

)
, H2

(
Gm1

1 , . . . ,Gmr
r

))
(4.1)

is bounded by a constant depending only on F1, . . . , Fs,G1, . . . ,Gr .
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However, the approach of Theorem 1.4 does not seem to work for more general
multivariate polynomials H1, H2.

4.2 Dynamical analogues

Another interesting direction of research is obtaining dynamical analogues of the
results of Ailon–Rudnick [1] and Silverman [36]. That is, investigating the greatest
common divisors of polynomials iterates.

More precisely, let K be a field and f, g ∈ K[T ]. We define

f (0) = T, f (n) = f ( f (n−1)), n ≥ 1,

and similarly for g.

Problem 4.1 Give, under some natural conditions, an upper bound for

deg gcd
(
f (n), g(m)

)
.

Problem 4.2 Show, under some natural conditions, that the iterates of f and g are
coprime for infinitely many n,m.

We note that some conditions on f, g are certainly needed in Problem 4.2 as, for
example, if f and g have 0 as fixed point, that is, f (0) = g(0) = 0, then f (n) and
g(m) are never coprime.

We note that there are many results regarding the arithmetic structure of polynomial
iterates. For example in [18,19,21,22] and references therein, results regarding the
irreducibility of iterates are given. Irreducible polynomials f ∈ K[T ] such that all the
iterates f (n), n ≥ 1, remain irreducible are called stable polynomials. For quadratic
polynomials the stability is given by the presence of squares in the orbit of the critical
point of the polynomial. Thus, if f, g ∈ K[T ] are stable, then f (n) and g(m) are
coprime for every n,m ≥ 1.

For h1, h2 ∈ K[T ], one can also consider the more general case

Gn,m = gcd
(
h1

(
f (n)

)
, h2

(
g(m)

))
.

We note that, following the ideas of [1, Theorem 1] and of this paper, bounding the
zeros of Gn,m reduces to proving the finiteness (or even finding uniform bounds) of
the number of t ∈ C such that ( f (n)(t), g(m)(t)) ∈ V , where V is the set of zeros of
{h1(X1), h2(X2)}.

This naturally leads to the question of counting the occurrences

(
f (n)(t), g(m)(t)

)
∈ V, (n,m, t) ∈ [1, N ] × [1, N ] × C,

for an arbitrary variety V ⊆ C
2 and a sufficiently large integer N ≥ 1.
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For a fixed t and the diagonal case n = m, this is of the same flavour as the uniform
dynamical Mordell–Lang conjecture, which, for a fixed (t1, t2) ∈ C

2 asserts that the
integersn,≥ 1 such that

(
f (n)(t1), g(n)(t2)

) ∈ V , see [3,16,17] and references therein,
lie in finitely many arithmetic progressions (which number does not depend on t1, t2).

Acknowledgments The author is very grateful to Joseph Silverman for drawing the attention on the Ailon–
Rudnick theorem and related results. The authorwould also like to thank Igor Shparlinski, Joseph Silverman,
Thomas Tucker and Umberto Zannier for their valuable suggestions and stimulating discussions, and also
for their comments on an early version of the paper. The author is also grateful to the anonymous referee
for spotting an error in the previous version of Lemma 2.8, and for other comments which improved the
presentation of the paper.The research of A. O. was supported by the UNSWVice Chancellor’s Fellowship.

References

1. Ailon, N., Rudnick, Z.: Torsion points on curves and common divisors of ak − 1 and bk − 1. Acta
Arith. 113(1), 31–38 (2004)

2. Aliev, I., Smyth, C.: Solving algebraic equations in roots of unity. Forum Math. 24, 641–665 (2012)
3. Benedetto, R., Ghioca, D., Kurlberg, P., Tucker, T.: A case of the dynamical Mordell–Lang conjecture.

Math. Ann. 352, 1–26 (2012)
4. Berend, D., Tassa, T.: Improved bounds on Bell numbers and onmoments of sums of random variables.

Prob. Math. Stat. 30, 185–205 (2010)
5. Beukers, F., Smyth, C.J.: Cyclotomic Points on Curves. Number Theory for the Millenium (Urbana,

Illinois, 2000), I. A K Peters, Natick (2002)
6. Bombieri, E., Masser, D., Zannier, U.: Intersecting a curve with algebraic subgroups of multiplicative

groups. Int. Math. Res. Notices 20, 1119–1140 (1999)
7. Bombieri, E., Masser, D., Zannier, U.: On unlikely intersections of complex varieties with tori. Acta

Arith. 133, 309–323 (2008)
8. Bombieri, E., Zannier, U.: Algebraic points on subvarieties ofGn

m . Int. Math. Res. Notices 7, 333–347
(1995)

9. Bugeaud, Y., Corvaja, P., Zannier, U.: An upper bound for the G.C.D. of an − 1 and bn − 1. Math. Z.
243, 79–84 (2003)

10. Corvaja, P., Zannier, U.: A lower bound for the height of a rational function at S-unit points. Monatsh.
Math. 144, 203–224 (2005)

11. Corvaja, P., Zannier, U.: On the maximal order of a torsion point on a curve inGn
m . Rend. Lincei Mat.

Appl. 19, 73–78 (2008)
12. Corvaja, P., Zannier, U.: Some cases of Vojta’s conjecture on integral points over function fields. J.

Algebraic Geom. 17, 295–333 (2008)
13. Corvaja, P., Zannier, U.: Greatest common divisors of u−1, v−1 in positive characteristic and rational

points on curves over finite fields. J. Eur. Math. Soc. (JEMS) 15, 1927–1942 (2013)
14. Evertse, J.-H.: The number of solutions of linear equations in roots of unity. Acta Arith. 89, 45–51

(1999)
15. Denis, L.: Facteurs communs et torsion en caractéristique non nulle. J. Thor. Nombres Bordeaux 23,

347–352 (2011)
16. Ghioca, D., Tucker, T.J.: Periodic points, linearizing maps, and the dynamical Mordell–Lang problem.

J. Number Theory 129, 1392–1403 (2009)
17. Ghioca, D., Tucker, T., Zieve, M.: Intersections of polynomial orbits, and a dynamical Mordell–Lang

conjecture. Invent. Math. 171, 463–483 (2008)
18. Gomez-Perez, D., Nicolás, A.P., Ostafe, A., Sadornil, D.: On the length of critical orbits of stable

arbitrary polynomials over finite fields. Rev. Matem. Iberoamer. 30, 523–535 (2014)
19. Gomez-Perez, D., Ostafe, A., Shparlinski, I.: On irreducible divisors of iterated polynomials. Rev.

Matem. Iberoamer. 30, 1123–1134 (2014)
20. Granville, A., Rudnick, Z.: Torsion points on curves. NATO Sci. Ser. II Math. Phys. Chem. 237, 85–92

(2007)
21. Jones, R.: The density of prime divisors in the arithmetic dynamics of quadratic polynomials. J. Lond.

Math. Soc. 78, 523–544 (2008)

123



On some extensions of the Ailon–Rudnick theorem 471

22. Jones, R., Boston, N.: Settled polynomials over finite fields. Proc. Am. Math. Soc. 140, 1849–1863
(2012)

23. Lang, S.: Fundamentals of Diophantine Geometry. Springer, New York (1983)
24. Mason, R.C.: Diophantine equations over function fields. London Mathematical Society Lecture Note

Series, vol. 96. Cambridge University Press, Cambridge (1984)
25. Masser, D.: Specializations of finitely generated subgroups of abelian varieties. Trans. Am. Math. Soc.

311, 413–424 (1989)
26. Masser, D.: Unlikely intersections for curves in multiplicative groups over positive characteristic. Q.

J. Math. 65, 505–515 (2014)
27. Maurin, G.: Courbes algébriques et équations multiplicatives. Math. Ann. 341, 789–824 (2008)
28. Néron, A.: Problèmes arithmétiques et géométriques rattachés à la notion de rang d’une courbe

algébrique dans un corps. Bull. Soc. Math. France 80, 101–166 (1952)
29. Płoski, A.: Algebraic Dependence of Polynomials after O. Perron and Some Applications: Computa-

tional Commutative and Non-Commutative Algebraic Geometry. IOS Press, Amsterdam, pp. 167–173
(2005)

30. Rémond, G.: Sur les sous-variétés des tores. Compositio Math. 134, 337–366 (2002)
31. Schinzel, A.: Polynomials with Special Regard to Reducibility. Appendix by Umberto Zannier, Ency-

clopedia of Mathematics and its Applications, vol. 77. Cambridge University Press, Cambridge (2000)
32. Schlickewei, H.P.: Equations in roots of unity. Acta Arith. 76, 99–108 (1996)
33. Serre, J.-P.: Lectures on the Mordell–Weil theorem, 2nd edn. Vieweg (1990)
34. Silverman, J.H.: Heights and the specialization map for families of Abelian varieties. J. Reine Angew.

Math. 342, 197–211 (1983)
35. Silverman, J.H.: The S-unit equation over function fields. Proc. Camb. Philos. Soc. 95, 3–4 (1984)
36. Silverman, J.H.: Common divisors of an −1 and bn −1 over function fields. N. Y. J. Math. (electronic)

10, 37–43 (2004)
37. Silverman, J.: Common divisors of elliptic divisibility sequences over function fields. Manuscripta

Math. 114, 432–446 (2004)
38. Silverman, J.H.: Generalized greatest common divisors, divisibility sequences, and Vojta’s conjecture

for blowups. Monatsh. Math. 145, 333–350 (2005)
39. Stothers, W.W.: Polynomial identities and Hauptmoduln. Q. J. Math. Oxf. 32, 349–370 (1981)
40. Zannier, U.: Some Problems of Unlikely Intersections in Arithmetic and Geometry. Annals of Mathe-

matics Studies, vol. 181. Princeton University Press, Princeton (2012)

123


	On some extensions of the Ailon--Rudnick theorem
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Conventions and notation
	1.3 Our results: univariate case
	1.4 Our results: multivariate case

	2 Preliminaries
	2.1 The Ailon--Rudnick theorem
	2.2 Intersection of curves with algebraic groups
	2.3 Torsion points on hypersurfaces
	2.4 Hilbertian fields and multiplicative independence
	2.5 Multiplicities of zeroes
	2.6 Algebraic dependence

	3 Proofs of main results
	3.1 Proof of Theorem 1.2
	3.2 Proof of Theorem 1.3
	3.3 Proof of Theorem 1.4
	3.4 Proof of Theorem 1.5

	4 Final comments and questions
	4.1 Extensions over mathbbC
	4.2 Dynamical analogues

	Acknowledgments
	References




