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Abstract Given a finite set X of points in Rn and a family F of sets generated by
the pairs of points of X , we determine volumetric and structural conditions for the
sets that allow us to guarantee the existence of a positive-fraction subfamily F ′ of F
for which the sets have non-empty intersection. This allows us to show the existence
of weak epsilon-nets for these families. We also prove a topological variation of the
existence of weak epsilon-nets for convex sets.

Keywords Weak epsilon-nets · Positive fraction intersection · Selection theorem

Mathematics Subject Classification 52A35 · 52A30 · 52A38

1 Introduction

The results of this paper were motivated by the following problem by Imre Bárány.

Problem For any twopoints x, y ∈ Rn , let S(x, y)be theEuclidean ballwith diameter
[x, y]. Find the optimal constant bn , if it exists, depending only on the dimension such
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166 A. Magazinov, P. Soberón

that for any set X ⊂ Rn with |X | = N , there a point z contained in at least bnN 2 sets
of the form S(x, y) with x, y ∈ X .

This is representative of a wide class of problems in discrete geometry which we
call positive-fraction problems. A positive-fraction problem is a problem that has the
following setting. Suppose we are given a familyA of sets inRn , and assume that the
family A has some prescribed property (e.g., all members of A are convex, or A is
the family of all n-simplices on given vertices, etc.). Determine if there exists α > 0
depending only on the dimension n and on the property ofA, but not on |A|, such that
there is a subfamily B ⊂ A with non-empty intersection and |B| ≥ α|A|.

There are several well-known positive-fraction problems that have an affirmative
answer (a positive-fraction result). Classic examples include the fractional Helly the-
orem by Katchalski and Liu [16] and the first selection lemma by Bárány [2, Thm. 5.1]
(as called in [19]).

The first selection lemma states that for any finite set X of points in Rn , there is
a point z contained in a positive fraction cn of the simplices spanned by X , where cn
depends on the dimension.

In 1984Boros and Füredi [7] proved that c2 ≥ 2
9 . Different proofs of this result have

been discovered recently [8,12]. The cases n = 1, 2 are the only where the optimal
constant is known [9]. The first high-dimensional version was proved by Bárány [2].
Namely,

Theorem (First selection lemma) Let S ⊂ Rn, with |S| = N. There is a constant cn
depending only on the dimension such that we can always find an intersecting family
F of simplices with vertices in S such that

|F | ≥ cn

(
N

n + 1

)

There have been several improvements on the result above; either finding better
bounds on the constant cn [13,17,21], or requiringmore conditions that the intersecting
simplices have to satisfy, as in [14,15,22,24].

While an n-dimensional simplex is a natural hull of n + 1 points, there are several
ways to define a hull of two points in Rn . One is, as in Bárány’s problem, to consider
Euclidean ball with the diameter [x, y] as a hull of two points x, y ∈ Rn . For this
setup we prove a bound bn ≥ 1

n+1 in Theorem 2.1.
One can notice that the first selection lemma itself gives a positive answer

for Bárány’s problem. Indeed, take z to be a point that is contained in a posi-
tive fraction of simplices with vertices in X . One can show that for each simplex
conv{x1, x2, . . . , xn+1} � z one has z ∈ S(xi , x j ) for at least n+1

2 pairs (i, j). If we
record all such pairs of points from all simplices containing z, then a pair of points
cannot be mentioned more than

( |X |
n−1

)
times, so sufficiently many distinct pairs are

mentioned. The arguments needed to show that z is covered many times are similar to
the ones used in [4].

However, the estimate for bn obtained by the double counting method above is only
about 1/(n!). At the moment the authors are not aware of any shape S(x, y) for which
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the double counting method with the first selection lemma gives the best constants.
Therefore we leave its details to the interested reader.

It is interesting to consider “thinner” shapes as the hull of two points (i.e. the
shapes that are more stretched along the segment [x, y] than a ball). For this purpose
we introduce the following definition of a t-shape (with t ∈ (0, 1)).

Definition 1.1 Let t > 0. Amapping S fromRn×Rn to the set of measurable subsets
of Rn will be called a t-shape if for all x �= y one has S(x, y) = S(y, x) and for all r
that satisfy |x − y| ≥ r > 0 one has

Vol(S(x, y) ∩ Br (y)) ≥ t · Vol(Br (y)),

where Vol(·) stands for the Euclidean volume, Br (x) is the closed ball of radius r
around x , |x − y| is the Euclidean distance between x and y.

This definition is very relaxed, the following more familiar shapes are examples of
t-shapes for some t .

Example 1 For every a > 0, the ellipsoids

Ea(x, y) = {z ∈ Rn : |z − x | + |z − y| ≤ (1 + a)|x − y|}

are t-shapes for some t = t1(n, a).

Example 2 For every π > a > 0, the shapes

Sa(x, y) = {z ∈ Rn : � (x − z, y − z) ≥ a}

are t-shapes for some t = t2(n, a). In particular, if a = π/2, then Sa(x, y) is simply
the Euclidean ball with diameter [x, y]. For a general a these sets are also called
a-lenses, and families of these objects have nice intersection properties [3,5].

We give a positive answer to Bárány’s problemwhere S(x, y) are no longer required
to be balls, but are t-shapes for some t > 0. In this case the fraction of intersecting
hulls we can guarantee decreases exponentially in n for every fixed t .

Theorem 1.2 (Positive fraction intersection for t-shapes)There exist positive absolute
constants c1 and c2 satisfying the following property. For every t-shape S(x, y) inRn,

and for every finite X with |X | ≥ N setting

λ = c1 · t · cn2
guarantees that there is a point z ∈ Rn that is covered by at least λN 2 shapes S(x, y)
with x, y ∈ X.

In Theorem 4.1 we also consider the shape S(x, y) to be the minimal box (i.e. a
parallelotope with edges parallel to coordinate lines) containing x and y. A box is not
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168 A. Magazinov, P. Soberón

a t-shape for any t > 0, but a positive-fraction result can also be proved. In this case
the fraction also decreases exponentially in the dimension.

We should emphasise that a condition on the sets S(x, y) is necessary, as considering
S(x, y) to be the segment [x, y] fails to give a positive-fraction result.

One of the most striking applications of the first selection lemma is the proof of
existence of weak ε-nets for convex sets, presented below.

Theorem (Alon et al. [1]) Let n be a positive integer, and 1 ≥ ε > 0. Then, there
is a positive integer m = m(n, ε) such that the following holds. For every finite set
S ⊂ Rn, there is a set T ⊂ Rn of m points such that if A ⊂ S is a subset with size at
least ε|S|, then

T ∩ conv(A) �= ∅.

Moreover, m = O(ε−n−1) where the implied constant of the O notation depends on
n.

The set T is called a weak ε-net of S. Bounding the size of a weak ε-net for convex
sets is a notorious problem. The best improvement over the bound above is m =
O(ε−n · polylog(ε−1)) [11,20]. The best lower bound is m = �(ε−1 · logn−1(ε−1))

[10].
We explore variations of weak ε-nets for operators different from the convex hull.

For instance, in Theorem 5.1 we show that the topological versions of the selection
theorem imply directly a topological extension of weak ε-nets for convex sets, using
the same arguments as [1]. This generalises weak ε-nets just like the topological
Tverberg theorem generalises Tverberg’s theorem [6,25]. We also consider variants
of weak ε-nets for t-shapes. Given a t-shape S, we can define the thin hull of a set A
as

thinS(A) =
⋃

{S(x, y) : x, y ∈ A}

Since t-shapes admit a first selection lemma, this operator begs for the existence of
weak ε-nets.

Theorem 1.3 Let n be a positive integer, ε, t > 0, and S a t-shape inRn. Then, there
is a positive integer m′ = m′(t, ε, n) such that the following holds. For any finite set
X ⊂ Rn, there is a set T ⊂ Rn of size m′ such that if A ⊂ X and |A| ≥ ε|X |, then

T ∩ thinS(A) �= ∅.

Moreover, m′ = O(ε−2), where the implied constant of the O notation depends on n
and t.

The rest of the paper is organised as follows. In Sect. 2 we give a solution Bárány’s
original problem. In Sect. 3 we prove our results on t-shapes. In Sect. 4 we state and
prove our results for boxes. Finally, in Sect. 5 we prove all our results regarding weak
ε-nets.

123



Positive-fraction intersection results and variations of weak… 169

2 Positive-fraction result for Euclidean balls

In this sectionwe give a solution to the original Bárány’s problemwith a large constant.
We prove a stronger version of the result, in the same spirit as Karasev’s colourful
version of Bárány’s result [15]. Namely, instead of having one finite set X , we are
given two sets A, B. We give a positive fraction intersection result for the balls having
diameters with one end in A and another in B. The case A = B is Bárány’s problem.

Theorem 2.1 For each x, y ∈ Rn let S(x, y) be the Euclidean ball with diameter
[x, y]. Then, for finite sets A, B ⊂ Rn of N and M points respectively, there is a
point covered by at least 1

n+1NM sets of the form S(a, b) with a ∈ A, b ∈ B.

Proof By Rado’s central point theorem [23], there is a point z ∈ R
n such that for

every close half-space that contains z also contains at least N
n+1 points of the set A.

Consider a point b ∈ B. If b = z, then the ball S(a, b) contains z for any a ∈ A.
If b �= z, then consider a hyperplane through z orthogonal to the segment [b, z].

Let H be the closed half-space of this hyperplane that does not contain b. Then for
any a ∈ A ∩ H the angle � bza is not acute, and therefore z ∈ S(a, b). Hence every
point b ∈ B is contained in at least N

n+1 pairs (a, b) with a ∈ A such that z ∈ S(a, b).

This gives a total of at least NM
(n+1) ordered pairs a ∈ A, b ∈ B such that z ∈ S(a, b),

as desired. ��

3 Positive-fraction results for t-shapes

Before proving Theorem 1.2, notice that it can be naturally extended to measures in
Rn by usual approximation arguments.

Theorem 3.1 There exist positive absolute constants c1 and c2 satisfying the following
property. For every t-shape S(x, y) in Rn and for every Borel probability measure μ

in Rn, setting

λ = c1 · t · cn2
guarantees that there is a point z ∈ Rn such that

P(z ∈ S(x, y) : x, y are independent μ-random points) ≥ λ.

We now prove Theorem 1.2 (and thus Theorem 3.1 as well). The first ingredient
we need is the following lemma.

Lemma 3.2 Let (X, ρ) be a finite metric spaces with |X | = N > 1. Then, there is a
subset Y ⊂ X such that one can find at least N 2/64 ordered pairs (y, x) with y ∈ Y,

x ∈ X\Y and ρ(x, y) ≥ 1
4 diam Y .

Proof Let Br (x) be the closed ρ-ball in X of radius r centered at x . For each x ∈ X
let

a(x) = max

{
r ∈ R+ : |Br (x)| ≤ 3N

4

}
.
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170 A. Magazinov, P. Soberón

We can enumerate the points of X as x1, x2, . . . , xN so that

a(x1) ≤ a(x2) ≤ · · · ≤ a(xN ).

We will prove that the set Y = {xi : i ≤ 
 3N
4 �} satisfies the conclusion of the

lemma.
Set a = a(x
3N/4�). First we show that diam Y ≤ 2a. Indeed, for every two points

y1, y2 ∈ Y the sets

Ba(y1)(y1) ∩ X and Ba(y2)(y2) ∩ X

are each of cardinality at least 3N
4 and thus have a point of intersection z. Then

ρ(y1, y2) ≤ ρ(y1, z) + ρ(z, y2) ≤ a(y1) + a(y2) ≤ 2a.

Now consider the graph G = (V, E) with vertex set V = X\Y such that two points
v1, v2 ∈ V are connected if and only if ρ(v1, v2) ≥ a. Let α(G) be the independence
number of G. We consider two cases that cover all possibilities.

Case 1. α(G) ≤ N
8 . We will show that for every y ∈ Y there are at least N/8 pairs

(y, v) such that v ∈ V and ρ(y, v) ≥ a/2.
Assume the opposite: for some y ∈ Y there are fewer than N/8 pairs (y, v) with

v ∈ V such that ρ(y, v) ≥ a/2. From the assumption it follows that for more than
|V | − N/8 points v ∈ V the inequality ρ(y, v) < a/2 holds. We can choose ε > 0
to be small enough to satisfy the following condition: for every v ∈ V one has
ρ(y, v) ≤ a/2 − ε whenever ρ(y, v) < a/2. Hence |V ∩ Ba/2−ε(y)| > |V | − N/8.

On the other hand,

|V | = N − |Y | = N −
⌊
3N

4

⌋
≥ N

4
.

Hence |V ∩Ba/2−ε(y)| > N
4 − N

8 = N
8 . By definition of Case 1, the set V ∩Ba/2−ε(y)

is too large to be independent in G. But diam Ba/2−ε(y) < a, and therefore the set
V ∩ Ba/2−ε(y) has to be independent in G, a contradiction.

So, there are at least N8 ·⌊ 3N
4

⌋
pairs (y, v) such that y ∈ Y, v ∈ V andρ(y, v) > a/2,

which is sufficient for the lemma.

Case 2. α(G) > N
8 . Let W ⊂ V be an independent set in G with |W | > N

8 .
First notice that, by the choice of Y and V , each point v ∈ V satisfies

|X\Ba−ε(v)| ≥ �N/4�

for every ε ∈ (0, a).
Fix a point w ∈ W . Choose ε ∈ (0, a) to be small enough to satisfy the following

condition: for every x ∈ X one has ρ(w, x) ≤ a − ε whenever ρ(w, x) < a.
For every w′ ∈ W (w′ �= w), the vertices w and w′ are not connected by an edge of

G. Thus ρ(w,w′) < a, and, consequently, ρ(w,w′) ≤ a − ε. Hence W ⊂ Ba−ε(w).

123



Positive-fraction intersection results and variations of weak… 171

Therefore

X\Ba−ε(w) = (V \Ba−ε(w)) ∪ (Y\Ba−ε(w)) ⊂ (V \W ) ∪ (Y\Ba−ε(w)).

As a result, we have

|X\Ba−ε(w)| ≤ |Y\Ba−ε(w)| + |V \W | = |Y\Ba−ε(w)| + |V | − |W |,

and so

|Y\Ba−ε(w)| ≥ |X\Ba−ε(w)| + |W | − |V | ≥ �N/4� + N/8 − �N/4� = N/8.

Thus, every w ∈ W produces at least N
8 pairs (y, w) with y ∈ Y and ρ(y, w) >

a − ε. By the choice of ε, all such y satisfy ρ(y, w) ≥ a as well. Iterating over all
w ∈ W , we get a total of at least N

8 · N
8 = N2

64 pairs (y, x) (where x = w) for the
lemma. ��

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2 Let Un be the volume of the unit ball in Rn .
For the set X ⊂ Rn , choose a subset Y which satisfies the conditions of Lemma

3.2. Let d = diam Y .
Define

R =
⋃
y∈Y

Bd(y).

Note that Y ⊂ Bd(y) for any y ∈ Y . As a consequence, R ⊂ B2d(y). Thus,
Vol(R) ≤ (2d)nUn .

On the other hand, for all pairs (y, x) with y ∈ Y , x ∈ X\Y and |x − y| > d
4 one

has

Vol (S(x, y) ∩ R) ≥ t · d
n

4n
·Un .

Since the number of such pairs is at least N2

64 , there is a point in R that is covered
by at least

t ∗ (dn/4n) ∗Un

Vol(R)
· N

2

64
≥ t · N 2

2n · 4n+3

sets of the form S(x, y). Hence Theorem 1.2 is proved with c1 = 1/64, c2 = 1/8. ��
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4 Positive-fraction result for boxes

A box is a (closed) parallelotopewith all edges parallel to coordinate axes. For arbitrary
t > 0 a box is not a t-shape, because it can be arbitrarily flat along any coordinate
plane. Nevertheless, we prove a positive-fraction result for boxes.

Theorem 4.1 For each x, y ∈ Rn let S(x, y) be the minimal box that contains x and
y. Then,

• for any finite set X ⊂ Rn of N points, there is a point covered by at least N
2n ( N

2n −1)
sets of the form S(x, y) with x, y ∈ X, and

• for each ε > 0, there is a finite set X ⊂ Rn of N points such that no point is
contained in more than ( 1

2n + ε)N 2 sets of the form S(x, y) with x, y ∈ X.

For a point x ∈ Rn , we denote by (x1, x2, . . . , xn) its coordinates. We prove
Theorem 4.1 via the following lemma.

Lemma 4.2 Let X ⊂ Rn be a set of N points, j ∈ {1, 2, . . . , n}. Then there exist two
sequences

z1, z2, . . . , z j (zi ∈ R) and ε1, ε2, . . . , ε j (εi ∈ {−1,+1})

such that the two sets

R1 = {x ∈ Rn : εi (xi − zi ) ≤ 0 for i = 1, 2, . . . , j},
R2 = {x ∈ Rn : εi (xi − zi ) ≥ 0 for i = 1, 2, . . . , j}

satisfy |X ∩ Rk | ≥ |X |
2 j for k = 1, 2.

Proof We use induction over j . Let j = 1 and choose z1 so that the plane x1 = z1
splits the set X into almost equal parts (this, by definition, means that the intersection
of X with each of two closed subspaces x1 ≤ z1 and x1 ≥ z1 contains at least |X |/2
points). It is clear that ε1 = +1 will suffice.

Let j >1.By inductionhypothesis,we canfind z1, z2, . . . , z j−1 and ε1, ε2, . . . , ε j−1
that satisfy the statement for j − 1. Set

X ( j−1)
1 = X ∩ {x ∈ Rn : εi (xi − zi ) ≤ 0 for i = 1, 2, . . . , j − 1},

X ( j−1)
2 = X ∩ {x ∈ Rn : εi (xi − zi ) ≥ 0 for i = 1, 2, . . . , j − 1}.

The inductive assumption implies that

|X ( j−1)
k | ≥ |X |

2 j−1 for k = 1, 2.

For k = 1, 2 choose z(k)j so that the plane x j = z(k)j splits the set X ( j−1)
k into almost

equal parts. Now set z j = z(1)j +z(2)j
2 , and ε j = +1 if z(1)j < z(2)j , or ε j = −1 otherwise.

This is sufficient to complete the induction step. ��

123



Positive-fraction intersection results and variations of weak… 173

Proof of Theorem 4.1 Apply Lemma 4.2 to the set X with j = n. Set z =
(z1, z2, . . . , zn), X1 = X ∩ R1, X2 = (X ∩ R2)\{z}. For every x1 ∈ X1 and every
x2 ∈ X2 the box S(x1, x2) contains z.

Further, |X1| ≥ N
2n , |X2| ≥ N

2n − 1 and X1 ∩ X2 = ∅, which gives the necessary
number of pairs.

For the lower bound, notice that by standard approximation arguments (see, for
instance, [18]) it suffices to find a probability measure μ in Rn which is absolutely
continuous with respect to the Lebesgue measure such that for all z ∈ Rn , the proba-
bility that z ∈ S(x, y) is at most 1

2n where x, y are independent μ-random points. Let
μ be the uniform probability measure on the unit cube C = [0, 1]n .

Given z = (z1, z2, . . . , zn) and x, y ∈ Rn , notice that z ∈ S(x, y) if and only if
there is a sequence a = (ε1, ε2, . . . , εn) ∈ {+1,−1}n such that

x ∈ Ra
1 = {u ∈ Rn : εi (ui − zi ) ≤ 0 for i = 1, 2, . . . , n},

y ∈ Ra
2 = {u ∈ Rn : εi (ui − zi ) ≥ 0 for i = 1, 2, . . . , n}

Thus

P[z ∈ S(x, y) : x, y i.i.d.] =
∑

a∈{+1,−1}n
Vol(Ra

1 ∩ C) · Vol(Ra
2 ∩ C)

Also, if z ∈ S(x, y) for any x, y, it is necessary that 0 ≤ zi ≤ 1. In order to
bound Vol(Ra

1 ∩ C) · Vol(Ra
2 ∩ C), we may assume without loss of generality that

a = (+1,+1, . . . ,+1). Then

Vol(Ra
1 ∩ C) · Vol(Ra

2 ∩ C) =
(

n∏
i=1

zi

) (
n∏

i=1

(1 − zi )

)

=
n∏

i=1

zi (1 − zi ) ≤
n∏

i=1

1

4
= 1

4n

which gives us the desired conclusion.

P[z ∈ S(x, y) : x, y i.i.d.] =
∑

a∈{+1,−1}n
Vol(Ra

1 ∩ C) · Vol(Ra
2 ∩ C) ≤ 1

2n

��

5 Results for weak ε-nets

In this section we show that the notion of weak ε-nets can be extended to operators
other than the convex hull. The arguments we use are based on the original proof in
[1].

The first topological extension of the first selection lemma in arbitrary dimension,
stated below, was obtain by Gromov [13], which extends to continuous maps.
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Theorem Let 	N−1 be the (N − 1)-dimensional simplex and f : 	N−1 → Rn a
continuous map. There is a constant c∗

n depending only on n such that we can always
find a family F of n-dimensional faces of 	N−1 such that the images of F intersect
and

|F | ≥ c∗
n

(
N

n + 1

)

Moreover,

c∗
n ≥ 2n

(n + 1)(n + 1)!
There are now improved bounds on c∗

n [17] (see also [21]). When f is linear, we
obtain the classic version of the first selection lemma. A simplified proof of the result
above is contained in [15]. Using this result, one can prove a topological version of
the weak ε-net result of [1] with an analogous proof.

Theorem 5.1 Let n be a positive integer, ε > 0. Then, there is a positive integer
mtop = mtop(n, ε) such that the following holds. For a positive integer N , let 	N−1

be the (N − 1)-dimensional simplex, with N vertices. For every N ≥ ε−1(d + 1) and
every continuous map f : 	N−1 → Rn, there is a set T ⊂ Rn of at most m points
such that the following holds. For any set A ⊂ 	N−1 of at least εN vertices,

f [〈A〉] ∩ T �= ∅

where 〈A〉 denotes the face of 	N−1 generated by A. Moreover, mtop = O(ε−n−1)

where the implied constant of the O notation depends on n.

Proof of Theorem 5.1 We construct the set T inductively, by counting the number K
of faces B of size n + 1 such that f [〈B〉] ∩ T = ∅. Suppose there is a face A with
|A| ≥ εN such that f [〈A〉] ∩ T = ∅. Then, by the topological version of the first
selection lemma applied to A, there must be a point t ∈ Rn such that t ∈ f [〈B〉] for
at least

c∗
n

(
εN

n + 1

)
∼ εn+1c∗

n

(
N

n + 1

)

different subsets B ⊂ A with |B| = n + 1. Thus, by adding the point t to T , we
have reduced K by at least εn+1c∗

n

( N
n+1

)
. This process cannot be repeated more than

(εn+1c∗
n)

−1 times, so we obtain mtop ≤ (εn+1c∗
n)

−1, as desired. ��
Even though this result and its proof are natural with current methods, it seems

that this generalisation has not yet been observed. The proof of Theorem 1.3 is almost
identical, but we include it for the sake of completeness.

Proof of Theorem 1.3 We construct the set T inductively, by counting the number K
of pairs {x, y} ∈ (X

2

)
such that S(x, y) ∩ T = ∅. Suppose there is a subset A with
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|A| ≥ ε|X | such that thinS(A) ∩ T = ∅. Then, by Theorem 1.2 applied to A, there
must be a point p ∈ Rn such that t ∈ S(x, y) for at least

λ(ε|X |)2 ≥ 2λε2
(|X |

2

)

ordered pairs (x, y) ∈ A × A. Thus, by adding the point p to T , we have reduced K
by at least λε2

(|X |
2

)
. This process cannot be repeated more than (λε2)−1 times, giving

the desired bound. ��
The same proof method has been used to get other extensions of weak ε-nets for

convex sets, such as quantitative versions in [24]. When we apply Theorem 1.3 to
α-lenses (Example 1 in the introduction), we obtain the following corollary.

Corollary 1 For any two real numbers α ∈ [0, π), ε ∈ (0, 1] and a positive integer
n, there is an integer m′ = m′(n, ε, α) such that the following holds. For every finite
set S ⊂ Rn, there is a set T ⊂ Rn of m′ points such that if A ⊂ S is a subset of at
least ε|S| points, then there are x, z ∈ A and y ∈ T such that

� xyz > α.

Moreover, m′ = O(ε−2), where the implied constant of the O notation depends on n
and α.

In other words, there is a point of T that sees some pair of points of every large
subset of S at a wide angle. It is surprising that this notion of being close to S allows
for weak ε-nets of such small size.

This would be a counterpart to [5, Theorem 4]. In that result, Bárány and Lehel
showed that for every angle α < π and every compact set V ⊂ Rd has a subset S of
fixed size (depending only on d and α) such that every point in X “sees” some pair
of points of S at an angle wider than α. In other words, if we denote by the α-lens of
{x, y} the set of points z such that � xzy > α, it says that a fixed number of α-lenses
of C cover the points in C . In our result, we show that given the set C , a fixed number
of points intersects “most” of the α-lenses of C .
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