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Abstract Motivated by and extending a theorem of Reiter on sets of synthesis in
R

N , we establish a general result for Fourier algebras of locally compact groups,
even in the wider context of regular, semisimple and Tauberian commutative Banach
algebras, which contains Reiter’s theorem as a special case and explains why it holds.
In addition, we give a number of examples and several further results on weak spectral
sets.
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1 Introduction

By a classical result due to L. Schwartz the unit sphere SN−1 in R
N fails to be a set

of synthesis for the Fourier algebra A(RN ) when N ≥ 3. Subsequently, Reiter [20]
proved an intriguing theorem saying that if F is any closed subset of R

N , N ≥ 3, then
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840 E. Kaniuth, A. Ülger

the set F ∪ SN−1 cannot be a set of synthesis unless F contains SN−1. However, the
sole fact that SN−1 disobeys synthesis does not explain why Reiter’s theorem holds.

In this paper we prove a general result for the Fourier algebra A(G) of an arbitrary
locally compact group G, satisfying Ditkin’s condition at infinity, which contains
Reiter’s theorem as a special case and at the same time explains why it holds (Sect. 3).
Actually, our result is valid for general semisimple, regular, Tauberian commutative
Banach algebras, which satisfy Ditkin’s condition at infinity (Sect. 4). Moreover, we
deal with weak spectral sets rather than just sets of synthesis. In Sect. 5 we present
a number of examples illustrating the results of Sect. 4. These examples concern, in
particular, conjugacy classes and double cosets of compact subgroups in G. Finally,
in Sect. 6 we add a number of further results on weak spectral sets.

2 Preliminaries

Let A be a regular and semisimple commutative Banach algebra with structure space
�(A) and Gelfand transform a → â. For any subset M of A, the hull h(M) of M is
defined by h(M) = {ϕ ∈ �(A) : ϕ(M) = {0}}. Associated to each closed subset E
of �(A) are two distinguished ideals with hull equal to E , namely

k(E) = {a ∈ A : â(ϕ) = 0 for all ϕ ∈ E}

and

j (E) = {a ∈ A : â has compact support disjoint from E}.

Then k(E) is the largest ideal with hull equal to E and j (E) is the smallest such ideal,
and consequently J (E) = j (E) is the smallest closed ideal with hull E . The set E
is called a set of synthesis or spectral set if k(E) = J (E). If a ∈ aj (E) for every
a ∈ k(E), then E is called a Ditkin set. Finally, A is said to satisfy Ditkin’s condition
at infinity if ∅ is a Ditkin set. As general references to spectral synthesis we mention
[1,10,21,22].

For any Banach space X , the duality between X and its dual Banach space X∗ is
written as 〈 f, x〉 or 〈x, f 〉, x ∈ X , f ∈ X∗. For a subset M of X , M⊥ will denote the
annihilator of M in X∗.

Throughout Sects. 4 and 6 of the paper A will denote a commutative, regular, semi-
simple and Tauberian Banach algebra, which satisfies Ditkin’s condition at infinity.
We recall that A is said to be Tauberian if the set of all a ∈ A such that â has compact
support is dense in A.

For a ∈ A and f ∈ A∗, the functional a · f is defined by 〈a · f, b〉 = 〈 f, ab〉,
b ∈ A. It is clear that ‖a · f ‖ ≤ ‖a‖ · ‖ f ‖ and, for γ ∈ �(A) and a ∈ A, a · γ =
â(γ )γ = 〈γ, a〉γ . As ∅ is a Ditkin set, a ∈ a A for each a ∈ A. This in turn implies
that 〈a, f 〉 = 0 whenever a · f = 0.

For f ∈ A∗, the spectrum σ( f ) of f is defined to be

σ( f ) = {γ ∈ �(A) : for each a ∈ A, a · f = 0 implies â(γ ) = 0}.
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The following properties of the spectrum σ( f ) are used throughout the paper:

(1) σ( f ) = ∅ if and only if f = 0.
(2) For any f ∈ A∗ and a ∈ A, σ(a · f ) ⊆ σ( f ) ∩ supp â.
(3) For any closed subset E of �(A), σ( f ) ⊆ E if and only if f ∈ J (E)⊥.
(4) If ( fα)α is a net in A∗ converging to f in the w∗-topology and σ( fα) ⊆ E for

some closed subset E of �(A), then σ( f ) ⊆ E .

For closed ideals I and J of A, I J denotes the closed ideal

{

n
∑

i=1

ai bi : ai ∈ I, bi ∈ J, 1 ≤ i ≤ n, n ∈ N

}

.

Accordingly, for k ∈ N, k ≥ 2, I k is inductively defined by I k = I k−1 I . Using
identities such as 4ab = (a + b)2 − (a − b)2, a straightforward inductive argument
shows that I k is also the closed linear span of all the elements of the form ak , a ∈ I .

3 Reiter’s theorem for the Fourier algebra

As mentioned in the introduction, according to a classical result due to L. Schwartz,
the unit sphere SN−1 in R

N = �(L1(RN )) fails to be a set of synthesis for N ≥
3 (see [22, 7.3.1 and 7.3.2]). In an attempt to construct examples of functions in
k(SN−1)\J (SN−1), Reiter proved the intriguing result that if F is any closed subset
of R

N which does not contain SN−1, then SN−1 ∪ F fails to be a set of synthesis [20,
Theorem 2]. In this section, we present a generalization of Reiter’s theorem to Fourier
algebras of arbitrary locally compact groups and explain why Reiter’s theorem holds.

Let G be a locally compact group and A(G) the Fourier algebra of G as introduced
and extensively studied by Eymard [4]. This is a commutative, semisimple, regular
and Tauberian Banach algebra of functions on G, which has since become one of the
main objects of study in abstract harmonic analysis. The Gelfand spectrum of A(G)

can be identified with G, via the evaluation functionals. If G is abelian, then A(G)

is isometrically isomorphic to the L1-algebra of the dual group ̂G of G. Recall that
A(G)∗ is isomorphic to the V N (G), the von Neumann algebra generated by the left
regular representation of G on the Hilbert space L2(G). We will throughout assume
that u ∈ u A(G) for every u ∈ A(G). No locally compact group seems to be known
for which this condition is not satisfied.

To every closed subset E of G = �(A(G)) we associate the closed subset

σ1(E) = ⋃{σ(u · f ) : u ∈ k(E), f ∈ J (E)⊥}

of E and the closed ideal

I1(E) = {u ∈ A(G) : uk(E) ⊆ J (E)}

of A(G). The set σ1(E), which has been introduced in [24] and used there to study
synthesis problems, is the hull of I1(E) and always contained in the boundary ∂(E)
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842 E. Kaniuth, A. Ülger

of E . Moreover, by its very definition, σ1(E) = ∅ if and only if the set E is a set of
synthesis.

Let � be a group of homeomorphisms of G that acts continuously on A(G) in the
following sense.

(1) For each u ∈ A(G) and φ ∈ �, the function φ(u) defined by φ(u)(x) =
u(φ−1(x)), x ∈ G, belongs to A(G).

(2) If a sequence (un)n in A(G) converges to u for some u ∈ A(G), then φ(un) →
φ(u) for every φ ∈ �.

Recall that � acts transitively on a subset E of G if for some (and hence every)
x ∈ E , E = {φ(x) : φ ∈ �}. In this case, φ(E) = E for each φ ∈ �.

The following theorem is a dichotomy result for such a set E . Concerning synthe-
sibility, it behaves either very good or as bad as possible.

Theorem 3.1 Let G be a locally compact group and suppose that � is a group of
homeomorphisms of G which acts continuously on A(G). Let E be a closed subset of
G such that � acts transitively on E. Then either E is a set of synthesis or σ1(E) = E.
Moreover, E is a set of synthesis if and only if E contains a set of synthesis F whose
relative interior is nonempty (i.e. E\F �= E).

Let G = R
N , N ≥ 3, � = SO(N ), acting on R

N by rotation, and E = SN−1.
Then � acts transitively on E . Since SN−1 is not of synthesis for A(RN ), it follows
from the preceding theorem that σ1(SN−1) = SN−1. Note that in [13, Example 6.6]
this was obtained as a consequence of Varopoulos’s work [25]. Since, as shown by
Herz [8], the unit circle is a set of synthesis for A(R2), we see that both alternatives
in Theorem 3.1 occur.

We now present a class of sets E for which σ1(E) = E . Contrary to the sphere,
these are thin sets. For any f ∈ V N (G), set

X f = {u · f : u ∈ A(G)}.

Then X f is a (not necessarily closed) A(G)-invariant subspace of V N (G).

Proposition 3.2 Let F be a closed subset of G and let f ∈ V N (G) be such that
J (F)⊥ ∩ X f �= {0}, but k(F)⊥ ∩ X f = {0}. Then F contains a nonempty set E such
that σ1(E) = E.

Proof Let g ∈ J (F)⊥ ∩ X f , g �= 0, and set E = σ(g). As

J (σ1(E))k(E) ⊆ I1(E)k(E) ⊆ J (E) ⊆ J (σ1(E)),

we have J (σ1(E))k(E) = J (E). This equality implies that, for any u ∈ J (σ1(E)),
u · g ∈ k(E)⊥ ∩ X f . However, since E ⊆ F , k(E)⊥ ∩ X f = {0} and therefore
u · g = 0. As u ∈ u A(G), we get that 〈u, g〉 = 0. This proves that g ∈ J (σ1(E))⊥, so
that E = σ(g) ⊆ σ1(E) and hence σ1(E) = E . ��

In the context of metrizable locally compact abelian groups, for the existence of
sets F satisfying the hypothesis of the preceding proposition, we refer the reader to
[23].

123



On a theorem of Reiter and spectral synthesis 843

Theorem 3.3 Let E be a closed subset of G and suppose that σ1(E) = E. Then, for
any closed subset F of G, E ∪ F is a set of synthesis (if and) only if E ⊆ F and F is
a set of synthesis. Moreover, in this case, F\E = F.

Reiter’s theorem is now an immediate consequence of Theorem 3.3 since
σ1(SN−1) = SN−1, and we note that this equality is the reason for Reiter’s theo-
rem to hold. The next corollary follows from Theorem 3.1.

Corollary 3.4 Let G, φ and E be as in Theorem 3.1. If E fails to be a set of synthesis,
then E cannot be written as a union of countably many sets of synthesis.

As do the previous results, the following corollary, which is an immediate conse-
quence of Theorems 3.1 and 3.3, also holds in a more general setting (see Corollary
4.4)

Corollary 3.5 Let E and F be closed subsets of RN , N ≥ 3, such that E ⊆ SN−1⊆ F.

(i) If E is a set of synthesis for A(RN ), then SN−1\E = SN−1.
(ii) If F is a set of synthesis for A(RN ), then F\SN−1 = F.

We refrain from presenting proofs of Theorems 3.1 and 3.3 and Corollaries 3.4
and 3.5 here because in the next section we shall prove abstract versions of these
results in the general setting of semisimple, regular andTauberian commutativeBanach
algebras. The purpose of stating the above results separately is to emphasize the
motivation for what will be accomplished in Sect. 4. We continue with an example
taken from [14].

Example 3.6 Let T : R
N → R

N be a linear map and let � = {esT : s ∈ R} be
the associated one-parameter group. Suppose that � is closed in GL(N , R). Then, as
proved in [14], for any compact connected subset H of� and any x ∈ R

N , the set H(x)

is a set of synthesis for A(RN ) (more generally, for the so-called Figà-Talamanca-Herz
algebras Ap(R

N ), 1 < p < ∞). Now, let Hn = {esT : −n ≤ s ≤ n}, n ∈ N. Then,
since � is closed in GL(N , R), each orbit �(x) is closed in R

N (for instance, see [7,
p.150, Exercise 5]). It now follows from Corollary 3.4 that �(x) = ⋃∞

n=1 Hn(x) is a
set of synthesis.

4 An abstract version of Reiter’s theorem and some consequences

From now onwe allow themore general setting of a regular, semisimple and Tauberian
commutative Banach algebra A with structure space �(A) and Gelfand transform
a → â. We assume in addition that ∅ is a Ditkin set. We also consider weak spectral
sets rather than just sets of synthesis. These sets were introduced and first studied
by Warner [26] in connection with the union problem for sets of synthesis. A closed
subset E of �(A) is called a weak spectral set or set of weak synthesis if there exists
n ∈ N such that an ∈ J (E) for every a ∈ k(E). The smallest such number n are
denoted ξ(E) and called the characteristic of E . Thus ξ(E) = 1 if and only if E is
a set of synthesis. Using this terminology, the main result of [25] says that SN−1 is a
weak spectral set for A(RN ) with ξ(SN−1) = � N+1

2 �.
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844 E. Kaniuth, A. Ülger

We say thatweak spectral synthesis holds for A if ξ(E) < ∞ for every closed subset
E of �(A). Warner proved that the union of two weak spectral sets E and F is again
a weak spectral set and that ξ(E ∪ F) ≤ ξ(E) + ξ(F). Subsequently, weak spectral
sets and the weak synthesis problem gained considerable attention and have been
studied by several authors [9,11–13,16,17,19,26,27]. There are several important
Banach algebras for which weak synthesis holds, whereas spectral synthesis fails.
In contrast, as independently shown in [9,17], for a locally compact group G, weak
spectral synthesis holds for the Fourier algebra A(G) if and only if G is discrete.

We define, for each n ∈ N, a closed ideal In(E) of A by

In(E) = {a ∈ A : ak(E)n ⊆ J (E)}.

Then In(E) is the largest closed ideal I of A such that I k(E)n ⊆ J (E). Moreover,
for each n we define a subset σn(E) of �(A) by

σn(E) =
⋃

{σ(a · f ) : a ∈ k(E)n, f ∈ J (E)⊥} w∗
,

where the w∗-closure is taken in �(A). The set σ1(E) was introduced in [24] to study
sets of synthesis, and subsequently the decreasing sequence of sets σn(E) and the
increasing sequence of ideals In(E), n ∈ N, have been defined and employed in [13].
For some examples of Banach algebras they have been determined explicitly [13,
Section 6]. Moreover, for every n ∈ N, σn(E) ⊆ �n(E), where �n(E) denotes the
n-difference spectrum, which was introduced in [16] as a tool to study weak spectral
synthesis. The following facts will be used several times in the sequel.

(i) For any closed subset E of �(A),

J (σn(E)) ⊆ In(E) ⊆ k(σn(E))

and hence h(In(E)) = σn(E) [13, Lemma 2.2].
(ii) The set E is a weak spectral set if and only if σn(E) = ∅ for some n ∈ N.

Moreover, in this case ξ(E) is the smallest such number n. In particular, E is a
set of synthesis if and only if σ1(E) = ∅ [13, Proposition 2.3]

Let now � be a group of homeomorphisms of �(A) such that

(1) for each a ∈ A and φ ∈ �, there exists an element φ(a) of A such that φ̂(a)(γ ) =
â(φ−1(γ )) for all γ ∈ �(A);

(2) if ‖an − a‖ → 0, then ‖φ(an) − φ(a)‖ → 0 for every φ ∈ �.

We then say that � acts continuously on A. Note that, since A is semisimple, φ(a) is
uniquely determined and the map a → φ(a) is an automorphism of A.

The following theorem is the abstract version of Theorem 3.1.

Theorem 4.1 Let � be as above and let E be a closed subset of �(A) such that �

acts transitively on E. Then either E is a weak spectral set or σn(E) = E for every
n ∈ N. Furthermore, the set E is a weak spectral set with ξ(E) ≤ m for some m ∈ N

if and only if E contains a weak spectral set F with ξ(F) ≤ m whose relative interior
is nonempty.
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On a theorem of Reiter and spectral synthesis 845

Proof For a ∈ k(E), φ ∈ � and γ ∈ E , we have φ̂(a)(γ ) = â(φ−1(γ )) = 0 since
E if �-invariant. Thus the ideal k(E) is �-invariant and hence so is k(E)m for every
m ∈ N because each φ ∈ � is a continuous automorphism of A. Moreover, if C is a
compact subset of �(A) such that C ∩ E = ∅, then φ(C) ∩ E = φ(E ∩ C) = ∅. It
follows that j (E), and consequently J (E), is �-invariant. Now, for every φ ∈ �,

k(E)mφ(Im(E)) = φ(k(E)m Im(E)) ⊆ φ(J (E)) = J (E).

Since Im(E) is the largest closed ideal I of A such that k(E)m I ⊆ J (E), we conclude
that φ(Im(E)) = Im(E) for every φ ∈ �.

Nowassume thatσm(E) �= ∅ and chooseγ ∈ σm(E). Then, since� acts transitively
on E , E = {φ(γ ) : φ ∈ �}. Finally, since h(Im(E)) = σm(E) and the ideal Im(E)

is �-invariant, it follows that â vanishes on E for every a ∈ Im(E) and therefore
σm(E) = E .

For the last assertion, assume that E fails to be a weak spectral set with ξ(E) ≤ m.
If F ⊆ E is any weak spectral set with ξ(F) ≤ m, then E = σm(E) ⊆ E\F by [13,
Lemma 3.1], whence F has empty interior in E . ��

The next theorem is an abstract version of Theorem 3.3 and therefore of Reiter’s
theorem.

Theorem 4.2 Let E be a closed subset of �(A) and suppose that, for some m ∈ N,
σm(E) = E. Then, for any closed subset F of �(A), E ∪ F is a weak spectral set with
ξ(E ∪ F) ≤ m (if and) only if E ⊆ F and F is a weak spectral set with ξ(F) ≤ m.
Moreover, in this case F\E = F.

Proof The first inclusion below being obvious, by hypothesis we have

k(E)mk(F\E)m ⊆ k(E ∪ F)m ⊆ J (E ∪ F) ⊆ J (E).

Hence, since Im(E) is the largest ideal I of A with I k(E)m ⊆ J (E),

k(F\E)m ⊆ Im(E) ⊆ k(σm(E)) = k(E).

Thus E ⊆ F\E , and since E ∪ F = E ∪(F\E) ⊆ F\E , we conclude that F = F\E .
It follows that

k(F)m = k(F\E)m = k(E ∪ F)m ⊆ J (E ∪ F) ⊆ J (F).

This proves that ξ(F) ≤ m and also that F\E = F . ��
Corollary 4.3 Let E and � be as in Theorem 4.1, and let F and S be closed subsets
of �(A) such that E ⊆ S ⊆ E ∪ F. Suppose that S is a weak spectral set and that
ξ(E) = ∞ or ξ(E) > ξ(S). Then E ⊆ F\E and hence F = F\E.

Proof Let m = ξ(S). Since ξ(E) > m, σm(E) �= ∅ and hence σm(E) = E by
Theorem 4.1 . The statement now follows from Theorem 4.2. ��
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846 E. Kaniuth, A. Ülger

Corollary 4.4 Let � be as above and let E be a closed subset of �(A) such that �

acts transitively on E. Then the following two conditions are equivalent.

(i) E is a set of weak synthesis.
(ii) E can be written as a countable union of weak spectral sets.

Moreover, if E = ⋃∞
n=1 En, where each En is a weak spectral set, and if m ∈ N is

such that Em has nonempty relative interior E◦
m in E, then ξ(E) ≤ ξ(Em).

Proof (i) ⇒ (ii) is trivial. For (ii) ⇒ (i), assume that E = ⋃∞
n=1 En , where each En is

weak spectral set, and nevertheless E is not a set of weak synthesis. Then σm(E) = E
for all m ∈ N by Theorem 4.1. Since each En is of weak synthesis, by [13, Lemma
3.1] we have σξ(En)(E) ⊆ E\En for every n. Since E = ⋃∞

n=1 En and E is a Baire
space, at least one of the sets En has nonempty interior in E . However, this contradicts
E = σξ(En)(E) ⊆ E\En .

For the additional statement, note that we have ξ(φ(Em)) = ξ(Em) for each φ ∈ �,
and since � acts transitively on E , E = ⋃

φ∈� φ(E◦
m) whenever E◦

m �= ∅. Thus every
point of E has a closed relative neighbourhood in E with characteristic equal to ξ(Em).
The statement now follows from [9, Proposition 1.6 and the remark following it]. ��
Corollary 4.5 Let E, S and F be closed subsets of �(A) such that E ⊆ S ⊆ F, and
suppose that σm(S) = S for some m ∈ N.

(i) If E is a weak spectral set with ξ(E) ≤ m, then S\E = S.
(ii) If F is a weak spectral set with ξ(F) ≤ m, then F\S = F.

Proof (i) Since σm(S) = S, S is not a weak spectral set with ξ(S) ≤ m and therefore,
by Theorem 4.1, the relative interior of the subset E of S must be empty.

(ii) follows from Theorem 4.2 taking E = S since F ⊇ S.

5 Examples

In this section we exhibit a number of examples in which Theorem 4.1 can be used to
conclude that σn(E) = E . These examples concern closures of conjugacy classes and
double cosets K aK , a ∈ G, where K is a compact subgroup of G, in G = �(A(G))

and also the Fourier algebra of coset spaces G/K .
Let K be a compact subgroup of G. Then K × K acts on G by (x, y) · z = x−1zy,

x, y ∈ K , z ∈ G, and it acts transitively on each double coset K zK . It is clear that
K × K acts continuously on A(G) by (x, y)(u)(z) = u(x−1zy).

Example 5.1 Consider SO(N ), N ≥ 3, and identify SO(N − 1) with the subgroup
of all elements of SO(N ) which fix the vector (1, 0, . . . , 0)t ∈ R

N . Note that there is
a bijection

[−1, 1] → SO(N )//SO(N − 1), t → SO(N − 1)A(t)SO(N − 1),

where

A(t) =
⎛

⎝

(

t −√
1 − t2√

1 − t2 t

)

02,d−2

0d−2,2 1d−2,d−2

⎞

⎠
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On a theorem of Reiter and spectral synthesis 847

and On,m and 1n,m denotes the zero and identity matrix of size n × m, respectively.
Let Et = SO(N − 1)A(t)SO(N − 1). Then, by [3, Corollary 3.4], ξ(Et ) ≥ � N+1

2 �
for every t ∈ ] − 1, 1[ . Since SO(N − 1) × SO(N − 1) acts transitively on Et , we
conclude that σn(Et ) = Et for all n < � N+1

2 � and t ∈ ] − 1, 1[ . However, we do not
know whether these sets Et are weak spectral sets. In contrast, the sets E1 and E−1
are sets of synthesis, because E1 = SO(N − 1) and E−1 = A(−1)SO(N − 1) since
A(−1) commutes with all matrices in SO(N − 1).

In the next example, for any a ∈ G, let C(a) = {xax−1 : x ∈ G}, the closure of
the conjugacy class of a.

Example 5.2 (1) Let G be a 2-step nilpotent locally compact group and let Z denote
its centre. For x, y ∈ G, let [y, x] = yxy−1x−1 denote the commutator of y and
x . Then, for a ∈ G, C(a) = a{[a−1, x] : x ∈ G} and the map x → [a−1, x] is a
homomorphism from G into Z . Thus C(a) is a coset of some closed subgroup of
G and hence a set of synthesis.

(2) In [15] Meaney has investigated the problem of whether conjugacy classes in
compact connected Lie groups are sets of synthesis. We remind the reader that an
element of a compact connected Lie group G is called regular if it is not contained
in two distinct maximal tori and that the set of regular elements of G has full Haar
measure. One of the main results of [15] says that if G is semisimple and a is a
regular element of G, then C(a) fails to be a set of synthesis [15, Theorem 3.3].
From this it can be deduced that if G is any nonabelian compact connected Lie
group, then there exist elements of G whose conjucacy classes are not of synthesis
[15, Corollary 3.6].

(3) Let G be a semisimple compact connected Lie group and fix a maximal torus T
of G. Then, for any regular element a of T , ξ(C(a)) > 1

2 dim C(a) [15, Corol-
lary 3.5]. Since G acts transitively on C(a), we get σn(C(a)) = C(a) for all
n ≤ 1

2 dim C(a) (Theorem 4.1). We note that the regular elements a of T are
characterized by the equation dim C(a) = dim G − dim T [2, Theorem 2.11].

Now consider the special case G = SO(N ), N ≥ 3, and let m = � N
2 �. Then a

maximal torus T (N ) of G is given by T (N ) = SO(2) × · · · × SO(2) (m-fold direct
product), where T (N ) acts on R

2m = R
2 ×· · ·×R

2 and R
2m+1 = R

2 ×· · ·×R
2 ×R

in the obvious manner [2, Theorem 3.4]. Since dim SO(N ) = 1
2 N (N −1), we obtain

1

2
(dim SO(N ) − dim T (N )) =

{

m2 : if N = 2m + 1
m(m − 1) : if N = 2m

.

Therefore, for any regular element a ∈ T (N ), σn(C(a)) = C(a) at least for all
n ≤ � N

2 � (� N
2 � − 1

)

.

Remark 5.3 Let G be a locally compact group and K a compact subgroup of G.
The Fourier algebra A(G/K ) of the space of left cosets of K in G was introduced
by Forrest [6]. It can be identified with the subalgebra of A(G) consisting of all
functions in A(G) which are constant on left cosets of K , and then point evaluations
provide a homeomorphism between G/K and �(A(G/K )). For further results on
A(G/K ) see [18]. Note that in general A(G/K ) is much smaller than A(G). In fact,
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848 E. Kaniuth, A. Ülger

u ∈ A(G) belongs to A(G/K ) if and only if u can be represented as u = f ∗ ǧ, where
f, g ∈ L2(G) and Lk g = g for all k ∈ K [12, Lemma 5.1].
Let H be a closed subgroup of G. Then H acts continuously on G/K and on

A(G/K ) by h(u)(x K ) = u(h−1x K ). Let x ∈ G and E = H(x K ) = {hx K : h ∈ H}.
Then H acts transitively on E and hence, for each m ∈ N, either σm(E) = E or
σm(E) = ∅ by Theorem 4.1.

Now suppose that G is a semidirect product G = N � K , and identify N with the
normal subgroup N × {eK } and K with the subgroup {eN } × K of G. Then A(G/K )

can equally well be viewed as a subalgebra of A(N ), and we have �(A(G/K )) = N .
Indeed, the restriction map u → u|N is an isometric isomorphism of A(G/K ) onto
its range B, say. For ‖u|N ‖ = ‖u‖, it suffices to show that ‖u‖ ≤ ‖u|N ‖. There
exists v ∈ A(G) such that v|N = u and ‖v‖ = ‖u|N ‖. Then define w ∈ A(G/K )

by w(x) = ∫

K v(xk)dk, where dk is normalized Haar measure of K , and notice that
‖w‖ ≤ ‖v‖ and w|N = v|N = u|N , whence w = u.

In our final example, we take for G the motion group of R
N and for both, K and

H , the subgroup SO(N ).

Example 5.4 Let G N = R
N

� SO(N ), N ≥ 2, and let B denote the algebra
A(G N /SO(N )), viewed as a subalgebra of A(RN ) (Remark 5.3). We want to deter-
mine the sets σn(SN−1) for SN−1 ⊆ �(B). This will be done by exploiting the main
result of [25].

Let R denote the subalgebra of all radial functions in A(RN ), and for any u ∈ R
define ũ on G N by ũ(x, T ) = u(x). If u is positive definite, then so is ũ. In fact, for
any x1, . . . , xn ∈ R

N , T1, . . . , Tn ∈ SO(N ) and λ1, . . . , λn ∈ C, we have

n
∑

i, j=1

λiλ j ũ((x j , Tj )
−1(xi , Ti )) =

n
∑

i, j=1

λiλ j ũ(T −1
j (xi − x j ), T −1

j Ti )

=
n

∑

i, j=1

λiλ j u(T −1
J (xi − x j ))

=
n

∑

i, j=1

λiλ j u(xi − x j ) ≥ 0.

Since every function in R is a finite linear combination of positive definite functions
in R, it follows that the map u → ũ is an embedding of R into A(G N /SO(N )). In
this manner, we view R as a subalgebra of B. Then, for each n ∈ N,

(k(SN−1) ∩ R)n ⊆ (k(SN−1) ∩ B)n ⊆ k(SN−1).

Now, by [25, Theorem 3 and Lemma 2(iv)], each inclusion in the following decreasing
chain of ideals

k(SN−1) ∩ R ⊇ (k(SN−1) ∩ R)2 ⊇ · · · ⊇ (k(SN−1) ∩ R)�
N+1
2 � = J (SN−1) ∩ R
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On a theorem of Reiter and spectral synthesis 849

is proper. It follows from this that the chain of ideals (k(SN−1) ∩ B)n has the same
length. Indeed, if (k(SN−1) ∩ B)m = (k(SN−1) ∩ B)m+1 for some 1 ≤ m < � N+1

2 �,
then

(k(SN−1) ∩ B)m = (k(SN−1) ∩ B)�
N+1
2 � ⊆ k(SN−1)�

N+1
2 � = J (SN−1),

because the characteristic of SN−1 ⊆ �(A(RN ) equals � N+1
2 �. Hence (k(SN−1) ∩

R)m ⊆ J (SN−1), which is a contradiction. Since SO(N ) acts transitively on SN−1 ⊆
�(B), we conclude that

σn(SN−1) = SN−1 for1 ≤ n <

⌊

N + 1

2

⌋

and σ� N+1
2 �(SN−1) = ∅.

6 Further results on weak spectral sets in the spectrum
of a commutative Banach algebra

In this section, as an application of our tools, σn(E) and In(E), we present a series of
results on weak spectral sets which do not follow from those in the previous sections.
The algebra A is assumed to have the properties specified at the beginning of Sect. 4.

Lemma 6.1 Let E and D be closed subsets of �(A) such that D ⊆ E and D is a
Ditkin set. Then, for every n ∈ N,

σn(E) ⊆ σn(E\D) and σn(E)\D = σn(E).

In particular, if there is a family of Ditkin sets Dλ ⊆ E, λ ∈ �, such that
⋂

λ∈� σn(E\Dλ) = ∅, then E is of weak synthesis with ξ(E) ≤ n.

Proof Since D is a Ditkin set, k(E) = k(E\D)k(D) (see Corollary 6.4 below).
So k(E)n = k(E\D)nk(D)n = k(E\D)nk(D). For the first asserted inclusion it
suffices to show that σ((ab) · f ) ⊆ σn(E\D) for every a ∈ k(E\D)n , b ∈ k(D) and
f ∈ J (E)⊥. Fix such a, b and f , and observe first that σ(b · f ) ⊆ E\D. In fact, since
D is a set of synthesis, there exists a sequence (b j ) j in j (D) converging to b. Then

σ(b j · f ) ⊆ σ( f ) ∩ supp̂b j ⊆ E ∩ (�(A)\D) = E\D

and therefore σ(b · f ) ⊆ E\D. As a ∈ k(E\D)n , it follows that σ((ab) · f ) ⊆
σn(E\D).

For σn(E) ⊆ σn(E)\D, it is enough to verify that if a ∈ k(E)n and f ∈ J (E)⊥,
then σ(a · f ) ⊆ σn(E)\D. Since a ∈ k(D) and D is a Ditkin set, a = limi→∞(abi ),
where bi ∈ j (D). Then, because σ(a · f ) ⊆ σn(E), for each i ,

σ((abi ) · f ) ⊆ σ(a · f ) ∩ supp̂bi ⊆ σn(E) ∩ (�(A)\D) = σn(E)\D.

Consequently, σ(a · f ) ⊆ σn(E)\D. This proves σn(E) ⊆ σn(E)\D and hence
equality. ��
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850 E. Kaniuth, A. Ülger

Next we give a sufficient condition for k(E ∪ F) = k(E)k(F) to hold.

Lemma 6.2 Let E and F be closed subsets of �(A) and suppose that there exists a
Ditkin set D such that E ∩ F ⊆ D ⊆ E ∪ F. Then

k(E ∪ F) = k(E)k(F).

Proof It suffices to show that k(E ∪ F) ⊆ k(E)k(F). To that end, note first that, since
D is a set of synthesis,

k(D) = J (D) ⊆ J (E ∩ F) = J (E) + J (F) ⊆ k(E) + k(F).

Thus using that D is a Ditkin set,

a ∈ a(k(E) + k(F)) = a(k(E) + k(F))

for every a ∈ k(D). Therefore, given a ∈ k(E ∪ F) ⊆ k(D), there are sequences
(ai )i ⊆ k(E) and (bi )i ⊆ k(F) such that ‖a − a(ai + bi )‖ → 0. As aai ∈ k(E)k(F)

and abi ∈ k(E)k(F), we get that a ∈ k(E)k(F). The reverse inclusion being trivial,
we get k(E ∪ F) = k(E)k(F), . ��
Remark 6.3 The conclusion of Lemma 6.2 also holds for closed subsets E and F of
�(A) satisfying k(E ∪ F)2 = k(E ∪ F). To see this, let a ∈ k(E ∪ F) be given. Then,
given ε > 0, there exist ai , bi ∈ k(E∪F), 1 ≤ i ≤ n, such that ‖a−∑n

i=1(ai bi )‖ ≤ ε.
Since k(E ∪ F) = k(E) ∩ k(F), each ai bi belongs to k(E)k(F). Since ε > 0 is
arbitrary, it follows that a ∈ k(E)k(F). So k(E ∪ F) ⊆ k(E)k(F), as was to be
shown.

We also note that if one of the ideals k(E), k(F) or k(E ∪ F) has an approximate
identity, then k(E ∪ F)2 = k(E ∪ F).

As an immediate consequence of Lemma 6.2 we obtain

Corollary 6.4 For any closed subset E of�(A)and Ditkin set D ⊆ �(A), k(E∪D) =
k(E)k(D).

Theorem 6.5 Let E and F be closed subsets of �(A). If F is a weak spectral set
and m = ξ(F), then E ∪ F is a weak spectral set with ξ(E ∪ F) ≤ m if and only if
σm(E) ⊆ F and k(E ∪ F)m = k(E)mk(F)m.

Proof Suppose first that E ∪ F is a weak spectral set with n = ξ(E ∪ F) ≤ m. Then

k(E ∪ F)m ⊆ k(E ∪ F)n = J (E ∪ F) = J (E)J (F) ⊆ k(E)mk(F)m

and hence k(E ∪ F)m = k(E)mk(F)m . Moreover,

J (F)k(E)m ⊆ k(F)mk(E)m = k(E ∪ F)m = J (E ∪ F) ⊆ J (E).
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On a theorem of Reiter and spectral synthesis 851

By the very definition of the ideal Im(E), this means that J (F) ⊆ Im(E). This implies
σm(E) = h(Im(E)) ⊆ h(J (F)) = F .

Conversely, assume that σm(E) ⊆ F and k(E ∪ F)m = k(E)mk(F)m . Then
J (F)k(E)m ⊆ J (E) and hence

k(E ∪ F)m = k(E)mk(F)m = k(E)m J (F) = k(E)m J (F)2

⊆ J (E)J (F) = J (E ∪ F).

Thus E ∪ F is of weak synthesis with ξ(E ∪ F) ≤ m. ��
It is worth pointing out that the condition k(E)n = k(E) for all n ∈ N does not

imply that E is of weak synthesis. In fact, in [5, Theorem 5.3] an example is given of
a regular uniform algebra on a compact Hausdorff space X such that �(A) = X and
there exists a point x ∈ X such that the singleton {x} fails to be a set of synthesis, but
k({x})n = k({x}) holds for all n ∈ N.

Corollary 6.6 Let E and D be closed subsets of �(A) such that D is a Ditkin set.
Then E ∪ D is a set of synthesis if and only if σ1(E) ⊆ D.

Proof Taking F = D in Theorem 6.5, we see that E ∪ D being a set of synthesis
forces σ1(E) ⊆ D. Conversely, suppose that σ1(E) ⊆ D. Since D is a Ditkin set, we
have k(E ∪ D) = k(E)k(D) by Corollary 6.4. Another application of Theorem 6.5
shows that E ∪ D is a set of synthesis. ��

Another immediate consequence of Theorem 6.5 is the following

Corollary 6.7 Let E and F be closed subsets of �(A) such that F is of synthesis. If
k(E) has an approximate identity and σ1(E) ⊆ F, then E ∪ F is a set of synthesis.

This result shows that synthesibility of E ∪ F depends substantially on the position
of both sets to each other.

It is well-known that if E is a closed subset of �(A) and if there exists a Ditkin
set D such that ∂(E) ⊆ D ⊆ E , then E is a set of synthesis. In fact, this is a simple
application of the local membership principle. We continue with a generalization in
the context of weak spectral synthesis.

Theorem 6.8 Let E be a closed subset of �(A) and m ∈ N. Suppose that there are
countably many Ditkin sets Dn, n ∈ N, such that σm(E) ⊆ ⋃∞

n=1 Dn ⊆ E. Then E is
a set of weak synthesis with ξ(E) ≤ m.

Proof By Lemma 6.1, each of the sets Vn = σm(E)\(σm(E)∩ Dn) is open and dense
in σm(E). Since σm(E) is a Baire space,

⋂∞
n=1 Vn is dense in σm(E). However, since

⋃∞
n=1 Dn ⊇ σm(E),

⋂∞
n=1 Vn = ∅. Thus σm(E) = ∅, whence E is a weak spectral

set with ξ(E) ≤ m.

If D = ⋃∞
n=1 Dn is closed, then it is also a Ditkin set. Therefore, the main issue of

the preceding theorem is that D is not assumed to be closed in �(A). The following
corollary is a considerable extension of a result due to Warner [26].
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Corollary 6.9 Let E and F be closed subsets of �(A) and suppose that there exists
a sequence (Dn)n of Ditkin sets such that ∂(E) ∩ F ⊆ ⋃∞

n=1 Dn ⊆ E.

(i) If, for some m ∈ N, k(E)m J (F) ⊆ J (E), then E is a weak spectral set with
ξ(E) ≤ m.

(ii) If E ∪ F is a weak spectral set, then so is E and ξ(E) ≤ ξ(E ∪ F).

Proof (i) Since k(E)m J (F) ⊆ J (E), we have σm(E) ⊆ F , and hence by hypothesis

σm(E) ⊆ ∂(E) ∩ F ⊆
∞
⋃

n=1

Dn ⊆ E .

It follows now from Theorem 6.8 that E is of weak synthesis with ξ(E) ≤ m.
(ii) Let m = ξ(E ∪ F). Then

k(E)m J (F) ⊆ k(E)mk(F)m ⊆ k(E ∪ F)m = J (E ∪ F) ⊆ J (E),

and hence the statement follows from (i) ��
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