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This points to an intriguing connection between a Fourier coefficient of a residual
representation on GSO(12) and a theta function on Sp(16). A similar integral on
GSO(18) fails to unfold completely, but in a way that provides further evidence of a
connection.
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1 Introduction

An important problem in the theory of automorphic forms is to understand periods, and
how they are relatedwith L-functions and their special values, aswell aswith functorial
liftings. A prototypical example for this is the connection between symmetric and
exterior square L-functions, functorial liftings from classical groups to GLn, and
certain periods, which dates back at least to [22], and is more fully explicated in
[15,16]. Some more exotic examples are found, for example, in [9,10], and a general
framework which extends beyond classical groups is discussed in [13].

The connection between poles and liftings is well- understood, at least philosoph-
ically: one expects that the L function attached to a generic cuspidal representation
π and a finite dimensional representation r of the relevant L-group will have a pole
at 1 if and only if the stabilizer of a point in general position for the representation
r is reductive and π is in the image of the functorial lifting attached to the inclusion
of the stabilizer of such a point. For example, in the exterior square representation of
GL2n(C), the stabilizer of a point in general position is Sp2n(C), so one expects that
a pole of the exterior square L function indicates cuspidal representations which are
lifts from SO2n+1. The connection with periods is up to now less well understood.

In order to prove the expected relationship between poles and liftings in specific
examples, and in order to draw periods into the picture, it is useful, perhaps essential,
to have some sort of an analytic handle on both the L-function and the lifting. An
analytic handle on the L-function may be provided by an integral representation,
either of Langlands–Shahidi type or otherwise (integral representations which are not
of Langlands–Shahidi type are often termed “Rankin–Selberg”). An analytic handle
on the lifting may be provided by an explicit construction.

Integral representation of L functions and explicit construction of liftings between
automorphic forms on different groups are important subjects in their own right as
well. For example, integral representations are, as far as we know, the only way to
establish analytic properties of L functions in new cases. When an integral represen-
tation produces L functions whose analytic properties are already well understood, it
nevertheless provides a new insight into the connection with periods, and identities
among periods which can be otherwise quite surprising. This is the case in the present
paper.

For explicit construction of liftings, there are two main ideas we know of. Each is
related to the other and both are related to the theory of Fourier coefficients attached
to nilpotent orbits [8,14].

The first main idea is to use a “small” representation as a kernel function. The pro-
totypical example of this type is the classical theta correspondence [19]. In this type
of construction, an automorphic form, which is defined on a large reductive group
H is restricted to a pair of commuting reductive subgroups, and integrated against
automorphic forms on one member of the pair to produce automorphic forms on the
other. In general, there is no reason such a construction should preserve irreducibil-
ity, much less be functorial. The right approach seems to be to take automorphic
forms on H which only support Fourier coefficients attached to very small nilpotent
orbits. For example, a theta function, defined on the group ˜Sp4mn(A) only supports
Fourier coefficients attached to the minimal nilpotent orbit of this group. Its restriction
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to Sp2n(A) × O2m(A) provides a kernel for the theta lifting between these groups.
Functoriality of this lifting was established in [29]. This method has enjoyed brilliant
success, but also has significant limitations. For example, it is not at all clear how the
classical theta correspondence could be extended to other groups of type Cn × Dm :
the embedding into Sp4mn is specific to Sp2n × O2m . The results of this paper hint at
a possible way around this difficulty.

The second main idea in explicit construction of correspondences is the descent
method of Ginzburg, Rallis, and Soudry ([16], see also [20]). This construction treats
the Fourier coefficients themselves essentially as global twisted Jacquet modules,
mapping representations of larger reductive groups to representations of smaller reduc-
tive groups. As before, in general there is no reason for this construction to respect
irreducibility, much less be functorial, and a delicate calculus involving Fourier coef-
ficients seems to govern when it is.

In this paper we define and study two newmulti-variable Rankin–Selberg integrals,
which are defined on the similitude orthogonal groups GSO12 and GSO18. These
integrals are similar to those considered in [3,6,7,11,12], in that each involves applying
a Fourier–Jacobi coefficient to a degenerate Eisenstein series and then pairing the result
with a cusp form defined on a suitable reductive subgroup. To be precise, GSO6n has
a standard parabolic subgroup Q whose Levi is isomorphic to GL2n × GSO2n . The
unipotent radical is a two step nilpotent group and the set of characters of the centermay
be thought of as the exterior square representation of GL2n twisted by the similitude
factor of GSO2n . The stabilizer of a character in general position is isomorphic to

C := {(g1, g2) ∈ GSp2n × GSO2n : λ(g1) = λ(g−12 )}.

Here, λ denotes the similitude factor. The choice of a character in general position as
above also determines a projection of the unipotent radical onto a Heisenberg group
in 4n2 + 1 variables, and a compatible embedding of C into Sp4n2 .

Our Fourier–Jacobi coefficient defines a map from automorphic functions on
GSO6n(A) to automorphic functions on C(A). In the case n = 2 and 3 we apply this
coefficient to a degenerate Eisenstein series onGSO6n(A) induced from a character of
the parabolic subgroup P whose Levi factor is isomorphic to GL3×GL3n−3×GL1.

We then pair the result with a pair of cusp forms defined onGSp2n(A) andGSO2n(A)

respectively. The results suggest an intriguing connection with the theta correspon-
dence for similitude groups.

Indeed, in the case n = 2, the global integral turns out to be Eulerian, and to give
an integral representation of

LS(s1,˜�× τ1)L
S(s2,˜�× τ2),

where � is a generic cuspidal automorphic representation of GSp4(A) and τ1, τ2
are two (generic) cuspidal automorphic representations of GL2(A) having the same
central character, so that τ1⊗ τ2 is a (generic) cuspidal automorphic representation of
GSO4(A). It follows that the original integral has poles along both the plane s1 = 1
and the plane s2 = 1 if and only if � is the weak lift of τ1 ⊗ τ2 corresponding to the
embedding
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358 J. Hundley, X. Shen

GSpin4(C) = {(g1, g2) ∈ GL(2,C)2 | det g1 = det g2} ↪→ GSpin5(C) = GSp4(C).

It is known that the functorial lift corresponding to the embedding

SO4(C) ↪→ SO5(C)

is realized via the theta correspondence. Our Eulerian integral suggests that the
Fourier–Jacobi coefficient of the iterated residue of our Eisenstein series provides a
kernel for the theta correspondence for similitude groups. This is particularly intrigu-
ing since the Fourier–Jacobi coefficient construction extends directly to any group of
type D3n,whereas there seems to be no hope of extending the theta correspondence to
any representations of such groupswhich do not factor through the orthogonal quotient
in any direct way.

The result is also intriguing in that it points to a possible identity relating our
Fourier–Jacobi coefficient with a theta series on ˜Sp16(A). We are not aware of any
way to see such an identity directly.

The integral corresponding to n = 3 provides somemore evidence for a connection
with the theta correspondence, in that the global integral unfolds to a period of GSp6
which is known to be nonvanishing precisely on the image of the theta lift from GSO6
[15].

We now describe the contents of this paper. In Sect. 2 we fix notation and describe
a family of global integrals, indexed by positive integers n. In Sect. 3 we unfold the
global integral corresponding to the case n = 2, obtaining a global integral involving
the Whittaker function of the cusp form involve which, formally, factors as a product
of local zeta integrals. These local zeta integrals are studied in Sects. 5, 6, 7, after
certain algebraic results required for the unramified case are established in Sect. 4.
Once the local zeta integrals have been studied we return to the global setting for
Sects. 8 and 9, where we record the global identity relating the original zeta integral
and LS(s1,˜�× τ1)LS(s2,˜�× τ2), and deduce a new identity relating poles of these
L functions and periods. Finally, in Sect. 10, we briefly describe what happens in the
case n = 3, omitting details. We remark that the case n = 1 is somewhat degenerate,
as the split form of GSO2 is a torus; our global integral appears to vanish identically
in this case.

This work was undertaken while the authors were visiting ICERM for a program
on Automorphic Forms, Combinatorial Representation Theory andMultiple Dirichlet
Series. They thank ICERM and the organizers, as well as David Ginzburg and the
referee.

2 Notation

Write Jn for the matrix

⎛

⎝

1

. .
.

1

⎞

⎠ .
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If g is an n×m matrix, write t g for the transpose of g and t g for the “other transpose,”
Jm t g Jn . Let g∗ = t g−1. Let G = GSOn denote the identity component of GOn :=
{g ∈ GLn : gJn t g ∈ GL1 · Jn}. If n is odd, then GOn is the product of SOn and
the center of GLn . If n is even, then GSOn is the semidirect product of SOn and
{diag(λI n

2
, I n

2
) : λ ∈ GL1}. Here Ik is the k × k identity matrix. The group GSOn

has a rational character λ : GSOn → GL1, called the similitude factor, such that

gJn
t g = λ(g) · Jn, (g ∈ GSOn).

The set of upper triangular (resp. diagonal) elements of GSOn is a Borel subgroup
(resp. split maximal torus) which we denote BGSOn (resp. TGSOn ). A parabolic (resp.
Levi) subgroup will be said to be standard if it contains BGSOn (resp. TGSOn ). The
unipotent radical of BGSOn will be denoted U. We number the simple (relative to
BGSO2n ) roots of TGSO2n in G α1, . . . , αn so that tαi = tii/ti+1,i+1 for 1 ≤ i ≤ n−1,
and tαn = tn−1,n−1/tn+1,n+1.Here, we have used the exponential notation for rational
characters, i.e., written tα instead ofα(t) for the value of the rootα on the torus element
t.

Define mP : GL3 × GL3(n−1) × GL1 into GSO6n by

mP (g1, g2, λ) �→ diag(λg1, λg2, g
∗
2 , g
∗
1). (1)

Denote the image by MP . It is a standard Levi subgroup. Let P be the corresponding
standard parabolic subgroup. Thus, P = MP �UP ,whereUP is the unipotent radical.
We use (1) to identify MP with GL3 × GL3n−3 × GL1.

Recall that a character of F×\A× (i.e., a character of A
× trivial on F×) is

normalized if it is trivial on the positive real numbers (embedded into A
× diago-

nally at the finite places). An arbitrary quasicharacter of F×\A× may be expressed
uniquely as the product of a normalized character and a complex power of the
absolute value. If χ = (χ1, χ2, χ3) is a triple of normalized characters of F×\A×
and s = (s1, s2, s3) ∈ C

3, write (χ; s) for the quasicharacter MP (A)→ C by

(χ; s)(g1, g2, λ) := χ1(det g1)| det g1|s1χ2(det g2)| det g2|s2χ3(λ)|λ|s3 . (2)

Then (χ; s)(aI6n) = (χ; s)(mP (a−1 I3, a−1 I3(n−1), a2)) = χ−31 χ3−3n
2

χ2
3 (a)|a|2s3−3s1+(3−3n)s2 . The pullback of (χ; s) to a quasicharacter of P(A) will

also be denoted (χ; s).
Consider the family of induced representations I ndG(A)P(A) (χ; s) (non-normalized

induction), for fixed χ and s varying. Here, we fix a maximal compact subgroup K of
G(A) and consider K -finite vectors. Themap I ndG(A)P(A) (χ; s) �→ s gives this family the

structure of a fiber bundle overC
3.By a section wemean a functionC

3×G(A)→ C,

written (s, g) �→ fχ;s(g), such that fχ;s ∈ I ndG(A)P(A) (χ; s) for each s ∈ C
3. A section

fχ;s is flat if the restriction of fχ;s to K is independent of s. Write Flat(χ) for the
space of flat sections.
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For such a function fχ;s, let E( fχ;s, g) be the corresponding Eisenstein series,
defined by

E( fχ;s, g) =
∑

γ∈P(F)\G(F)
fχ;s(γ g)

when this sum is convergent and by meromorphic continuation elsewhere. The sum is
convergent for Re(s1 − s2) and Re(s2) both sufficiently large (Cf. [27], §II.1.5).

Let Q = MQ � UQ be the unique standard parabolic subgroup of G, such that
MQ ∼= GL2n × GSO2n .We identify MQ with GL2n × GSO2n via the isomorphism

mQ(g1, g2) := diag(λ(g2)g1, g2, g
∗
1), (g1 ∈ GL2n, g2 ∈ GSO2n). (3)

The unipotent radical, UQ, of Q can be described as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎜

⎜

⎝

I2n X Y Z ′
0 In 0 −t Y
0 0 In −t X
0 0 0 I2n

⎞

⎟

⎟

⎠

: Z ′ + XtY + Y t X + t Z
′ = 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

Let 2∧2n := {Z ∈ Mat2n×2n : t Z = −Z}. Then we can define a bijection (which is
not a homomorphism) uQ : Mat2n×n ×Mat2n×n ×2∧2n → UQ by

uQ(X, Y, Z) =

⎛

⎜

⎜

⎝

I2n X Y Z − 1
2 (XtY + Y t X)

0 In 0 −t Y
0 0 In −t X
0 0 0 I2n

⎞

⎟

⎟

⎠

, X, Y ∈Mat2n×n, Z ∈2∧2n .

Then

uQ(X,Y, Z)uQ(U, V,W ) = uQ(X +U,Y + V, Z +W − 〈X, V 〉 + 〈U,Y 〉),
(X,Y,U, V ∈ Matn×2n, Z ,W ∈ 2∧2n), where

〈A, B〉 := At B − Bt A, (A, B ∈ Matn×2n).

It follows that uQ(X,Y, Z)−1 = uQ(−X,−Y,−Z), and that if [x, y] = xyx−1y−1
denotes the commutator, then [uQ(X, 0, 0), uQ(0,Y, 0)] = uQ(0, 0,−XtY+Yt X) =
uQ(0, 0, 〈Y, X〉). Define l(Z) = Tr(Z · diag(In, 0)) =∑n

i=1 Zi,i . For n ∈ Z define
H2n+1 to be G

n
a ×G

n
a ×Ga equipped with the product

(x1, y1, z1)(x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + x1t y2 − y1t x2).

Write r for the map from Mat2n×n to row vectors corresponding to unwinding the
rows: r(X) := x1,1, . . . x1,n, x2,1, . . . x2n,n, and write r ′ for the similar map which
unwinds the rows and negates the last n. Explicitly:

r ′(Y ) = r

(

Y1
−Y2

)

= (y1,1, . . . y1,n, y1,1, . . . yn,n,−yn+1,1, . . . ,−y2n,n)
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for Y =
(

Y1
Y2

)

∈ Mat2n×n, Y1,Y2 ∈ Matn×n . Then we can define a homomor-

phism from UQ toH4n2+1, the Heisenberg group with 4n2 + 1 variables, by

j (uQ(X,Y, Z)) = (r(X), r ′(Y ), l(Z)).

The stabilizer of l in MQ is

CQ := (GSp2n × GSO2n)
◦ = {(g1, g2) ∈ GSp2n × GSO2n | λ(g1) = λ(g2)

−1},

where λ(gi ) is the similitude of gi . For any subgroup H of GSp2n × GSO2n, let
H◦ := H ∩ CQ . The kernel of l is a CQ-stable subgroup of UQ, and is also equal
to the kernel of j. Note that λ(g2) is also the similitude factor of (g1, g2) as an
element of GSO6n, and that the center of CQ is equal to that of GSO6n . Define
T = TGSOn ∩ CQ, B = BGSOn ∩ CQ and N = U ∩ CQ . They are a split maximal
torus, Borel subgroup, and maximal unipotent subgroup of CQ, respectively.

The group of automorphisms ofH4n2+1 whose restrictions to the center ofH4n2+1
are the identity is isomorphic to Sp4n2 . Identifying the two groups defines a semidirect
product Sp4n2 � H4n2+1. Let RQ = CQ � UQ . The homomorphism j : UQ →
H4n2+1 extends to a homomorphism RQ → Sp4n2 � H4n2+1. Indeed, for each c ∈
CQ, the automorphism of UQ defined by conjugation by c preserves the kernel of
j, and therefore induces an automorphism of H4n2+1. Moreover, this automorphism
is identity on the center of H4n2+1 because c fixes l. This induces a homomorphism
CQ → Sp4n2 , which we denote by the same symbol j, and which has the defining
property that j (cuc−1) = j (c) j (u) j (c)−1 for all c ∈ CQ and u ∈ UQ .We may then
regard the two homomorphisms together as a single homomorphism (still denoted j)
from RQ to Sp4n2 � H4n2+1.

For a positive integer M, identify the Siegel Levi of Sp2M with GLM via the map
(

g
g∗
)

�→ g. It acts on H2M+1 by g(x, y, z)g−1 = (xg−1, yg, z). Note that for
g1 ∈ GSp2n and g2 ∈ GSO2n, the matrix mQ(g1, g2) ∈ MQ maps into GL2n2 if and
only if it normalizes {uQ(X, 0, 0) : X ∈ Mat2n×n}, i.e., if and only if g2 is of the form
(

λ(g−11 )g3
g∗3

)

for g3 ∈ GLn .Write

m1
Q(g1, g2) := mQ

(

g1,

(

λ(g1)−1g2
g∗2

))

, (g1 ∈ GSp2n, g2 ∈ GLn). (4)

Then

m1
Q(g1, g2)uQ(X, 0, 0)m

1
Q(g
−1
1 , g−12 ) = uQ(g1Xg

−1
2 , 0, 0), (∀g1 ∈ GSp2n, g2 ∈ GLn),

and j (m1
Q(g1, g2)) ∈ GL2n2 ⊂ Sp4n2 is the matrix satisfying

r(X) j (m1
Q(g1, g2)) = r(g−11 Xg2).
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362 J. Hundley, X. Shen

The determinant map GL2n2 → GL1 pulls back to a rational character of this sub-
group of CQ which we denote by det . Thus det(m1

Q(g1, g2)) = det g−n1 det g2n2 =
λ(g1)−n

2
det g2n2 for g1 ∈ GSp2n, g2 ∈ GLn . On T ⊂ CQ, the rational character det

coincides with the restriction of the sum of the roots of TGSO6n in {uQ(0,Y, 0) : Y ∈
Mat2n×n}.

Let ψ be a additive character on F\A and ψl(Z) := ψ ◦ l. The group H4n2+1(A)
has a unique (up to isomorphism) unitary representation, ωψ, with central character
ψ,which extends to a projective representation ofH4n2+1(A)�Sp4n2(A) or a genuine
representation of H4n2+1(A) � ˜Sp4n2(A), where ˜Sp4n2(A) denotes the metaplectic
double cover.

Lemma 2.1 The homomorphism j : CQ(A) → Sp4n2(A) lifts to a homomorphism
CQ(A)→˜Sp4n2(A).

Proof Write pr for the canonical projection ˜Sp4n2(A) → Sp4n2(A). We must show
that the exact sequence

1→ {±1} → pr−1( j (CQ(A)))→ j (CQ(A))→ 1

splits, i.e., that the cocycle determined by any choice of section is a coboundary. The
analogous result for Sp2n × SO2n, over a local field is proved in [24], corollary 3.3,
p. 36, or [28], lemma 4.4, p. 12. The extension to CQ follows from section 5.1 of [18].
The global statement then follows from the corresponding local ones. ��

Thus we obtain a homomorphism RQ(A)→˜Sp4n2(A)�H4n2+1(A)whichwe still
denote j. Pulling ωψ back through j produces a representation of RQ(A) which we
denote ωψ,l . This representation can be realized on the space of Schwartz functions
on Mat2n×n(A) with action by

[ωψ,l(uQ(0, 0, Z)).φ] = ψl(Z)φ [ωψ,l(uQ(X, 0, 0)).φ](ξ) = φ(ξ + X)

[ωψ,l(uQ(0,Y, 0)).φ](ξ) = ψl(〈Y, ξ 〉)φ(ξ) = ψl(Y tξ − ξ t Y )φ(ξ), (5)

[ωψ,l(m
1
Q(g1, g2)).φ](ξ) = γψ,detm1

Q(g1,g2)
| detm1

Q(g1, g2)|
1
2 φ(g−11 ξg2).

(Cf. [16], p. 8). Here γψ,a denotes the Weil index. The representation ωψ has an
automorphic realization via theta functions

θ(φ, ug̃) :=
∑

ξ∈Mat2n×n(F)
[ωψ(ug̃).φ](ξ), (u ∈ H4n2+1(A), g̃ ∈˜Sp4n2(A)).

Here φ ∈ S(Mat2n×n(A)) (the Schwartz space of Mat2n×n(A)), H4n2+1(A) is iden-
tified with the quotient of UQ by the kernel of l, and Sp4n2 is identified with the
subgroup of its automorphism group consisting of all elements which act trivially on
the center.
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Lemma 2.2 Consider the Weil representation of H2n+1(A) � ˜Sp2n(A) and its auto-
morphic realization by theta functions. Let V be a subgroup ofH2n+1 which intersects
the center Z trivially. Thus V corresponds to an isotropic subspace of the symplectic
space H2n+1/Z . Let V⊥ = {v′ ∈ H2n+1/Z : 〈v′, V 〉 = 0} ⊃ V, and let PV be the
parabolic subgroup of Sp2n which preserves the flag 0 ⊂ V ⊂ V⊥ ⊂ H2n+1/Z . Note
that the Levi quotient of PV is canonically isomorphic to GL(V )× Sp(V⊥/V ). Thus
PV has a projection onto the group GL1× Sp(V⊥/V ) induced by the canonical map
onto the Levi quotient and the determinant map det : GL(V )→ GL1. The function

g̃ �→
∫

[V ]
θ(φ; vg̃) dv

is invariant by theA-points of the kernel of this map on the left. (Throughout this paper,
if H is an algebraic group defined over a global field F, then [H ] := H(F)\H(A).)

Proof First assume that V is the span of the last k standard basis vectors for some
k ≤ n. Then

∫

(F\A)k
∑

ξ∈Fn

[ωψ((0, . . . , 0, v, 0)g̃).φ](ξ) dv =
∑

ξ ′∈Fn−k
[ωψ(g̃).φ](0, . . . , 0, ξ ′),

and invariance follows easily from the explicit formulae forωψ given, for example onp.
8 of [16]. The general case follows from this special case, since any isotropic subspace
can be mapped to the span of the last k standard basis vectors, for the appropriate value
of k, by using an element of Sp2n(F). ��

For fχ;s ∈ IndG(A)P(A)(χ; s), and φ ∈ S(Mat2n×n(A)), let

Eθ(φ)( fχ;s, g) =
∫

[UQ ]
du E( fχ;s, ug)θ(φ, j (ug)), (g ∈ CQ(A)). (6)

Recall that CQ was identified above with a subgroup of GSp2n × GSO2n . If g ∈ CQ

then g1 will denote its GSp2n component and g2 will denote its GSO2n component.
Now take two characters ω1, ω2 : F×\A× → C

×, and two cuspforms ϕ1, defined on
GSp2n(A) and ϕ1, defined onGSO2n(A), such that ϕi (a ·g) = ωi (a)ϕi (g), for i = 1
or 2, a ∈ A

×, and g ∈ GSp2n(A) or GSO2n(A) as appropriate. Choose χ1, χ2, χ3 so
that χ−31 χ−32 χ2

3ω
−1
1 ω2 is trivial, and consider

I ( fχ;s, ϕ1, ϕ2, φ) =
∫

Z(A)CQ(F)\CQ(A)

Eθ(φ)( fχ;s, g)ϕ1(g1)ϕ(g2)dg. (7)

To simplify the notation, we may also treat the product ϕ1ϕ2 as a single cuspform
defined on the group CQ, and write ϕ(g) = ϕ1(g1)ϕ2(g2), and I ( fχ;s, ϕ, φ), etc.
Note that the integral converges absolutely and uniformly as s varies in a compact set,
simply because Eθ(φ)( fχ;s) is of moderate growth, while ϕ1 and ϕ2 are of rapid decay.
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364 J. Hundley, X. Shen

3 Global integral for GSO12

In this section we consider a global integral (7) in the case n = 2. Thus G = GSO12.

If uQ(X,Y, Z) is an element of UQ, we fix individual coordinates as follows:

X =

⎛

⎜

⎜

⎝

x1 x2
x3 x4
x5 x6
x7 x8

⎞

⎟

⎟

⎠

, Y =

⎛

⎜

⎜

⎝

y8 y7
y6 y5
y4 y3
y2 y1

⎞

⎟

⎟

⎠

Z =

⎛

⎜

⎜

⎝

z1 z2 z3 0
z4 z5 0 −z3
z6 0 −z5 −z2
0 −z6 −z4 −z1

⎞

⎟

⎟

⎠

. (8)

Theorem 3.1 For n in the maximal unipotent subgroup N let ψN (n) = ψ(n12 +
n23 − n56 + n57), and let

Wϕ(g) =
∫

[N ]
ϕ(ng)ψN (n) dn. (9)

Let U4 be the codimension one subgroup of N defined by the condition n23 = n56.
For φ ∈ S(Mat4×2(A)), g ∈ RQ(A), write

I0(φ, g) =
∫

A2
da db [ωψ(g)φ]

⎛

⎜

⎜

⎝

a b
1 0
0 1
0 0

⎞

⎟

⎟

⎠

ψ(−a). (10)

Finally, let w be the permutation matrix attached to the permutation

(

1 2 3 4 5 6 7 8 9 10 11 12
7 10 11 12 4 5 8 9 1 2 3 6

)

, (11)

and let Uw
Q = UQ ∩ w−1Pw. Then the global integral (7) is equal to

∫

Z(A)U4(A)\CQ(A)

Wϕ(g)
∫

Uw
Q (A)\UQ(A)

fχ;s(wug)I0(φ, ug) du dg. (12)

Remark 3.2 The permutation matrix w represents an element of the Weyl group of
G relative to TG . We also record an expression for w as reduced product of simple
reflections. We also introduce some notation for elements of theWeyl group. We write
w[i] for the simple reflection attached to the simple root αi , and w[i1i2 . . . ik] for the
product w[i1]w[i2] . . . w[ik]. Then w = w[64321465432465434654].

Before proceeding to the proof, we need to know the structure of the set P\G/RQ .

3.1 Description of the double coset space P\G/RQ

Clearly, the identity map G → G induces a map pr : P\G/RQ → P\G/Q. Each
element of P\G/Q contains a unique element of the Weyl group which is of minimal
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length. Recall that the group of permutation matrices which are contained in G maps
isomorphically onto the Weyl group of G. A Weyl element of minimal length in its
P, Q double coset corresponds to a permutation σ : {1, . . . , 12} → {1, . . . , 12} such
that

• σ(13− i) = 13− σ(i),∀i,
• σ is an even permutation.
• If 1 ≤ i < j ≤ 4, 5 ≤ i < j ≤ 8, or 9 ≤ i < j ≤ 12, and if {i, j} �= {6, 7}, then
σ(i) < σ( j).
• If 1 ≤ i < j ≤ 3, 4 ≤ i < j ≤ 6, 7 ≤ i < j ≤ 9, or 10 ≤ i < j ≤ 12, then
σ−1(i) < σ−1( j).

Such a permutation σ is determined by the quadruple

(#({1, 2, 3, 4} ∩ σ−1({3i − 2, 3i − 1, 3i})))4i=1.

Deleting any zeros in this tuple gives the ordered partition of 4 corresponding to the
standard parabolic subgroup Pσ := GL4∩σ−1Pσ (Here we identify the permutation
σ with the corresponding permutation matrix, which is in GSO12, and identify g ∈
GL4 with diag(g, I4, g∗) ∈ GSO12). Now, for any parabolic subgroup Po of GSO4,

we have GSO4 = PoSO4. It follows that g �→ σ diag(g, I4, g∗) induces a bijection
Pσ \GL4/GSp4 ↔ pr−1(P · σ · Q) ⊂ P\G/RQ . Therefore we must study the space
P ′\GL4/GSp4, where P ′ is an arbitrary parabolic subgroup of GL4.

Lemma 3.3 Let S be a subset of the set of simple roots in the root system of type
A3. Let PS, P ′S denote the standard parabolic subgroups GL4, and SO6, respec-
tively, corresponding to S. Then PS\GL4/GSp4 and P ′S\SO6/SO5 are in canonical
bijection.

Proof This follows from considering the coverings of SO6 and GL4 by the group
GSpin6 which are described in [20] and section 2.3 of [1], respectively. The preimage
of SO5 in GSpin6 is GSpin5 = GSp4. Since the kernels of both projections are
contained in the central torus ofGSpin6,which is contained in any parabolic subgroup
of GSpin6 it follows that both PS\GL4/GSp4 and P ′S\SO6/SO5 are in canonical
bijection with P ′′S \GSpin6/GSpin5, where P ′′S is the parabolic subgroup of GSpin6
determined by S. ��

Now, in considering SO6/SO5,we embed SO5 into SO6 as the stabilizer of a fixed
anisotropic element v0 of the standard representation of SO6. Then P ′′S \SO6/SO5
may be identified with the set of P ′S-orbits in SO6 · v0. For concreteness, take SO6
to be defined using the quadratic form associated to the matrix J6, and take v0 =
t [0, 0, 1, 1, 0, 0]. The SO6 orbit of v0 is the set of vectors satisfying tv · J6 · v = tv0 ·
J6 ·v = 2.Note that each of the permutation matrices representing a simple reflection
attached to an outer node in the Dynkin diagram maps v0 to v1 := t [0, 1, 0, 0, 1, 0],
and that a permutation matrix representing the simple reflection attached to the middle
node of the Dynkin diagram maps v1 to v2 := t [1, 0, 0, 0, 0, 1].
Lemma 3.4 Number the roots of SO6 so that α2 is the middle root. (This is not the
standard numbering for SO6, but it matches the standard numbering for GL4, and the
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S Orbit reps in V Double coset reps

∅ v0, v1, v2 e, w[1], w[2]w[1]
{1}, { 3}, or {1, 3} v0, v2 e, w[1]
{2} v0, v1 e, w[2]w[1]
{1, 2} { 2, 3} or {1, 2, 3} v0 e

numbering inherited as a subgroupofGSO12).Write V for the standard representation
of SO6. The decomposition of SO6 · v0 into P ′S orbits is as follows:

Proof Direct calculation. ��
Remark 3.5 As elements of GSO12, the double coset representatives are identified
with permutations of {1, . . . , 12}. Writing these permutations in cycle notation, we
have w[1] = (1, 2)(11, 12), w[2]w[1] = (1, 3, 2)(10, 11, 12). Replacing w[1] by
w[3] in any of the representatives above produces a different element of the same
double coset.

3.2 Proof of Theorem 3.1

We now apply this description of P\G/RQ, to the study of I ( fχ;s, ϕ, φ). For this
section only, letw0 be the permutationmatrix attached to (11), and letw be an arbitrary
representative for P(F)\G(F)/RQ(F).

The global integral (7) is equal to

∑

w∈P(F)\G(F)/RQ(F)

Iw( fχ;s, ϕ, φ),

where Iw( fχ;s, ϕ, φ) =
∫

Z(A)Uw
Q (F)C

w
Q (F)\CQ(A)UQ (A)

fχ;s(wug)θ(φ, j (ug))ϕ(g)dg,

where Cw
Q = CQ ∩ w−1Pw, and Uw

Q = UQ ∩ w−1Pw.

Proposition 3.6 If w does not lie in the double coset containing w0, then Iw
( fχ;s, ϕ1, ϕ2) = 0. Consequently, I ( fχ;s, ϕ1, ϕ2) = Iw0( fχ;s, ϕ1, ϕ2).

Proof Write w = σν where w is a permutation of {1, . . . 12} satisfying the four
conditions listed at the beginning of Sect. 3.1, and ν is one of the representatives for
Pσ \MQ/CQ given in the table in Lemma 3.4. The integral Iw( fχ;s, ϕ, φ) vanishes
if ψl is nontrivial on Uw

Q := UQ ∩ w−1Pw, or equivalently, if the character ν · ψl

obtained by composing ψl with conjugation by ν is nontrivial on UQ ∩ σ−1Pσ. For
our representatives ν, we have

ν · ψl(uQ(0, 0, Z)) =

⎧

⎪

⎨

⎪

⎩

ψ(Z1,9 + Z2,10), ν = e,

ψ(Z1,10 + Z2,9), ν = w[1],
ψ(Z1,11 + Z3,9), ν = w[2]w[1].
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There are 25 possibilities for σ. However, it’s clear that Iw( fχ;s, ϕ, φ) vanishes,
regardless of ν, if σ(1) < σ(9), or if σ(2) < σ(10). This eliminates all but seven pos-
sibilities for σ. For the remaining seven, the above criterion shows that Iw( fχ;s, ϕ, φ)
vanishes unless ν is trivial.

Assume now that ψl is trivial on Uw
Q . This means that the image of Uw

Q in the
Heisenberg group intersects the center trivially, and maps to an isotropic subspace of
the quotientH17/Z(H17) (which has the structure of a symplectic vector group).Write
V for this subspace and V⊥ for its perp space. Define PV ⊂ Sp16 as in Lemma 2.2,
and let P1

V denote the kernel of the canonical projection PV → GL1 × Sp(V⊥/V ).
It follows immediately from Lemma 2.2 and the cuspidality of ϕ that Iw( fχ;s, ϕ, φ)
vanishes whenever P1

V ∩ CQ contains the unipotent radical of a proper parabolic
subgroup of CQ . This applies to each of the remaining double coset representatives,
except for w0. ��

The following lemma is useful in our calculation.

Lemma 3.7 Let f1, f2 be two continuous functions on (F\A)n , and ψ a nontrivial
additive character on F\A. Then

∫

(F\A)n
dx f1(x) f2(x) =

∑

α∈Fn

∫

(F\A)n
dx f1(x)ψ(α · x)

∫

(F\A)n
dy f2(y)ψ

−1(α · y).
(13)

Moreover, if
∫

(F\A)n dx f1(x) = 0, then one can replace
∑

α∈Fn by
∑

α∈Fn−{0} in
the formula above.

Proof By Fourier theory on F\A,

fi (x) =
∑

α∈Fn

ψ(−α · x) f̂i (α),

where f̂i (α) =
∫

(F\A)n dx f1(x)ψ(αx) for i = 1, 2. So the left hand side of (13) is
equal to

∑

α,β∈Fn

f̂1(α) f̂2(β)
∫

(F\A)n
dx ψ(−(α + β) · x). (14)

The integral on x vanishes when α+β �= 0, and equals 1 if α+β = 0, so (14) equals

∑

α∈Fn

f̂1(α) f̂2(−α),

which is the right hand side of (13). When
∫

(F\A)n dx f1(x) = 0, we have f̂1(0) = 0,
so we can replace

∑

α∈Fn by
∑

α∈Fn−0 . ��

123



368 J. Hundley, X. Shen

From now on, let w = w[64321465432465434654]. Then

Uw
Q := UQ ∩ w−1Pw =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

uwQ(y7, y8) = uQ

⎛

⎜

⎜

⎝

0,

⎛

⎜

⎜

⎝

y8 y7
0 0
0 0
0 0

⎞

⎟

⎟

⎠

, 0

⎞

⎟

⎟

⎠

: y7, y8 ∈ F

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

(15)

Cw
Q := CQ ∩ w−1Pw = (P1 × P2)

◦

where P1 is the Klingen parabolic subgroup of GSp4 and P2 is the Siegel parabolic
subgroup of GSO4. Let P1 = M1 � U1 and P2 = M2 � U2 be their Levi decom-
positions. Note that fχ;s(wug) = fχ;s(wg) for all u ∈ Uw

Q . So, by Proposition 3.6,
I ( fχ;s, ϕ, φ) is equal to

∫

Z(A)Cw
Q(F)\CQ(A)

ϕ(g)
∫

Uw
Q (A)\U (A)

fχ;s(wu2g)
∫

[Uw
Q ]
θ(φ, j (u1u2g)) du1 du2 dg.

(16)
But, for u = uwQ(y7, y8) (defined in (15)),

[ωψ( j (u))φ1](ξ) = φ1(ξ)ψ(ξ7y7 + ξ8y8), ξ =

⎛

⎜

⎜

⎝

ξ1 ξ2
ξ3 ξ4
ξ5 ξ6
ξ7 ξ8

⎞

⎟

⎟

⎠

, (17)

for any φ1 ∈ S(Mat4×2(A)). It follows that (16) is equal to

∫

Z(A)Cw
Q(F)\CQ(A)

ϕ(g)
∫

Uw
Q (A)\U (A)

fχ;s(wug)θ0(φ, j (ug)) du dg, (18)

where

θ0(φ, ug̃) :=
∑

ξ∈Mat3×2(F)
[ωψ(ug̃).φ]

(

ξ

0

)

, (u ∈ H17(A), g̃ ∈˜Sp16(A))

Now, Cw
Q = (M1 × M2)

◦
� (U1 × U2), and fχ;s(wu1u2g) = fχ;s(wg), for any

u1 ∈ U1, u2 ∈ U2, and g ∈ G.Moreover, if

U2(a) =

⎛

⎜

⎜

⎝

1 a
1 −a

1
1

⎞

⎟

⎟

⎠

, (19)
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then [ωψ(U2(a)u1g)φ]

⎛

⎜

⎜

⎝

ξ1 ξ2
ξ3 ξ4
ξ5 ξ6
0 0

⎞

⎟

⎟

⎠

= ψ(a(ξ3ξ6 − ξ4ξ5))[ωψ(u1g)φ]

⎛

⎜

⎜

⎝

ξ1 ξ2
ξ3 ξ4
ξ5 ξ6
0 0

⎞

⎟

⎟

⎠

. It

then follows from the cuspidality of ϕ that (18) is equal to

∫

Z(A)Cw
Q(F)\CQ(A)

ϕ(g)
∫

Uw
Q (A)\U (A)

fχ;s(wug)θ1(φ, j (ug)) du dg, (20)

where

θ1(φ, ug̃) :=
∑

ξ∈Mat3×2(F): (ξ3ξ6−ξ4ξ5)�=0
[ωψ(ug̃).φ]

(

ξ

0

)

, (u ∈ H17(A), g̃ ∈˜Sp16(A)).

The group (M1 × M2)
◦ is the set of all

m(g3, g4, t) := diag(t det g3, g3, t
−1; det g3g4, g∗4; t det g3, det g3 · g∗3 , t−1) (21)

where g3 ∈ GL2, g4 ∈ GL2 and t ∈ GL1. Note that the summation over (ξ1, ξ2)
is invariant under the action of (M1 × M2)

◦. Consider the action of (M1 × M2)
◦ on

{(ξ3, ξ4, ξ5, ξ6) | det
(

ξ3 ξ4
ξ5 ξ6

)

�= 0}. It is not hard to see that it is transitive, and the

stabilizer of (1, 0, 0, 1) is {m(t, g3, g4) | g4 = g3 · det(g3)−1}, which is the same
as {M5(t, g3) = diag(t det g3, g3, t−1; g3, g∗3 det g3; t det g3, g∗3 det g3, t−1) : g3 ∈
GL2, t ∈ GL1}. We denote this group by M5. Let ψU2 be a character on U2 defined
by ψU2(U2(a)) = ψ(a), then Eq. (20) is equal to

∫

Z(A)M5(F)U1(F)U2(A)\CQ(A)

ϕ(U2,ψU2 )(g)
∫

Uw
Q (A)\U (A)

fχ;s(wug)θ2( j (ug)) du dg,

(22)
where

θ2( j (ug)) :=
∑

(ξ1,ξ2)∈F2

[ωψ( j (ug)).φ]

⎛

⎜

⎜

⎝

ξ1 ξ2
1 0
0 1
0 0

⎞

⎟

⎟

⎠

,

and the notation ϕ(U2,ψU2 ) is defined as follows. For any unipotent subgroup V of an
F-group H, character ϑ of V, and smooth left V (F)-invariant function � on H(A),

we define

�(V,ϑ)(h) :=
∫

[V ]
�(vh)ϑ(v) dv.
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Now, U1 consists of elements

U1(a, b, c) =

⎛

⎜

⎜

⎝

1 a b c
1 b

1 −a
1

⎞

⎟

⎟

⎠

∈ GSp4, (23)

and for any g ∈ RQ ,

[ωψ(U1(0, 0, c)g)φ]

⎛

⎜

⎜

⎝

ξ1 ξ2
1 0
0 1
0 0

⎞

⎟

⎟

⎠

= [ωψ(g)φ]

⎛

⎜

⎜

⎝

ξ1 ξ2
1 0
0 1
0 0

⎞

⎟

⎟

⎠

.

Factoring the integration over U1 and applying Lemma 3.7 to functions

(a, b) �→ ωψ(U1(a, b, 0)g)φ

⎛

⎜

⎜

⎝

ξ1 ξ2
1 0
0 1
0 0

⎞

⎟

⎟

⎠

and (a, b) �→
∫

F\A
dc ϕ2(U1(a, b, c)g),

we deduce that (22) is equal to

∫

Z(A)M5(F)U1(A)U2(A)\CQ (A)

ϕ
(U3,ψ

α,β
U3

)
(g)

∫

Uw
Q (A)\U (A)

fχ;s(wug)θ
(U1,ψ

−α,−β
U1

)

2 ( j (ug)) du dg,

(24)

where ψα,β
U1

(U1(a, b, c)) = ψ(αa + βb), U3 = U1U2, and ψ
α,β
3 = ψU2ψ

α,β
U1

. The

group M5(F) acts on U1(A) and permutes the nontrivial characters ψα,β
U1

transitively.

The stabilizer of ψU1 := ψ
1,0
U1

is

M6 := {M6(a1, a2, a4)} , where M6(a1, a2, a4) = M5

(

a−14 ,

(

a1 a2
0 a4

))

.

(25)
Hence Eq. (24) is equal to

∫

Z(A)M6(F)U1(A)U2(A)\CQ(A)

ϕ(U3,ψU3 )(g)
∫

Uw
Q (A)\U (A)

fχ;s(wug)θ
(U1,ψU1

)

2 ( j (ug)) du dg,

(26)
where ψU3 = ψU1ψU2 .

Note that

[ωψ(U1(a, b, 0)g)φ]

⎛

⎜

⎜

⎝

ξ1 ξ2
1 0
0 1
0 0

⎞

⎟

⎟

⎠

= [ωψ(g)φ]

⎛

⎜

⎜

⎝

ξ1 + a ξ2 + b
1 0
0 1
0 0

⎞

⎟

⎟

⎠

,
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and that for ξ1, ξ2 ∈ F , ψ(α · (a + ξ1) + β · (b + ξ2)) = ψ(α · a + β · b). We
can combine the summation on (ξ1, ξ2) with the integral over (a, b). It follows that

θ
(U1,ψU1

)

2 (g) = I0(φ, g), defined in (10). Let M6 = U6T6 be the Levi decomposition.
It is not hard to see that both I0(φ, g) and the function g �→ f (wg) are invariant on
the left by U6(A). So, (26) is equal to

∫

Z(A)T6(F)U1(A)U2(A)\CQ (A)

ϕ(U4,ψU4 )(g)
∫

Uw
Q (A)\U (A)

fχ;s(wug)θ
(U1,ψU1

)

2 ( j (ug)) du dg,

(27)

where U4 = U3U6, and ψU4 is the extension of ψU3 to a character of U4 which is
trivial on U6. Now,

ϕ(U4,ψU4 )(g)=
∫

F\A
ϕ
(U1,ψ1)
1

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

1
1 r

1
1

⎞

⎟

⎟

⎠

g1

⎞

⎟

⎟

⎠

ϕ
(U2,ψ2)
2

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

1 r
1

1 −r
1

⎞

⎟

⎟

⎠

g2

⎞

⎟

⎟

⎠

.

Let N1 denote the standard maximal unipotent subgroup of GSp4 and N2 that of
GSO4. Let ψ

γ

N1
and ψγ

N2
be the extensions of ψU1 and ψU2 to characters of N1(A)

and N2(A) respectively, such that

ψ
γ

N1

⎛

⎜

⎜

⎝

1
1 r

1
1

⎞

⎟

⎟

⎠

= ψ
γ

N2

⎛

⎜

⎜

⎝

1 r
1

1 −r
1

⎞

⎟

⎟

⎠

= ψ(γ r).

Then it follows from Lemma 3.7 (and the cuspidality of ϕ1, ϕ2,) that

ϕ(U4,ψU4 )(g) =
∑

γ∈F×
ϕ
(N1,ψ

γ
N1
)

1 (g1)ϕ
(N2,ψ

−γ
N2

)

2 (g2) = ϕ(N ,ψ
γ
N )(g),

where N = N1N2, a maximal unipotent subgroup of CQ, and for γ ∈ F×, ψγ

N =
ψ
γ

N1
ψ
−γ
N2

.We plug this in to (27). The group T6 acts on the characters ψ
γ

N transitively,

and the stabilizer of ψN := ψ1
N is the center of CQ . Since ϕ(N ,ψN )(g) = Wϕ(g), this

completes the Proof of Theorem 3.1.

4 Preparation for the unramified calculation

In this section, we establish some results which describe the structure of the symmetric
algebras of some representations of Sp4 × SL2, and Sp4 × SL2 × SL2, which will
be used to relate our local zeta integrals to products of Langlands L-functions.

We first consider some representations of Sp4 × SL2. Let �1 and �2 denote the
fundamental weights of Sp4 and � that of SL2. Write V(n1,n2;m) for the irreducible
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Sp4 × SL2-module with highest weight n1�1 + n2�2 + m�, and let [n1, n2;m]
denote its trace.

Proposition 4.1 For i, j, n1, n2 and m all non-negative integers, let μi, j (n1, n2;m)
denote the multiplicity of V(n1,n2;m) in symi V(1,0;1) ⊗ sym j V(1,0;0). Then

∞
∑

i, j,n1,n2,m=0
μi, j (n1, n2;m)tn11 tn22 tm3 xi y j =

1− t1t2t3x3y2

(1− t1t3x)(1− x2)(1− t2x2)(1− t1y)(1− t3xy)(1− t2t3xy)(1− t1x2y)(1− t2x2y2)
.

Proof We first describe sym j V(1,0;1). Write V(n1,n2) for the irreducible Sp4-module
with highest weight n1�1 + n2�2. Then we may regard V(1,0;1) as two copies of
V(1,0) with the standard torus of SL2 acting on them by eigenvalues, say, η and η−1.
Then, using the well known fact that symk V(1,0) = V( j,0), and the decomposition of
V(m,0) ⊗ V(n,0) described in [23],

Tr symn V(1,0;1) =
n
∑

n1=0
ηn−2n1

min(n1,n−n1)
∑

�=0

�
∑

j=0
[n − 2�, j] =

� n2 �
∑

�=0

�
∑

j=0
[n − 2�, j; n − 2�],

whence

∞
∑

n=0
xn Tr symn V(1,0;1) =

∞
∑

j,k,n=0
xn+2 j+2k[n, j; n] = 1

1− x2

∞
∑

j,n=0
[n, j; n]xn+2 j .

Using [23] again to compute V(n, j) ⊗ V(m,0) one obtains

∞
∑

n,m, j=0
[n, j][m, 0]tnxn+2 j ym

= 1

1− t xy

∞
∑

n, j,i2,k=0
n+i2≥k

[n + m + i2 − k2, j + k2]tnxn+2 j+2i2 ym+i2+k .

It follows that

∞
∑

i, j,n1,n2,m=0
μi, j (n1, n2;m)tn11 tn22 tm3 xi y j

= 1

1− x2
1

1− t3xy

∞
∑

n1,n2,i2,k,m=0
n+i2≥k

tn1+m+i2−k1 tn2+k2 tn13 xn1+2n2+2i2 ym+i2+k

= 1

1− x2
1

1− t3xy

1

1− t2x2
1

1− t1y

∞
∑

n1,i2,k=0
n+i2≥k

tn1+i2−k1 tk2 t
n1
3 xn1+2n2+2i2 yi2+k,
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and the result then follows from the identity

∞
∑

n1=0

∞
∑

n2=0

n2
∑

j,k=0
un2vkw j = 1− u2vw

(1− u)(1− uv)(1− uw)(1− uvw)
.

��

Corollary 4.2 For n = (n1, n2, n3) let [n] = [n1, n2; n3], and, let

a = t
[

1 0 1 1 2 2 2
]

b = t
[

0 1 1 1 0 1 2
]
, g = t

⎡

⎣

1 1 0 0 0 1 0
0 0 0 1 1 0 1
1 0 1 1 0 0 0

⎤

⎦

Then
∑∞

i=0 xi Tr symi V(1,0;1)
∑∞

j=0 y j Tr sym j V(1,0;0) equals

1

1− x2

[

∑

n

[n · g]xn·a yn·b −
∑

n

[n · g + (1, 1, 1)]xn·a+3yn·b+2
]

,

where n is summed over row vectors n = (n1, . . . , n7) ∈ Z
7≥0.

Our next result describes the decomposition of symi V(1,0;1) ⊗ sym j V(1,0;0) ⊗
symk V(1,0;0). It is an identity of rational functions in 6 variables. To keep the notation
short, we often reflect dependence only on arguments which will vary. Let

d(t1, t2) = (1− t1t3x)(1− t2x
2)(1− t1y)(1− t3xy)(1− t2t3xy)(1− t1x

2y)(1− t2x
2y2)

=
⎡

⎢

⎣

∑

n∈Z7≥0

tn·g11 tn·g22 tn·g33 xn·a yn·b

⎤

⎥

⎦

−1

,

where g1, g2 and g3 are the three columns of the matrix g in Corollary 4.2. Define
rational functions γ1, . . . , γ7 by

N1
∑

n1=0

N2
∑

n2=0

n1+n2
∑

k=0
un1vn2wk

= γ1(u, v, w)+ γ2(u, v, w)u
N1 + γ3(u, v, w)v

N2 + γ4(u, v, w)u
N1vN2

+γ5(u, v, w)(uw)N1 + γ6(u, v, w)(vw)
N2 + γ7(u, v, w)(uw)

N1(vw)N2 ,

and let ci = γi (t1/z, t1z/t2, t2z/t1).

Proposition 4.3 Let μi, j,k(n1, n2;m) denote the multiplicity of V(n1,n2;m) in symi

V(1,0;1) ⊗ sym j V(1,0;0) ⊗ symk V(1,0;0). Then
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∞
∑

i, j,k,n1,n2,m=0
μi, j,k(n1, n2;m)tn11 tn22 tm3 xi y j zk = (1− x2)−1(1− t1z)

−1

× c1ν(t2z)

d(z, t2)
+ c2ν(t1t2)

d(t1, t2)
+ c3ν(t1z2)

d(z, t1z)
+ c4ν(t21 z)

d(t1, t1z, )
+ c5ν(t22 z)

d(t2z, t2)

+ c6ν(t2z3)

d(z, t2z2)
+ c7ν(t22 z

3)

d(t2z, t2z2)
,

where c1, . . . , c7 and d are as above and let ν(u) = 1− ut3x3y2.

Proof From [23] again, one deduces that

[m1,m2] ·
∞
∑

�=0
[�, 0]x� =

∞
∑

�=0

m1
∑

i1=0

m2
∑

i2=0

i1+i2
∑

k=0
[i1 + i2 − k + �,m2 − i2 + k]x�+m1−i1+i2+k .

Combining with Corollary 4.2 gives

∞
∑

i, j,k,n1,n2,m=0
μi, j,k(n1, n2;m)tn11 tn22 tm3 xi y j zk

= 1

1− x2
1

1− t1z

∑

n∈Z7≥0

xn·a yn·btn·g33

⎛

⎝

n·g1
∑

i1=0

n·g2
∑

i2=0

i1+i2
∑

k=0
t i1+i2−k1 tn·g2−i2+k2 zn·g1−i1+i2+k

−x3y2t3
n·g1+1
∑

i1=0

n·g2+1
∑

i2=0

i1+i2
∑

k=0
t i1+i2−k1 tn·g2+1−i2+k2 zn·g1+1−i1+i2+k

⎞

⎠ ,

and and simplifying this rational function gives the result. ��

Proposition 4.4 Let V(n1,n2;n3;n4) denote the irreducible representation of Sp4 ×
SL2 × SL2 such that Sp4 acts with highest weight n1�1 + n2�2, the first SL2
acts with highest weight n3, and the second SL2 acts with highest weight n4. For
n = (n1, n2; n3; n4), let μi, j (n) denote the multiplicity of Vn in symi V(1,0;1;0) ⊗
sym j V(1,0;0;1). Then

∞
∑

i, j=0

∑

n∈Z4≥0

μi, j (n)t
n1
1 tn22 tn33 tn44 xi y j = ν(x, y, t)

δ(x, y, t)
,
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where

ν(x, y, t) = 1− t1t2t3t
2
4 x

3y2 − t1t2t
2
3 t4x

2y3 − t21 t3t4x
3y3 − t21 t2t3t4x

3y3 − t1t2t
2
3 t4x

4y3

− t1t2t3t
2
4 x

3y4 − t21 t2t
2
3 x

4y4 − t21 t2t
2
4 x

4y4 + 2t21 t2t
2
3 t

2
4 x

4y4 − t22 t
2
3 t

2
4 x

4y4

+ t31 t2t3t
2
4 x

5y4 + t1t
2
2 t

3
3 t

2
4 x

5y4 + t31 t2t
2
3 t4x

4y5 + t1t
2
2 t

2
3 t

3
4 x

4y5 + t21 t2t
3
3 t4x

5y5

+ t21 t
2
2 t

3
3 t4x

5y5 + t21 t2t3t
3
4 x

5y5 + t21 t
2
2 t3t

3
4 x

5y5 + t31 t2t
2
3 t4x

6y5 + t1t
2
2 t

2
3 t

3
4 x

6y5

+ t31 t2t3t
2
4 x

5y6 + t1t
2
2 t

3
3 t

2
4 x

5y6 − t41 t2t
2
3 t

2
4 x

6y6 + 2t21 t
2
2 t

2
3 t

2
4 x

6y6 − t21 t
2
2 t

4
3 t

2
4 x

6y6

− t21 t
2
2 t

2
3 t

4
4 x

6y6 − t31 t
2
2 t

3
3 t

2
4 x

7y6 − t31 t
2
2 t

2
3 t

3
4 x

6y7 − t21 t
2
2 t

3
3 t

3
4 x

7y7

− t21 t
3
2 t

3
3 t

3
4 x

7y7 − t31 t
2
2 t

2
3 t

3
4 x

8y7 − t31 t
2
2 t

3
3 t

2
4 x

7y8 + t41 t
3
2 t

4
3 t

4
4 x

10y10,

δ(x, y, t) = (1− t1t3x)(1− x2)(1− t2x
2)(1− t1t4y)(1− y2)(1− t2y

2)(1− x2y2)(1− t3t4xy)

× (1− t2t3t4xy)(1− t1t4x
2y)(1− t1t3xy

2)(1− t21 x
2y2)(1− t2t

2
3 x

2y2)(1− t2t
2
4 x

2y2)

Proof Let p and q be the polynomials such that

∞
∑

i, j,k=0
μi, j,k,n1,n2,m(n1, n2;m)tn11 tn22 tm3 xi y j zk = p(x, y, z, t)

q(x, y, z, t)
.

They may be computed explicitly using Proposition 4.3. Set t ′ = (t1, t2, t3), and

f (x, y, t ′, t4) =
∞
∑

i, j=0

∑

n∈Z4≥0

μi, j (n)t
n1
1 tn22 tn33 tn44 xi y j .

By regarding V(1,0;0;1) as two copies of V(1,0;0) with the standard torus of the second
SL2 acting with eigenvalues τ and τ−1, say, we see that

τ f (x, y, t ′, τ )− τ−1 f (x, y, t ′, τ−1)
(τ − τ−1)

=
n4
∑

r=0
τ n4−2r = p(x, yτ, yτ−1, t ′)

q(x, yτ, yτ−1, t ′)
.

So it suffices to verify that

p(x, yτ, yτ−1, t ′)(τ − τ−1)δ(x, y, t ′, τ )δ(x, y, t ′, τ−1)
= q(x, yτ, yτ−1, t ′)[τν(x, y, t ′, τ )δ(x, y, t ′, τ−1)
− τ−1ν(x, y, t ′, τ−1)δ(x, y, t ′, τ )],

which is easily done with a computer algebra system. ��
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5 Local zeta integrals I

5.1 Definitions and notation

The next step in the analysis of our global integral is to study the corresponding
local zeta integrals. We introduce a “local” notation which will be used throughout
Sects. 5 and 6, 7 In these section F is a local field which may be archimedean or
nonarchimedean. Abusing notation, we denote the F-points of an F-algebraic group
H by H as well. We fix an additive character ψ of F, and define a character ψN :
N → C by the same formula used in the global setting. Similarly, if we fix a triple
χ = (χ1, χ2, χ3) of characters of F×, and s ∈ C

3, then formula (2) now defines a
character of MP .We write IndGP (χ; s) for the corresponding (unnormalized) induced
representation (K -finite vectors, relative to some fixed maximal compact K ). We shall
assume that the characters in χ are unitary, but not that they are normalized, and define
(χ; s) for s ∈ C

2 by the convention s3 = 3s1+3s2
2 .Thuswe have a two parameter family

of induced representations and let Flat(χ) denote the space of flat sections.
Let S(Mat4×2) be the Bruhat–Schwartz space, which we equip with an action ωψ,l

of RQ as in the global setting, and define I0 : S(Mat4×2)× RQ → C by replacing A

by F in (10).
Next, take π to be a ψN -generic irreducible admissible representation of CQ with

ψN -Whittaker model WψN (π), and with central character χ−31 χ−32 χ2
3 .

For W ∈ WψN (π), f ∈ Flat(χ) and φ ∈ S(Mat4×2), define the corresponding
local zeta integral to be the local analogue of (12), namely:

I (W, f, φ; s) :=
∫

ZU4\CQ

W (g)
∫

Uw
Q \UQ

fχ;s(wug)I0(φ, ug) du dg. (28)

In addition to the above notation, for 1 ≤ i, j ≤ r, i �= j, let xi j (r) = I12 + r Ei, j −
r E13− j,13−i , where I12 is the 12 × 12 identity matrix and Ei, j is the matrix with a
one at the i, j entry and zeros everywhere else, and let

�0 :=

⎛

⎜

⎜

⎝

0 0
1 0
0 1
0 0

⎞

⎟

⎟

⎠

, �2(a) :=

⎛

⎜

⎜

⎝

a1 a2
0 a4
0 0
0 0

⎞

⎟

⎟

⎠

, (a = (a1, a2, a4) ∈ F3).

5.2 Inital computations

In this section we carry out some initial computations with local zeta integrals which
will be used in both the proof of convergence in Sect. 7.1 and in the unramified
computations carried out in Sect. 6.

The image of the function x23 maps isomorphically onto the one dimensional quo-
tient of U4\N , and the function g �→ f ◦s (wg) is invariant by the image of x23 on the
left. Moreover, W (x23(x4)g) = ψ(x4)W (g), while
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[

ωψ (x23(x4)ug) .φ
]

(�0 +�2(x1, x2, 0)) =
[

ωψ (ut) .φ
]

(�0 +�2(x1, x2, x4))

Let

III (φ) :=
∫

F3
φ

⎛

⎜

⎜

⎝

r1 r2
1 r4
0 1
0 0

⎞

⎟

⎟

⎠

ψ(r1 + r4) dr, (φ ∈ S(Mat4×2))

II ( f, φ, s) :=
∫

Uw
Q \UQ

fχ;s(wu)III (ωψ,l (u).φ) du, (φ ∈ S(Mat4×2), f ∈ Flat(χ))

I1(W, f, φ; s) :=
∫

Z\T
W (t)II (R(t). f, ωψ,l (t).φ, s) δ

−1
B (t) dt,

where φ ∈ S(Mat4×2), f ∈ Flat(χ),W ∈WψN (π), and R is right translation. Then
expressing Haar measure on CQ in terms of Haar measures on T, N and K , and using
x23 to parametrize U4\N yields

I (W, f, φ; s) =
∫

K
I1(R(k).W, R(k). f, ωψ,l(k).φ; s) dk (29)

where K is the maximal compact.
The integral III (φ) is absolutely convergent. Indeed, III (φ) = φ1(ϒ0), where φ1

is the Schwartz function obtained by taking Fourier transform of φ in three of the eight
variables, and ϒ0 is a matrix with entries 0 and 1. We study the dependence on u ∈
Uw

Q\UQ and t ∈ Z\T using the local analogues of (5). A remark is in order, regarding
theWeil index γψ,detm1

Q(g1,g2)
which appears in the third formula. In order to reconcile

the local and global cases, one should think of this as the ratio γψ,detm1
Q(g1,g2)

/γψ,1.

The denominator can be omitted because the global γψ,1 is trivial. In the local setting
γψ,1 may not be trivial, but γψ,a2 = γψ,1 for any a, and detm1

Q(g1, g2) is always a
square, so the ratio is always trivial.

Now, letU0 ⊂ UQ be the subgroupcorresponding to thevariables, x1, x2, x4, y3, y5,
y6, z1, z2, z3 and z5. That is, the subset in which all other variables equal zero. Let
U7 ⊂ UQ be the subgroup defined by the condition that each variable listed above is
0, and, in addition, y7 = y8 = 0. Then U0U7 maps isomorphically onto the quotient
Uw

Q\UQ .WeparametrizeU0 andU7 using the coordinates inherited fromUQ .Adirect
computation using (5) shows that for u0 ∈ U0, u7 ∈ U7, and t ∈ T, III (ωψ(tu0u7).φ)
is equal to

|tβ1+β2+β4 || det t | 12ψ(x1tβ1+x4tβ4−y3t
−β3+y6t

−β6+z1+z5)φ′
⎛

⎜

⎜

⎝

y1 + tβ1 y2
x3 + t−β3 y4 + tβ4

x5 x6 + t−β6
x7 x8

⎞

⎟

⎟

⎠

,

(30)
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where φ′ is the Schwartz function obtained by taking the Fourier transform of φ
(relative toψ) in x1, x2 and x4. If we defineψU0,t (u0) := ψ(x1tβ1+ x4tβ4− y3t−β3+
y6t−β6 + z1 + z5), and we define δ(t) ∈ U7 and π7 : U7→ Mat4×2 by

δ(t) = uQ

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

0 0
t−β3 0
0 t−β6
0 0

⎞

⎟

⎟

⎠

,

⎛

⎜

⎜

⎝

0 0
0 0
tβ4 0
0 tβ1

⎞

⎟

⎟

⎠

, 0

⎞

⎟

⎟

⎠

∈ U7, π7(u7) =

⎛

⎜

⎜

⎝

y1 y2
x3 y4
x5 x6
x7 x8

⎞

⎟

⎟

⎠

,

then (30) becomes |tβ1+β2+β4 || det t | 12ψU0,t (u0)φ
′(π7(δ(t)−1u7)).

The projection π7 has a two dimensional kernel corresponding to the variables
z4 and z6. Let U8 denote this kernel and choose a subset U ′8 of U7 which con-
tains δ(t) and maps isomorphically onto the quotient. Then we can parametrize
II (R(t). f, ωψ,l(t).φ, s) as a triple integral over U0 × U8 × U ′8. The U ′8 integral is
convergent because φ′ is Schwartz, after a change of variables it becomes

φ′ ∗1 fχ;s(wu0u8δ(t)) :=
∫

U ′8
fχ;s(wu0u8δ(t)u

′
8)φ
′(π7(u′8)) du8.

Thus, conjugating t from right to left, and making a change of variables yields
I1(W, f, φ; s) = I2(W, φ ∗1 f ; s), where I2(W, f, φ; s) is defined as

∫

Z\T
W (t)δ−1B (t)| det t | 12 |tβ1+β2+β4 | Jac1(t)(χ; s)(wtw−1) fχ;s(wu0u8δ(t)) dt,

with Jac1(t) being the “Jacobian” of the change of variables u0 → tu0t−1, u7 →
tu7t−1. Notice that φ ∗1 f is simply another smooth section of the same family of
induced representations, and that if fχ;s and φ are both unramified, then φ′ = φ and
φ′ ∗1 fχ;s = fχ;s . Thus, we may dispense with the integral over u′8.

Next, we dispense with the integral over u8. To do this, we use [5] to replace fχ;s
by a sum of sections of the form

φ2 ∗2 f ′χ;s(g) :=
∫

F2
fχ;s(gx24(y1)x34(y2))φ1(y1, y2) dy, (s ∈ C

2, g ∈ G).

Now, let

[II2. fχ;s](g) :=
∫

U0

fχ;s(wu0g)ψU0,t (u0) du0, u9(y1, y2) := x24(y1)x34(y2).

conjugating u9(y1, y2) from right to left shows that

[II2. fχ;s](δ(t)u8u9(y1, y2)) = ψ(−y1z6 − y2(z4 − tα1)) · [II2. fχ;s](δ(t)u8).
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(Recall that z6 and z4 are coordinates on U8). But then

∫

F2
[II2.φ2 ∗2 fχ;s](δ(t)u8) dz =

∫

F2
[II2. fχ;s](δ(t)u8)̂φ2(z6, z4 − tα1) dz,

which we may write as [II2.̂φ2 ∗3 fχ;s](˜δ(t)), where ∗3 is the action of S(U8) by
convolution, and˜δ(t) = δ(t)x29(tα1). Notice that ̂φ2 ∗3 fχ;s is again another smooth
section of the same family of induced representations. Note also that if f is spherical
then taking φ2 to be the characteristic function of o2 gives ̂φ2 ∗3 fχ;s = fχ;s .

Thus, we are reduced to the study of the integral

I3(W, f ; s) :=
∫

Z\T
W (t)δ−1/2B (t)νs(t)II2. fχ;s(˜δ(t)) dt, (31)

where νs(t) := δ
−1/2
B (t)| det t | 12 |tβ1+β2+β4 | Jac1(t)(χ; s)(wtw−1). Write w =

w1w2w3, where w1 = w[634], w2 = w[3236514] and w3 = w[2356243564].
Write U for the unipotent radical of our standard Borel of G, and U− for the unipo-
tent radical of the opposite Borel. For w ∈ W, let Uw = U ∩ w−1U−w. Then
w3U0w

−1
3 = Uw1w2 = w−12 Uw1w2Uw2 . For c := (c1, . . . , c6) ∈ F6, define a

character ψc,0 of U0 in terms of the standard coordinates on U0 by ψc,0(u0) :=
ψ(c1x1 + c2x4 + c3y6 − c4y3 + c5z1 + c6z5). Notice that ψU0,t is obtained by tak-
ing c = (tβ1 , tβ4 , t−β3 , t−β6 , 1, 1). In terms of the entries ui j we have ψc,0(u) =
ψ(c1u15 + c2u26 + c3u27 − c4u38 + c5u19 + c6u2,10), Now, w3 corresponds to the
permutation (2, 4, 11, 9)(3, 8, 10, 5). It follows thatu′0 �→ ψc,0(w

−1
3 u′0w3) is the char-

acter ofw3U0w
−1
3 given by u �→ ψ(c1u13+ c2u46+ c3u47+ c4u35+ c5u12+ c6u45).

In particular, its restriction to w−12 Uw1w2 is trivial. Let ψc,2 denote the restriction to
Uw2 . Then

∫

U0

fχ;s(wug)ψc,0(u) du =
∫

Uw2

∫

Uw1

fχ;s(w1u1w2u2w3g) du1 ψc,2(u2) du2,

(32)
and the u1 integral is a standard intertwining operator, M(w−11 , χ; s) : IndGP (χ; s)→
IndGBG

((χ; s)δ−1/2BG
)w1 , where ((χ; s)δ−

1
2

B )w1(t) := ((χ; s)δ−
1
2

B )(w1tw
−1
1 ), and Ind

denotes normalized induction.
Now letw4 = w[32365] so thatw2 = w4w[14].Also, letw′3 = w[14]w3.Observe

that w4 is the long element of the Weyl group of a standard Levi subgroup of GSO12
which is isomorphic to GL1 ×GL3 ×GSO4. For c1, . . . , c4 ∈ F, define a character
ψc,4 of Uw4 by ψc,4(u) = ψ(c1u23 + c4u34 + c3u56 + c2u57), and for fχ;s;w1 ∈
IndGBG

((χ; s)δ−1/2BG
)w1 , let

Jψc,4 . fχ;s;w1(g) =
∫

Uw4

f ◦χ;s,w1
(w4ug)ψc,4(u) du,
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which is a Jacquet integral for this Levi subgroup. Then (32) equals

∫

F2
[Jψc,4 ◦ M(w−11 , χ; s). fχ;s](x21(r1)x54(r2)w′3g)ψ(c5r1 + c6r2) dr.

6 Unramified calculation

We keep the notation from Sect. 5.1, and assume further that F is nonarchimedean,
with ring of integers o having unique maximal ideal p. We fix a generator w for p.
The absolute value on F is denoted | | and normalized so that |w| = q := #o/p. The
corresponding p-adic valuation is denoted v. Moreover, we assume that K = G(o),
and that the representation π and characters χi , i = 1, 2, 3 are unramified, and we
letW ◦π , f ◦ and φ◦ denote the normalized spherical elements ofWψN (π),Flat(χ) and
S(Mat4×2), respectively.

The (finite Galois form of the) L-group of GSp4 × GSO4 is GSpin5(C) ×
GSpin4(C). Indeed, one may define GSpin2n+1 (resp. GSpin2n) as the reductive
group with root datum dual to that of GSp2n (resp. GSO2n). However, both GSpin
groups appearing here can be understood more explicitly via “coincidences of low
rank.” Indeed, a simple change of Z-basis reveals that the root datum of GSp4 is in
fact self dual. ThusGSpin5 is justGSp4 in another guise. Note, however, that the iso-
morphism of GSp4 with its own dual group does not respect the standard numbering
of the simple roots.

Next, we can realizeGSO4 (resp.GSpin4) as a quotient (resp. subgroup) ofGL2×
GL2. Indeed, we can realize GSO4 as the similitude group of the four dimensional
quadratic space (Mat2×2, det). Letting GL2 × GL2 act by (g1, g2) · X = g1Xtg2
induces a surjection GL2 × GL2 → GSO4 with kernel {(aI2, a−1 I2) : a ∈ GL1},
and thence a bijection between representations of GSO4 and pairs of representations
of GL2 with the same central character. By duality, this induces an isomorphism of
GSpin4 with {(g1, g2) ∈ GL2×GL2 : det g1 = det g2}.We remark that the induced
map GSpin4 → SO4 is not the restriction of our chosen map GL2×GL2 → GSO4.

We regard GSp4 × GSO4 as a subgroup of MQ containing CQ in the obvious
way, and regard its L group as a subgroup of GSp4 × GL2 × GL2. We make the
identification in such a way that the first GL2 corresponds to the fifth simple root of
G = GSO12 and the second GL2 corresponds to the sixth simple root of G.

Let StGSp4 denote the standard representation of GSp4. It may also be regarded
as the spin representation of GSpin5. For this reason, the associated L function is
often called the “Spinor L function.” We regard StGSp4 as a representation of of
the L group via projection onto the GSp4(C) factor, and let St∨GSp4

denote the dual
representation. Let St

GL(1)2
(resp. St

GL(2)2
) denote the representations of the L group

obtained by composing the standard representation of GL2 with projection onto the
first (resp. second) GL2(C) factor.
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Theorem 6.1 Let

N (s, χ) = L

(

s1 − s2,
χ1

χ2

)

L

(

s1 − s2 − 1,
χ1

χ2

)

L

(

s1 − s2 − 2,
χ1

χ2

)

L (s1 + s2 − 2, χ1χ2)

× L(s1 + s2 − 3, χ1χ2)L(s1 + s2 − 4, χ1χ2)L(2s2, χ
2
2 )L(2s1 − 6, χ2

1 ).

(33)
(Local L functions. The corresponding product of global zeta functions is the normal-
izing factor of the Eisenstein series). Then I (W ◦π , f ◦, φ◦; s) equals

L

(

s1−s2
2 − 1, π, St∨GSp4

⊗ St
GL(1)2

× χ3
χ1χ

2
2

)

L

(

s1+s2
2 − 2, π, St∨GSp4

⊗ St
GL(2)2

× χ3
χ1χ2

)

N (s, χ)

Proof (Reduction of the general case to the special case of trivial characters) For
purposes of this proof, write λH for the similitude rational character of H where
H = GSO12,GSp4, orGSO4.Our embedding (GSp4×GSO4)

◦ ↪→ GSO12 is such
that λGSO12(g, h) = λGSp4(g)

−1 = λGSO4(h), and the projection p : GL2×GL2 →
GSO4 is such that λGSO4(p(g1, g2)) = det g1 det g2.

Write π = � ⊗ τ1 ⊗ τ2 where � is an unramified representation of GSp4 and
τ1 and τ2 are unramified representations of GL2 with the same central character (so
that τ1 ⊗ τ2 is a representation of GSO4). Write τi = τi,0 ⊗ | det |t1 where τi,0 is
an unramified representation of GL2 with trivial central character for i = 1, 2, and
t1 is a complex number, and write � = �0 ⊗ |λGSp4 |t2 , where �0 is an unramified
representation ofGSp4 with trivial central character and t2 is a complex number. Then,
as representations of CQ = (GSp4 × GSO4)

◦,

π = π0 ⊗ |λGSO12 |t1−t2 , where π0 = �0 ⊗ τ1,0 ⊗ τ2,0.

The operation of twisting �0 by |λGSp4 |t2 to obtain � corresponds, on the L group
side, to multiplying the corresponding semisimple conjugacy class in GSp4(C) by
q−t3 I4. Likewise, the operation of twisting τi,0 by | det |t1 corresponds to multiplying
by q−t1 in GL2(C) for i = 1, 2. If η is the unramified character η(a) = |a|r , then

L
(

u, π, St∨GSp4 ⊗ St
GL(i)2

× η
)

= L
(

u − t2 + t1 + r, π0, St
∨
GSp4 ⊗ St

GL(i)2

)

.

For i = 1, 2, 3 the unramified character χi is given by | |ri for some ri ∈ C. If
s = (s1, s2,

3(s1+s2)
2 ) ∈ C

3, then let s′ = (s1 + r1, s2 + r2,
3(s1+r1+s2+r2)

2 ), and let χ0
be the triple consisting of three copies of the trivial character. Then it follows directly

from the definitions that f ◦
χ;s = f ◦

χ0;s′ · |λGSO12 |r3−
3r1+3r2

2 . The general case now
follows from the case t1 = t2 = r1 = r2 = r3 = 0.

Recall that I (W, f, φ; s) is only defined when the triple χ and the central character
of π are compatible. In the present notation the compatibility condition is that−3r1−
3r2 + 2r3 + 2(t1 − t2) = 0. But then Wπ · f ◦χ;s = Wπ0 · f ◦χ0;s′ . The general case now
reduces to the special case when χ = χ0 and π = π0. ��
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Remark 6.2 Wemay now assume that π = �⊗ τ1⊗ τ2, where the central characters
of �, τ1 and τ2 are all trivial. Thus, π may be regarded as an unramified represen-
tation of SO5 × PGL2 × PGL2 and corresponds to a semisimple conjugacy class
in Sp4(C) × SL2(C) × SL2(C). Define StSp4 , StSL(1)2

and St
SL(2)2

as the restrictions

of StGSp4 , StGL(1)2
and St

GL(2)2
, respectively. Note that all three are self dual repre-

sentations. In particular, L(u, π, St∨GSp4
⊗ St

GL(i)2
) = L(u, π, StSp4 ⊗ St

SL(i)2
) for all

u ∈ C.

Proof (Proof in the special case of trivial characters) As χ is trivial we write f ◦s
instead of f ◦

χ;s . Let I (s, π) := I (W ◦π , f ◦, φ; s).As we’ve seen in Sect. 5.2, it is equal
to I3(W ◦π , f ◦; s), defined by (31). Let I1(s; c1, . . . , c6) equal

∫

U0

fχ;s(wu0)ψc,0(u0) du0.

Let a = tβ1, b = tβ4 , c = t−β6 , d = t−β3 . Note that β1 − β3 = α1, β4 − β3 = α5,

and β4−β6 = α2.Moreover, the characters−β3−β6 and α6 are not identical on TG,
but they have the same restriction to the maximal torus T of CQ . It follows that for t
in the support of W ◦π , the quantities |ad|, |bd|, |bc| and |cd| are all ≤ 1.

By plugging in the Iwasawa decomposition for w3˜δ(t), we find that

II2. f
◦
s (
˜δ(t)) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

I1(s; a, b, c, d, 1, 1), |a|, |b|, |c|, |d| ≤ 1,

|d|−s1−s2+4I1(s, ad, bd, cd, 1, 1, 0), |d| > 1, |a|, |b|, |c| ≤ 1,

|c|−s1−s2+4I1(s, a, bc, 1, cd, 1, 0), |c| > 1, |a|, |b|, |d| ≤ 1,

|a|−s1+s2+2|c|−s1−s2+4I1(s, 1, bc, 1, acd, 0, 0), |a|, |c| > 1, |b|, |d| ≤ 1,

|a|−s1+s2+2I1(s, 1, b, c, ad, 0, 1), |b|, |c|, |d| ≤ 1, |a| > 1,

|a|−s1+s2+2|b|−s1+s2+2I1(s, 1, 1, bc, abd, 0, 0), |c|, |d| ≤ 1, |a|, |b| > 1,

|b|−s1+s2+2I1(s, a, 1, bc, bd, 1, 0), |d|, |c|, |a| ≤ 1, |b| > 1.

(34)

Now let f ◦s,w1
denote the normalized spherical vector in IndGBG

((χ0; s)δ−
1
2

B )w1 , and
let

Z1(s) := ζ(2s2 − 1)

ζ(2s2)

ζ(s1 − s2 − 1)

ζ(s1 − s2)

ζ(s1 + s2 − 3)

ζ(s1 + s2 − 2)

Then, M(w−11 , χ; s). f ◦s = Z1(s) f ◦s,w1
, by the Gindikin–Karpelevic formula, and

hence
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I1(s; c1, . . . , c6) = Z1(s)
∫

F2
Jψc,4 f

◦
s,w1

(x21(r1)x54(r2))ψ(c5r1 + c6r2) dr.

We remark that ((χ0; s)δ−
1
2

B )w1 maps diag(λt1, . . . , λt6, t
−1
6 , . . . , t−11 ) ∈ TG to

|t1|s1−5|t2|s1−4|t3|s2−2|t4|−s2 |t5|s1−3|t6|1−s2 |λ|s3−2s2− 13
2 . (35)

��

Lemma 6.3 Assume that each of c5, c6 is either zero or a unit. Assume further that if
c6 = 0 then at least one of c2, c3, c4 is a unit, and that if c5 = 0 then c1 is a unit, and
set Jc1,c2,c3,c4 = Jψc,4 f

◦
s,w1

(I12). Then I1(s; c1, . . . , c6)/Z1(s) equals

Jc1,c2,c3,c4 − q−s1−s2+4 Jc1
w ,c2,c3,c4

− q−2s1+6 Jc1, c2w ,
c3
w ,

c4
w
+ q−3s1−s2+10 Jc1

w ,
c2
w ,

c3
w ,

c4
w
.

Remark 6.4 Observe that all the sextuples c1, . . . , c6 appearing in (34) satisfy the
conditions of Lemma 6.3.

Proof There exist cocharacters hi : GL1 → TG, (i = 1, 2) such that 〈h1, αi 〉 = δi,1
and 〈h2, αi 〉 = δi,4 (Kronecker δ). It follows that Jψc,4 f

◦
s,w1

(x21(r1)x54(r2)) depends
only on v(r1) and v(r2). If c5 is a unit, then

∫

v(r1)=−k
ψ(c5r1) dr1 =

{

−1, k = 1,

0, k > 1,

and similarly with r2. Since both f ◦s,w1
and ψ are unramified, it follows that

I1(s; c1, . . . , c6) equals

Jψc,4 f
◦
s,w1

(I12)− Jψc,4 f
◦
s,w1

(w−1))− Jψc,4 f
◦
s,w1

(w−1))
+Jψc,4 f

◦
s,w1

(x21(w
−1)x54(w−1)).

Plugging in the Iwasawa decomposition of x21(w−1) and/or x54(w−1) gives the result
in this case.

Now suppose that c5 is not a unit. Then it is zero and c1 is a unit. It follows that

∫

F2
Jψc,4 f

◦
s,w1

(x21(r1)x54(r2))ψ(c5r1 + c6r2) dr

=
∫

F
Jψc,4 f

◦
s,w1

(x54(r2))ψ(c6r2) dr2.

Indeed the support of J is contained in UT1K where K = GSO12(o) is the maximal
compact subgroup, and T1 is the set of torus elements t with |tα2 | ≤ 1. It follows easily
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384 J. Hundley, X. Shen

from the Iwasawa decomposition that x21(r1)x54(r2) ∈ UT1K if and only if r1 ∈ o.
If c6 is a unit then proceeding as before we obtain

∫

F
Jψc,4 f

◦
s,w1

(x54(r2))ψ(c6r2) dr2 = Jc1,c2,c3,c4 − q−2s1+6 Jc1, c2w ,
c3
w ,

c3
w
.

On the other hand, when c1 is a unit then Jc1
w ,c2,c3,c4

= Jc1
w ,

c2
w ,

c3
w ,

c4
w
= 0, and the

stated result follows in this case as well. Likewise, if c6 is zero, then integration over
r2 can be omitted and Jc1, c2w ,

c3
w ,

c4
w
= Jc1

w ,
c2
w ,

c3
w ,

c4
w
= 0, which gives the result in the

remaining two cases. ��

Now consider the subgroup of the torus consisting of all elements of the form

t = diag

(

t1t2, t2, 1, t
−1
1 , t3t4, t4,

t2
t4
,
t2
t3t4

, t1t2, t2, 1, t
−1
1

)

. (36)

This subgroup maps isomorphically onto Z\T . For elements of this torus and with
coordinates as in (36) we have

Jac1(t) = |t21 t3t24 |−1, Jac2(t) =
∣

∣

∣

∣

∣

t21 t
3
2

t3t
3
4

∣

∣

∣

∣

∣

δ
− 1

2
B = |t21 t2t3t4|−1 | det t | 12 = |t−22 t23 t

4
4 |.

(χ0; s)(wtw−1) = |t1|s1−s2 |t2|−s1−3s2+s3 |t3t24 |s2 .

Set x = q−(
s1−3s2

2 ), y = q−s2+1, and let ni be the p = v(ti ) for 1 ≤ i ≤ 4. Then

νs(t) = x2n1+n2 y2n1+n3+2n4 . (37)

For l = (l1, l2, l3, l4) ∈ Z
4, set

j1(l) = 1− x2l4+2y2l4+2 − y2l1+2 − x2l1+2l4+4y4l1+4l4+8

+ x2l4+2y2l1+4l4+6 + x2l1+2l4+4y4l1+2l4+6

j2(l) = 1− x2l2+2y4l2+4 j3(l) = 1− x2l3+2y2l3+2

j (l) =
{

j1(l) j2(l) j3(l), li ≥ 0∀i,
0, otherwise.

Then direct computation or the Casselman-Shalika formula shows that

Jψc,4 . f
◦
s,w1

(I12) = ζ(s1 + s2 − 4)2

ζ(s1 + s2 − 3)2
ζ(s1 − s2 − 2)2

ζ(s1 − s2 − 1)2
ζ(2s2 − 2)

ζ(2s2 − 1)
j (l),
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where li = v(ci ) for each i. Hence, if

i1(l) = j (l)− x2y4 j (l − (1, 0, 0, 0))− x4y6 j (l − (0, 1, 1, 1))+ x6y10 j (l − (1, 1, 1, 1)),

then

I1(s; c1, . . . , c6) = ζ(s1 − s2 − 2)2ζ(s1 + s2 − 4)2ζ(2s2 − 2)i1(n1, n2, n3, n4)

ζ(s1 − s2)ζ(s1 − s2 − 1)ζ(s1 + s2 − 2)ζ(s1 + s2 − 3)ζ(2s2)
,

for all c1, . . . , c6 satisfying the conditions of Lemma 6.3. Consequently,

II2. f
◦
s (
˜δ(t)) = ζ(s1 − s2 − 2)2ζ(s1 + s2 − 4)2ζ(2s2 − 2)i(A, B,C, D)

ζ(s1 − s2)ζ(s1 − s2 − 1)ζ(s1 + s2 − 2)ζ(s1 + s2 − 3)ζ(2s2)
,

where A = v(tβ1 ), B = v(tβ4), C = v(t−β6), and D = v(t−β3) and i is defined
piecewise in terms of i1 according to the seven cases from (34). It is convenient to use
an alternate parametrization. Let i i(m1,m2,m3,m4) equal

i

(

m1 − −m2 + m3 + m4

2
,
m2 + m3 − m4

2
,
m2 − m3 + m4

2
,
−m2 + m3 + m4

2

)

x2m1+m2 y2m1+m2+m4 (38)

if m2 + m3 + m4 is even and zero otherwise. Then

νs(t)II2. f
◦
s (
˜δ(t)) = ζ(s1 − s2 − 2)2ζ(s1 + s2 − 4)2ζ(2s2 − 2)i i(m)

ζ(s1 − s2)ζ(s1 − s2 − 1)ζ(s1 + s2 − 2)ζ(s1 + s2 − 3)ζ(2s2)
,

where now mi = v(tαi ) for i = 1, 2, 3, 4. Let [m1,m2;m3;m4] or [m] denote the
trace of the irreducible representation of L(CQ/Z) := Sp4 × SL2 × SL2 on which
Sp4 acts with highest weight m1�1 + m2�2, the first SL2 acts with highest weight
m3, and the second SL2 acts with highest weight m4. Then

δ
− 1

2
B (t)Wπ (t) = [m2,m1;m3;m4](τπ ),

where τπ is the semisimple conjugacy class in L(CQ/Z) attached to π. Note the
reversal of order between 1 and 2. The reason for this is that when GSp4 is identified
with its own dual group, the standard numberings for the two dualGSp4’s are opposite
to one another. For example the coroot attached to the short simple root α1 is the long
simple coroot, which makes it the long simple root of the dual group.

Now, let Z2(x, y) = (1 − y2)(1 − x2y2)2(1 − x2y4)2. Then j (n) is divisible
by Z2 for any n. Also, for � the character of a finite dimensional representations of
L(CQ/Z), let L(u, �) = ∑∞i=0 uk Tr symk(�), Then Theorem 6.1 is reduced to the
following identity of power series over representation ring of L(CQ/Z):
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1

Z2(x, y)

∑

m∈Z4≥0

i i(m2,m1,m3,m4)[m] = Z3(x, y)L(xy, [1, 0; 1; 0])L(xy2, [1, 0; 0; 1]),

(39)
where Z3(x, y) = (1− x2y2)(1− x2y4)(1− x4y6).

Define polynomials Pm(u, v) by

L(u, [1, 0; 1; 0])L(v, [1, 0; 0; 1]) =
∑

m∈Z4≥0

Pm(u, v)[m].

Then (39) is equivalent to the family of identities of polynomials,

(1− y2)(1− x2y2)3(1− x2y4)3(1− x4y6)Pm(xy, xy
2)

= i i(m2,m1,m3,m4) (∀m ∈ Z
4≥0),

or to the identity of power series over a polynomial ring:

∑

m∈Z4≥0

i i(m2,m1,m3,m4)t
m1
1 tm2

2 tm3
3 tm4

4 = Z4(x, y)
∑

m∈Z4≥0

Pm(xy, xy
2)tm1

1 tm2
2 tm3

3 tm4
4

= Z4(x, y)
ν(x, y, t)

δ(x, y, t)
,

(40)
where ν and δ are defined as in Proposition 4.4, and Z4 = Z2Z3.

The identity (40) can be proved as follows. Let X = (X1, X2, X3, X4) and Y =
(Y1,Y2,Y3,Y4) be quadruples of indeterminates. Define polynomials,

j
1
(x, y, X,Y ) := 1− x2y2X2

4Y
2
4 − y2Y 2

1 − x2y8X2
1X

2
4Y

4
1 Y

4
4 + x2y6X2

4Y
2
1 Y

4
4

+ x4y6X2
1X

2
4Y

4
1 Y

2
4

j
2
(x, y, X, Y ) = (1− x2y4X2

2Y
4
2 ); j

3
(x, y, X, Y ) = (1− x2y2X2

3Y
2
3 ); j = j

1
j
2
j
3
,

so that for k = (k1, . . . , k4) ∈ Z
4≥0, the polynomial j (k) is equal to j(x, y, xk , yk),

where xk := (xk1 , . . . , xk4) and yk := (yk1 , . . . , yk4). Likewise, one computes a
polynomial i1(x, y, X,Y ) such that i1(k) = i1(x, y, x

k , yk). It can be expressed as
a sum of 12 monomials in X and Y, each with a coefficient which is a polynomial
in x and y. Thus i1(k) = ∑12

i=1 ci (x, y)
∏4

j=1(μi, j (x, y))ki , for some polynomials
c1, . . . , c12 and monomials μ1,1 . . . , μ12,4 in x and y. Now,

∑

m∈Z4≥0

i i(m2,m1,m3,m4)t
m1
1 tm2

2 tm3
3 tm4

4

=
∑

A,B,C,D∈Z
A+D,B+C,B+D,C+D≥0i(A, B,C, D)x

2A+B+C+2D y2A+B+2C+3Dt B+C1 t A+D2 t B+D3 tC+D4 .
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This is a sum of seven subsums corresponding to the seven cases which appear in (34).
The simplest of these is

∑

A,B,C,D≥0
i1(A, B,C, D)x

2A+B+C+2D y2A+B+2C+3Dt B+C1 t A+D2 t B+D3 tC+D4

=
12
∑

i=1

ci (x, y)

(1− μi,1(x, y)t2x2y2)(1− μi,2(x, y)t1t3xy)(1− μi,3(x, y)t1t4xy2)(1− μi,4(x, y)t2t3t4x2y3).

In each of the other six sums one can make a substitution to obtain a similar, fourfold
sum of A′, B ′,C ′, D′ from 0 to infinity. For example, in the second case listed (34),
one has the conditions A, B,C ≥ −D ≥ 1. Substituting A′ = A+ D, B ′ = B + D,
C ′ = C + D, and D′ = −D − 1, yields

∞
∑

A′,B′,C ′,D′=0
i1(A

′, B ′,C ′, 0)t B
′+C ′+2D′+2

1 t A
′

2 t B
′

3 tC
′

4 x2A
′+B′+C ′+4D′+4y2A′+B′+2C ′+6D′+6

=
12
∑

i=1

ci (x, y)x4y6t21
(1− μi,1(x, y)t2x2y2)(1− μi,2(x, y)t1t3xy)(1− μi,3(x, y)t1t4xy2)(1− t21 x

4y6)

The other five subsums are treated similarly. Totaling up the resulting rational functions
and simplifying gives (40), completing the proof of theorem.

7 Local zeta integrals II

In this section we continue our study of the local zeta integral I (W, f, φ; s) at the
ramified places.

7.1 Convergence

In this section, we prove the convergence of local zeta integrals

Theorem 7.1 Take W ∈ WψN (π), f ∈ Flat(χ) and φ ∈ S(Mat4×2). Then the local
zeta integral I (W, f, φ; s) converges forRe(s1−s2) andRe(s2) both sufficiently large.
Proof We need to show that convergence of I3(W, f ; s) defined in (31), for W ∈
WψN (π) and f a smooth section of the family of induced representations IndGP (χ; s).
To do this, we simply bound fχ;s by a constant times the spherical section f ◦Re(s),
where Re(s) ∈ R

2 is the real part of s. Then II2. fχ;s(˜δ(t)) is bounded by a constant
multiple of M(w−12 w−11 ,Re(s)). f ◦Re(s)(w3˜δ(t)),where M(w−12 w−11 ,Re(s)) is a stan-

dard intertwining operator. The unramified character (χ0;Re(s))δ−1BG
may be identified

with an element ς of X (TG) ⊗Z R. The integral defining the standard intertwining
operator converges provided the canonical pairing 〈ς, α∨〉 is positive for all positive
roots α with w−12 w−11 α < 0. Inspecting this set of roots, one finds it is convergent
provided Re(s2) > 1,Re(s1 − s2) > 2, and Re(s1 + s2) > 5.Moreover, it converges
to a section of the representation induced (via normalized induction) from ςw1w2 .

Next, we need to understand the dependence of M(w1w2,Re(s)). f ◦Re(s)(w3˜δ(t))

on T . In order to do this, we write w3˜δ(t) as ν̃(t )̃τ (t )̃κ(t) where ν̃(t) ∈ U, τ̃ (t) ∈ TG
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and κ̃(t) varies in a compact set. It is convenient to do so using the basic algebraic
substitution

(

1 0
r 1

)

=
(

r−1 1
0 r

)(

0 −1
1 r−1

)

, (41)

which corresponds to the Iwasawa decomposition if F is nonarchimedean, but remains
valid in the Archimedean case as well.

Recall that˜δ(t) is the product of x37(−b), x36(−c) and x25(−d)x48(−a)x29(ad),
which all commute with one another. We can partition T into 16 subsets and use the
identity (41) to obtain a uniform expression for τ̃ (t) on each subset, and compute
ςw1w2δ

1/2
BG

(̃τ (t)) in each case, obtaining

{

1, |b| ≤ 1,
|b|−2u1 , |b| > 1

}

×
{

1, |c| ≤ 1,
|c|−2u2 , |c| > 1

}

×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, |a|, |d| ≤ 1,
|d|−2u2 , |a| ≤ 1, |d| > 1,
|a|−2u1, |a| > 1, |ad| ≤ 1,
|a|−2u1−u2 |d|−2u2 , |a| > 1, |ad| > 1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

where u1 := Re( s1−s2−22 ), u2 := Re( s1+s2−42 ).Note that most these contributions are
already visible in (34).Moreover, as in (37) we have |νs(t)| = |a|2u1 |b|u1 |c|u2 |d|u1+u2

Next, we consider the quantity W (t)δ−1/2B (t) which appears in the integral (31).
Using [4] or [26] in the nonarchimedean case, or [35], and [30] as explicated in [31]
and [32] in the archimedean case, we have

W (t)δ−1/2B (t) =
∑

x∈Xπ

�x (ad, bc, bd, cd)x(t), (42)

where Xπ is a finite set of finite functions depending on the representation π, and�x

is a Bruhat-Schwartz function F4→ C for each x .
Thus we obtain a sum of integrals of the form

∫

D
�(ad, bc, bd, cd)x(t)|a|k1u1+l1u2 |b|k2u1+l2u2 |c|k3u1+l3u2 |d|k4u1+l4u2 dt, (43)

where D is one of our 16 subsets, k1, . . . , k4 and l1, . . . , l4 are explicit integers depend-
ing only on D, � is a Bruhat-Schwartz function F4→ R, and x is a real-valued finite
function Z\T → R.

Now, for each of the seven cases which appear in (34), make a change of vari-
ables, as in the unramified case so that |a|k1u1+l1u2 |b|k2u1+l2u2 |c|k3u1+l3u2 |d|k4u1+l4u2
is expressed as powers of the absolute values of the new variables. For exam-
ple, when |d| > 1 and |a|, |b|, |c| ≤ 1, we have |νs(t)||d|−Re(s1)−Re(s2)+4 =
|a|2u1 |b|u1 |c|u2 |d|u1−u2 , and substitute a′ = ad, b′ = bd, c′ = cd and d ′ = d−1.
After the substitution, each exponent is a nontrivial non-negative linear combination
of u1 and u2.Also |d ′| is bounded, andwe have�(a′, b′c′(d ′)2, b′, c′),which provides
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convergence as |a′|, |b′| or |c′| → ∞. It follows that the integral converges provided
u1 and u2 are sufficiently large, relative to the finite function x .

As a second example, we consider the case |a|, |c| > 1, |b|, |d| ≤ 1. In this case,
we make the change of variables b′ = bc, d ′ = acd, a′ = a−1, c′ = c−1. We obtain
the integral

∫

|a′|<1,|c′|<1,|b′c′|≤1,|a′c′d ′|≤1
�(c′d ′, b′, a′b′(c′)2d ′, a′d ′)x(t)|a′|u1+u2 |b′|u1 |c′|2u1+2u2 |d ′|u1+u2 da′ db′ dc′ dd ′,

assuming that u1 and u2 are positive and sufficiently large (depending on x), the inte-
grals on a′ and c′ are convergent due to the domain of integration, and the integrals on
b′ and d ′ are convergent from the decay of�. Indeed,�(c′d ′, b′, a′d ′, a′(b′)2c′d ′)�
|a′b′c′(d ′)2|−N for any positive integer N because � is Bruhat-Schwartz, and then
|a′b′c′(d ′)2|−N ≤ |b′d ′|−N on the domain D. The other five cases appearing in (34)
are handled similarly.

The nine cases which do not appear in (34) are easier. For example suppose that
|c| and |d| are both >1 while |a| and |b| are both ≤ 1. Then the exponents of |a|
and |b| are the same as in νs(t), i.e., they are 2u1 and u1 respectively. This gives
convergence of the integrals on a and b when Re(u1) is sufficiently large (relative
to x). The integrals on |c| and |d| converge because of the rapid decay of � in cd.
The other eight cases are treated similarly, completing the proof of the convergence
of I1(W, f, φ; s). Now consider I1(R(k).W, R(k). f, ωψ(k).φ; s). Each bound used
in the analysis of I1 can be made uniform as k varies in the compact set k. Hence
I1(R(k).W, R(k). f, ωψ(k).φ; s) varies continuously with k so its integral is again
absolutely convergent. ��

7.2 Continuation to a slightly larger domain

In this section, we prove that the local zeta integral I (W, f, φ; s) extends analytically
to a domain that includes the point s1 = 5, s2 = 1. This point is of particular interest
for global reasons. We keep the notation from the previous section. There are two
issues. The first is related to the convergence of the integral II2. fχ;s . As we have
seen, this integral is not absolutely convergent at (5, 1).We must show that it extends
holomorphically to a domain containing (5, 1). Then we need to prove convergence of
the integral over Z\T . The domain of absolute convergence for this integral depends
on the exponents of the representation π. To make this precise, we use terminology
and notation from [2], Sect. 3.1.

Proposition 7.2 Suppose that� satisfies H(θ4) and that τ1 and τ2 satisfy H(θ2) (as
in [2], section 3.1). Then for any ε > 0, the local zeta integral I (W, f, φ; s) extends
holomorphically to all s ∈ C

2 satisfying Re(s1 − s2) ≥ max(2θ4 + 2θ2 + 2, 3) +
ε, Re(s1 + s2) ≥ 5+ ε, Re(s2) ≥ 1

2 + ε, Re(s1 + 2s2) ≥ 2θ2 + 1.

Proof We first need to extend II2. fχ;s beyond its domain of absolute convergence.
It suffices to do this for flat K -finite sections, even though the convolution sections
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encountered in Sect. 5.2 are not, in general, flat of K -finite. Indeed, the integral oper-
ator II2 commutes with the convolution operators considered in 5.2. Moreover, these
operators are rapidly convergent, and hence preserve holomorphy.

As we have seen in the unramified computation II2 can be expressed II3 ◦
M(w−11 , χ; s), where II3 is an operator defined on IndGBG

((χ; s)δ−1/2BG
)w1 by the

u2 integral in (32). Then, M(w−11 , χ; s) is absolutely convergent for Re(s2) >
1
2 ,Re(s1 − s2) > 1,Re(s1 + s2 − 3) > 3. If we insert absolute values into the
integral which defines II3, we obtain a standard intertwining operator attached to
w−12 . We may write is as a composite of rank one intertwining operators attached to
{α > 0 : w−12 α < 0}. The rank one operator attached to α is absolutely convergent
provided that 〈α∨, ςw1〉 is positive. Running through the eight relevant roots, we find
that only one rank one operator diverges at (5, 1). It is attached to the simple root α3
which satisfies 〈α∨, ςw1〉 = 2Re(s2)− 2.

Thus, we only need to improve our treatment of the integral over a single one-
parameter unipotent subgroup. Thus, we consider

∫

F
f w1
χ;s(w[3]x34(r)g)ψ(c4r) dr, (44)

where c4 ∈ F and f w1
χ;s is a section of the family IndGBG

((χ; s)δ−1/2BG
)w1 , s ∈ C

2.

Notice that (44) may be regarded as a Jacquet integral for the rank-one Levi attached
to the simple root α3. By [21], this extends to an entire function of s when f w1

χ;s is flat.
If we apply it to the output of M(w−11 , χ; s), then it has no poles other than those of
M(w−11 , χ; s).Nowwe use again the fact that the asymptotics of aWhittaker function,
are controlled by the exponents of the relevant representation. This time we apply it to
the induced representation of our rank one Levi. For most values of s, the exponents
are ((χ; s)δ−1/2BG

)w1 and ((χ; s)δ−1/2BG
)w1w[3] and the Whittaker function is bounded in

absolute value by a linear combination of spherical vectors.
On the line s2 = 1, this may fail: if ((χ; s)δ−1/2BG

)w1 = ((χ; s)δ−1/2BG
)w1w[3], then an

extra log factor appears in the asymptotics of the Whittaker function (cf. [17], 6.8.11,
for example). Bounding log |x | by |x |−ε with ε > 0 as x → 0, in this case, we again
bound the integral (44) by a sum of spherical sections. In fact, the extra |x |ε may be
safely ignored, since we obtain convergence for s in an open set and ε > 0 can be
taken arbitrarily small. Thus, ifw2 = w[3]w′2, then II2. fχ;s extends holomorphically
to the domain where the standard intertwining operator attached to w′2 converges on
both f ◦Re(s),w1

, and f ◦Re(s),w1w[3]. Inspecting {α > 0 : (w′2)−1α < 0}, we see that this
means Re(2s2 − 1),Re(s1 − s2 − 3) and Re(s1 + s2 − 5) must all be positive. As a
side effect, we find that |II2. fχ;s(g)| is bounded by a suitable linear combination of
M(w−12 w−11 ,Re(s)). f ◦Re(s) and M((w′2)−1w

−1
1 ,Re(s)). f ◦Re(s).

As before, we obtain a sum of integrals of the form (43) where now the integers
k1, . . . , k4 and l1, . . . , l4 depend on the choice of domain D and on a choice of between
w2 and w′2.

In order to obtain a precise domain of convergence, we need information about the
finite function x . Firstly, since we have taken absolute values and assumed unitary
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central character, it factors through the map t �→ (|ad|, |bc|, |bd|, |cd|). We may
assume that x is given in terms of real powers of the coordinates and non-negative
integral powers of their logarithms, since such functions span the space of real-valued
finite functions. Since a power of log ymay be bounded by an arbitrarily small positive
(resp. negative) power of y as y → ∞ (resp. 0), for purposes of determining the
domain of convergence, we may assume that there are no logarithms. Thus we may
assume x(t) = |ad|ρ1 |bc|ρ2 |bd|ρ3 |cd|ρ4 with ρ1, ρ2, ρ3, ρ4 ∈ R. The quadruples
(ρ1, ρ2, ρ3, ρ4)which appear are governed by the exponents of π, by [4] or [26] in the
nonarchimedean case, and [35], [30] (see also [32]) in the archimedean case. Hence
they are bounded in absolute value by max(θ2, θ4), by the definition of H(θ2) and
H(θ4) in [2] and the bound on exponents of tempered representations found in [30],
Theorem 15.2.2 in the archimedean case, or [34] in the nonarchimedean case, we see
that |ρ1|, |ρ2| ≤ θ4, |ρ3|, |ρ4| ≤ θ1.

What remains is a careful case-by-case analysis along the same lines as the proof
of convergence. For each choice of D, after a suitable change of variables we have an
integral which is convergent provided u1 and u2 are sufficiently large, and “sufficiently
large” is given explicitly in terms of ρ1, . . . , ρ4.

For example, the above integral corresponding to the case |a|, |c| > 1 and |b|, |d| ≤
1 will now feature a Schwartz function integrated against

|c′d ′|ρ1 |b′|ρ2 |a′b′(c′)2d ′|ρ3 |a′d ′|ρ4 |a′|u1+u2 |b′|u1 |c′|2u1+2u2 |d ′|u1+u2 ,

and so will converge provided u1+ u2+ ρ3+ ρ4, u1+ ρ2+ ρ3, 2u1+ ρ1+ 2ρ2, and
u1 + u2 + ρ1 + ρ3 + ρ4 are all positive. ��

7.3 Meromorphic continuation and nonvanishing

WriteU−P for the unipotent radical of the parabolic opposite P. Notice that PU−P w is
a Zariski open subset of GSO12.We say that f ∈ Flat(χ) is simple if it is supported
on PK1 where K1 is a compact subset of U−P w.
Proposition 7.3 Suppose that f is simple. Then I (W, f, φ; s) has meromorphic con-
tinuation to C

2 for each φ ∈ S(Mat4×2) and each W ∈ WψN (π) Moreover, if s0 is
an element of C

2, then there exist W, f and φ such that I (W, f, φ; s0) �= 0.

Proof We begin with some formal manipulations which are valid over any local field.
The process requiresmany of the same subgroups whichwere defined during the Proof
of Theorem 3.1, and we freely use notation from that section.

I (W, f, φ; s) =
∫

ZU4\CQ

∫

Uw
Q \UQ

∫

Mat1×2
W (g) f (wug, s)[ωψ(ug).φ]

⎛

⎝

r
I2
0

⎞

⎠ ψ

(

r ·
[

1
0

])

dr du dg.

Define U1(a, b, c) as in (23). Then

[ωψ(ug).φ]
⎛

⎝

r
I2
0

⎞

⎠ = [ωψ(U1(r1, r2, c)ug).φ](�0),
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(for any c) where �0 :=
⎛

⎝

0
I2
0

⎞

⎠ and r = (r1 r2). Also W (U1(r1, r2, c)g) =

ψ(r1)W (g) = ψ

(

r ·
[

1
0

])

W (g). Hence

I (W, f, φ; s) =
∫

ZU5\CQ

∫

Uw
Q \UQ

W (g) f (wug, s)[ωψ(ug).φ](�0)du dg,

where U5 is the product of U6,U2 and the center Z(U1) of U1. ��
Recall that Cw

Q is a standard parabolic subgroup of CQ . Let U (Cw
Q)
− denote the

unipotent radical of the opposite parabolic. Then Cw
Q · U (Cw

Q)
− is a subset of full

measure in CQ and we can factor the Haar measure on CQ as the product of (suitably
normalized) left Haar measure on Cw

Q and Haar measure on U (Cw
Q)
−. Hence

I (W, f, φ; s)
=
∫

ZU5\Cw
Q

∫

U (Cw
Q)
−

∫

Uw
Q \UQ

W (gu1) f (wugu1, s)[ωψ(ugu1).φ](�0)du du1 d�g

Conjugating g across u,making a change of variables, and making use of the equivari-
ance of f yields

I (W, f, φ; s) =
∫

U (Cw
Q)
−

∫

Uw
Q \UQ

J (R(u1).W, ωψ(uu1).φ; s) f (wuu1, s) du du1.

where

J (W, φ, s) =
∫

ZU5\Cw
Q

W (g)[ωψ(g).φ](�0) Jac1(g)(χ; s)(wgw−1) d�g.

with Jac1(g) being the Jacobian of the change of variables in u. Now conjugation
by w maps Uw

Q\UQ × U (Cw
Q) isomorphically onto the unipotent radical U−P of the

parabolic opposite P. Hence, if � is any smooth compactly supported function on
Uw

Q\UQ ×U (Cw
Q)
−, then there is a flat section f such that f (wuu1, s0) = �(u, u1).

Weclaim that the integral J (W, φ; s) converges providedRe(s1−s2) andRe(s2) are
both sufficiently large, and that J (R(u1).W, ωψ(uu1).φ; s) extends meromorphically
to C

2 and is a continuous function of uu1 away from the poles. Granted this claim,
is clear that if the integral of J (R(u1).W, ωψ(uu1).φ; s0) against the arbitrary test
function f (wuu1, s0) is always zero, then J (W, φ; s0) is zero for all W and φ.

Now, Cw
Q = (P1 × P2)◦ is the intersection of CQ with the product of the Klingen

parabolic P1 of GSp4 and the Siegel parabolic P2 of GSO4. Let C ′ = (P1 × M2)
◦

denote the subgroup of elements whose GSO4 component lies in the Levi, and let
U ′5 = C ′ ∩U5 = U6Z(U1). ThenC ′ surjects onto ZU5\Cw

Q,which is thus canonically
identified with ZU ′5\C ′. Expressing the measure on Cw

Q in terms of Haar measures
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on U1,U2 and (M1 × M2)
◦, and then identifying Z(U1)\U1 with Mat2×1(F) via the

map ū1(
[

r1 r2
]

) = U1(r1, r2, 0), yields the following expression for J (W, φ; s):
∫

Mat1×2

∫

(M1×M2)
◦
W (ū1(r)m)[ωψ(ū1(r)m).φ](�0) Jac1(m)(χ; s)(wmw−1) δ−1Cw

Q
(m)dm dr, (45)

where δCw
Q
, is the modular quasicharacter.

Now, elements of C ′ map under j into the Siegel Levi of Sp16. So that

[ωψ ◦ j (c′).φ](ξ) = | det c′| 12φ(ξ · c′),

where · is the rational right action of C ′ on Mat4×2 by

ξ · m1
Q(g1, g2) = g−11 ξg2.

[withm1
Q as in (4)]. The stabilizer of thematrix�0 is precisely the groupM5 introduced

in the Proof of Theorem 3.1.
In (45), conjugate m across ū1(r),make a change of variables in r, and let Jac2(m)

denote the Jacobian. Define

μs(m) = (χ; s)(wmw−1)δ−1Cw
Q
(m)| detm| 12 Jac1(m) Jac2(m).

Then replace m by m5m′5(g) where m5 ∈ M5 and m′5(g) = m(1, I2, g), [with m as in
(21)]. Observe that

�0 · m5m
′
5(g)ū1(r) =

⎛

⎝

r · g
g
0

⎞

⎠ .

Hence if x(g, r) = m′5(g)ū1(rg−1), then

J (W, φ; s) =
∫

Mat1×2

∫

GL2

J ′(R(x(g, r)).W, s)φ

⎛

⎝

r
g
0

⎞

⎠μs(m
′
5(g))| det g|−1 dg dr,

(46)

where J ′(W, s) :=
∫

ZU6\M5

W (m5)μs(m5) dm5. (47)

Direct computation shows that μs(m′5(g)) = | det g|s2χ2(det g).
Write M5 = U6T5K5, where T5 = T ∩ M5 and K5 is the maximal compact

subgroup of the GL2 factor. Then

J ′(W, s) :=
∫

K5

∫

Z\T5
W (tk)μs(t)δ

−1
B5
(t)
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where δB5 is the modular quasicharacter of the standard Borel subgroup B5 of M5.

Set t ′6(a) = diag(a, 1, 1, a−1, 1, 1, 1, 1, a, 1, 1, a−1), and write t ∈ T5 as t6t ′6(a) for
t6 ∈ T6 and a ∈ F×. Then

J ′(W, s) =
∫

K5

∫

F×
J ′′(R(t ′6(a)k).W, s)μs(t

′
6(a)) dt,

where J ′′(W, s) =
∫

Z\T6
W (t6)μs(t6)δ

−1
B5
(t6) dt6.

Observe that J ′(W, s) may be written formally as

∫

M6\M5

J ′′(R(g1).W, s)μs(g1)dg1.

Also, direct computation shows that μs(t ′6(a)) = |a|s1−s2−4χ1(a)/χ2(a).
For φ1 a smooth function of compact support F2 → C let

[φ1 ∗1 W ](g) =
∫

F2
W (gU1(r1, r2, 0))φ(r1, r2) dr.

Observe that

[φ1 ∗1 W ](M5(t, g3)) = W (M5(t, g3))̂φ1(g
−1
3 ·

[

1
0

]

t det g3).

Thus, by replacing W by φ1 ∗1 W (which is justified by [5]) we may introduce what
amounts to an arbitrary test function on M6\M5. Hence

J ′(W, s0) = 0∀W ⇐⇒ J ′′(W, s0) = 0∀s0.

Similarly, if

[φ2 ∗2 W ](g) :=
∫

U6

W (gu6)φ2(u6) du6, φ2 ∈ C∞c (U6),

then J ′′(φ2 ∗2 W, s0) = 0∀φ2 ∈ C∞c (U6) if and only if W vanishes identically on T6.
In particular, if J ′′(W, s0) vanishes identically on WψN (π), then WψN (π) is trivial–
a contradiction.

This completes the formal arguments for Proposition 7.3. It remains to check the
convergence and continuity statements made above. These will be proved based on
facts about asymptotics of Whittaker functions and the Mellin transform

Zξ,n .�(u) =
∫

F×
�(x)ξ(x)(log |x |)n|x |u d×x, (48)
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where � ∈ S(F), ξ : F× → C, a character, n ≥ 0 ∈ Z, u ∈ C. We recall some
properties.

Proposition 7.4 Fix a character ξ and a non-negative integer n.

(1) There is a real number c depending on ξ such that the integral defining Zξ,n .�
converges absolutely and uniformly on {u ∈ C : Re(u) ≥ c + ε} for all ε > 0
and all � ∈ S(F).

(2) There is a discrete subset Sξ of C such that Zξ,n .� extends meromorphically to
all of C with poles only at points in Sξ . Moreover, there is an integer oξ,n such
that no pole of Zξ,n .� has order exceeding oξ,n, for any �.

(3) If F is archimedean, then Zξ,n .� = Q�(qu) for some rational function Q.
(4) We have

Zξ,n+1.�(u) = d

du
Zξ,n .�(u). (49)

Proof If n = 0 then the first three parts are proved in [33]. Convergence for n > 0 is
straightforward, since log |x | grows slower than any positive power of |x | at infinity,
and slower than any negative power as |x | → 0.Equation (49) is clear in the domain of
convergence, and follows elsewhere by continuation. The first three parts for general
n then follow. ��

Next, we need a version of the expansion (42). Specifically, if we replace W (t) by
W (tk) then each�x in (42) will be in S(F4× K ) (see [31], especially the remark on
p. 20).

Let us now consider the convergence issues raised by our formal computations
more carefully. Recall that I (W, f, φ; s) was initially expressed as an integral over
Uw

Q\UQ×ZU5\CQ . In the course of our arguments, we have expressed it as an iterated
integral over

(Uw
Q\UQ ×U (Cw

Q)
−)× (F2 × GL2)× (F× × K5)× Z\T6.

In order to perform the integration on Z\T6 we may identify with with {t̄6(a) =
diag(1, 1, a−1, a−1, 1, a−1, 1, a−1, 1, 1, a−1, a−1), a ∈ F×}. Then μs(t̄6(a)) =
|a| s1−s22 −2 χ2

1χ2
χ3

(a).
Now, the integral J ′′(W, s) is theMellin transform taken along the one dimensional

torus we use to parametrize Z\T6. Its convergence and analytic continuation follow
directly from Proposition 7.4 and (42). Now consider J ′′(R(t ′6(a)k).W, s) with a ∈
F×, k ∈ K5. We claim that it is smooth and of rapid decay in a. In the domain of
absolute convergence, this is easily seen. For s outside of the domain of convergence,
we use (49) to pass to the Mellin transform of a suitable derivative at a point inside
the domain of convergence. To get J ′(W, s)we integrate k over the compact set k and
take another Mellin transform in the variable a. This of course converges absolutely,
and by similar reasoning, we see that J ′(R(x(g, r).W ), s) is smooth. Now, set g equal

to

(

t1 b
0 t2

)

k and consider the integral
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∫

Mat1×2

∫

F×

∫

F×

∫

F

∫

KGL2

J ′(R(x(g, r)).W, s)φ

⎛

⎝

r
g
0

⎞

⎠χ2(t1t2)|t1|s4 |t2|s5 dk db dr d×t1 d×t2,

where s4 and s5 are two more complex variables, and KGL2 is the standard maximal
compact subgroup of GL2. The integrals on k, r and b converge absolutely and uni-
formly because KGL2 is compact and φ is Schwartz-Bruhat. The integrals on t1 and t2
take two more Mellin transforms, yielding a meromorphic function of four complex
variables. The restriction to a suitable two-dimensional subspace of C

4 is J (W, φ, s).
Moreover, J (R(u1).W, ωψ(uu1).φ, s) remains continuous in u1 ∈ U (Cw

Q)
− and

u ∈ Uw
Q\UQ, which completes the proof.

8 Global identity

We now return to the global situation. Thus F is again a number field with adele
ring A, while and ψN , and Flat(χ), are defined as in Sects. 3 and 2, respectively. In
addition, let π = ⊗vπv be an irreducible, globally ψN -generic cuspidal automorphic
representation of GSp4(A) × GSO4(A), with normalized central character ωπ, and
ϕ be a cusp form from the space of π, etc.

For r a representation of LG define L(u, π, r × η) to be the twisted L function.
Thus at an unramified place v the local factor is

Lv(u, πv, r × ηv) = det(I − q−uηv(wv)r(τπv ))
−1,

where wv is a uniformizer, qv is the cardinality of the residue class field, τπv is the
semisimple conjugacy class attached to πv, and ηv is the local component of η at v.

Theorem 8.1 Suppose that fχ = ∏v fχv ∈ Flat(χ), φ = ∏v φv ∈ S(Mat4×2(A))
and Wϕ =∏v Wv (the Whittaker function of π as in Theorem 3.1 are factorizable. Let
I ( fχv;s,Wv, φv) be the local zeta integral, defined as in (28), and let S be a finite set
of places v and all data is unramified for all v /∈ S. Then for Re(s1 − s2) and Re(s2)
both sufficiently large, the global integral I ( fχ;s, ϕ, φ), defined as in (7), is equal to

LS
(

s1−s2
2 − 1, π, St∨GSp4

⊗ St
GL(1)2

× χ3
χ1χ

2
2

)

LS
(

s1+s2
2 − 2, π, St∨GSp4

⊗ St
GL(2)2

× χ3
χ1χ2

)

NS(s, χ)

times

∏

v∈S
I ( fχv ,Wv, φv),

where N S(s, χ) is the product of partial zeta functions corresponding to (33)
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Remark 8.2 Let η1 and η2 be any two characters of F×\A×. Fix π and let ωπ be its
central character. Then the system

χ3
1χ

3
2

χ2
3

= ωπ,
χ3

χ1χ
2
2

= η1,
χ3

χ1χ2
= η2

has a unique solution. If η1 = η2 is trivial, then it is given by χ1 = χ3 = ωπ and
χ2 ≡ 1.

Proof It follows from Theorem 6.1 the bound obtained in [25] that for any cus-
pidal representation π = ⊗vπv of GSp4(A) × GSO4(A) the infinite product
∏

v∈S I ( fχv ,Wv, φv) is convergent for Re(s1 − s2) and Re(s2) sufficiently large. It
then follows from Theorem 3.1, and the basic results on integration over restricted
direct products presented in [33] that

I ( fχ;s, ϕ, φ) =
∏

v

I ( fχv;s,Wv, φv),

which, in conjunction with Theorem 6.1 again gives the result. ��
Corollary 8.3 Let πv be the local constituent at v of a cuspidal representation π.

Then the local zeta integral Iv(Wv, fv, φv; s) has meromorphic continuation to C
2

for any Wv, fv and φv.

Proof This follows from a globalization argument. We create a section of the global
induced representation which is f at one place and simple at every other place. Mero-
morphic continuation of the global zeta integral follows from that of the Eisenstein
series. Having shown meromorphic continuation at every other place in Proposition
7.3, we deduce it at the last place. ��

9 Application

In this section we give an application relating periods, poles of L functions, and
functorial lifting. The connection between L functions and functorial lifting in this
case was obtained in [2].

Let� be a globally generic cuspidal automorphic representation of GSp4, and let
τ1 and τ2 be two cuspidal automorphic representations ofGL2.Assume that�, τ1 and
τ2 have the same central character. Then τ1⊗τ2 may be regarded as a representation of
GSO4 via the realization of GSO4 as a quotient of GL2 × GL2 discussed in Sect. 6,
and when � ⊗ τ1 ⊗ τ2 is restricted to the group CQ (which we identify CQ with
subgroup of GSp4 × GSO4 as in Sect. 2 its central character is trivial.

Now take s1 and s2 to be two complex numbers. Let χ1 = χ2 = χ3 be trivial.
Consider the space Flat(χ) of flat sections as in Sect. 2. Its elements are functions
C
3 × G(A) → C, but we regard each as a function C

2 × G(A) → C by pulling it
back through the function (s1, s2) �→ (s1, s2,

3s1+3s2
2 ). Then Theorem 8.1 relates the

global integral (7) with the product of L functions
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LS
(

s1 − s2 − 2

2
,˜�× τ1

)

LS
(

s1 + s2 − 4

2
,˜�× τ2

)

.

For f ∈ Flat(χ), let

r( f, g) = Ress1−s2=4 Ress1+s2=6 E( fχ;s, g)

be the iterated residue of the Eisenstein series along the plane s1 + s2 = 6 and then
the plane s1 − s2 = 4. (It follows from Theorem 8.1 and Proposition 7.3 that this
residue is nonzero. It can also be checked directly.) As f varies we obtain a residual
automorphic representationwhichwedenoteR.Given r ∈ R andφ ∈ S(Mat4×2(A)),
we define the Fourier coefficient r θ(φ) exactly as in 6. Varying r and φ we obtain a
space of smooth, K -finite functions of moderate growth Z(A)CQ(F)\CQ(A)→ C.

We denote this space FC(R).Write V� for the space of the representation� and Vτ
for that of τ. Then, define the period P : V� × Vτ × FC(R)→ C, by the formula

P(ϕ�, ϕτ , r θ(φ)) =
∫

Z\CQ

r θ(φ)(g)ϕ�(g1)ϕτ (g2) dg.

Theorem 9.1 First suppose that τ1 �= τ2. Then the following are equivalent:

(1) LS(s,˜�× τ1) and LS(s,˜�× τ2) have poles at s = 1.
(2) � is the weak lift of τ1 × τ2
(3) the period P does not vanish identically on V� × Vτ × FC(R).

Similarly, if τ1 = τ2, then the following are equivalent:

(1) LS(s,�× τ1) has a pole at s = 1.
(2) ˜� is the weak lift of τ1 × τ ′ for some cuspidal representation τ ′ of GL2(A),

(3) the period P does not vanish identically on V� × Vτ × FC(R).

Proof The relationship between poles and the similitude theta correspondence was
established in [2]. What is new here is the period condition, which follows from our
earlier results. Indeed, for f ∈ Flat(χ), φ ∈ S(Mat4×2(A)) ϕ� ∈ V� and ϕτ ∈ Vτ ,
the period P(ϕ�, ϕτ , R( f )θ(φ)) vanishes if and only if

Ress1−s2=4 Ress1+s2=6 I ( fχ;s, ϕ�, ϕτ , φ) �= 0.

By [2], the local components of � all satisfy H(15/34) and the local components of
τ all satisfy H(1/9). Hence each ramified local zeta integral is holomorphic at (5, 1)
by Proposition 7.2. Moreover, by Proposition 7.3, each ramified local zeta integral is
nonzero at (5, 1) for a suitable choice of data. The result follows. ��
Remark 9.2 Inspecting the various intertwining operatorswhich appear in the constant
term of our Eisenstein series along the Borel, one finds that some have poles along
s1 − s2 = 4 and s1 + s2 = 6 of orders as high as three, as well as simple poles
along s1 = 5 and s2 = 4. However, it follows from Theorem 8.1 and Proposition
7.2 that the global integral can have at most a simple pole along s1 − s2 = 4 and a
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simple pole along s1 + s2 = 6. It follows that any automorphic forms obtained by
considering higher order singularities of the Eisenstein series either do not support our
Fourier–Jacobi coefficient or have the property that their Fourier–Jacobi coefficients,
regarded as smooth functions of moderate growth on CQ(F)\CQ(A), are orthogonal
to cuspforms.

10 A similar integral on GSO18

In this section we consider the global integral (7) in the case n = 3. Our unfolding
does not produce an integral involving the Whittaker functions attached to our cusp
forms, but it does reveal another intriguing connection with the theta correspondence.

As before, the space of double cosets P\GSO18/RQ is represented by elements of
the Weyl group, and

I ( fχ;s, ϕ, φ) =
∑

w∈P\GSO18/RQ

Iw( fχ;s, ϕ, φ), where

Iw( fχ;s , ϕ, φ) =
∫

Cw
Q(F)\CQ(A)

ϕ(g)
∫

Uw
Q (A)\UQ(A)

fχ;s(wu2g)
∫

[Uw
Q ]

θ(φ, u1u2g) du1 du2 dg,

which is zero if ψl
∣

∣

Z(UQ)∩Uw
Q
is nontrivial, or if some parabolic subgroup of CQ

stabilizes the flag 0 ⊂ U
w

Q ⊂ (U
w

Q)
⊥ in UQ/Z(UQ), where U

w

Q is the image of Uw
Q

and (U
w

Q)
⊥ is its perp space relative to the symplectic form defined by composing

l : Z(UQ)→ Ga with the commutator map UQ/Z(UQ)→ Z(UQ).

Lemma 10.1 Let w� denote the longest element of the Weyl group of GSO18, let w1
be the shortest element of (W ∩ P) · w� · (W ∩ Q) and let w2 = w1 · w[32]. Then
Pw2RQ is a Zariski open subset of GSO18.

Proposition 10.2 Iw( fχ;s, ϕ, φ) is zero unless w is in the open double coset.

Proposition 10.3 Let U0 ⊂ CQ be given by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u0(x, x
′) :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 x1 x2 x3 x4 x5
1 0 0 x6 ∗

1 0 0 ∗
1 0 ∗

1 ∗
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 x ′1 x ′4 x7 x8 ∗
1 x ′6 x9 ∗ ∗

1 0 −x9 ∗
1 −x6 ∗

1 −x1
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

: x ∈ G
9
a,

x ′ ∈ G
3
a

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

,
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where entries marked ∗ are determined by symmetry, and for x ∈ A
9 and x ′ ∈ A

3, let

ψU0(u0(x, x
′)) = ψ(x1 + x6 − x ′1 − x ′6 + x9).

Let SLα32 be the copy of SL2 generated by U±α3 , and let R0 be the product of U0
and SLα32 . Let ψR0 be the character of R0 which restricts to ψU0 and to the trivial
character of SLα32 . Let

ϕ
(R0,ψR0 )(c) =

∫

[R0]
ϕ(rc)ψR0 (r) dr =

∫

[U0]

∫

[SLα32 ]
ϕ(uhc)ψU0 (u) dh du, (c ∈ CQ(A)).

Let V4 = {u(x, x ′) : xi = x ′i , i = 1, 4, 6} ⊂ U0, and let

ξ0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∈ Mat6×3(F).

Then

Iw2 ( fχ;s , ϕ, φ) =
∫

Z(A)V4(A)\CQ (A)

ϕ
(R0,ψR0 )(c)

∫

Uw2 (A)\U (A)

fχ;s (w2uc)
[

ωψ(uc).φ
]

(ξ0) du dc.

Remark 10.4 It was shown in [15] that the period we obtain in theGSp6 characterizes
the image of the theta lift from SO6 to Sp6.

Proof First, Uw2
Q is the set of all uQ(0,Y, 0) such that rows 2, 5 and 6 of Y are zero.

It follows that

θ
U
w2
Q (φ, u1u2g) :=

∫

[Uw2
Q ]

θ(φ, u1u2g) du1 =
∑

ξ

[ωψ(u2g).φ](ξ),

where the sum is over ξ ∈ Mat6×3(F) such that rows 3, 4 and 1 are zero. Next, the
identification of CQ with a subgroup of GSp6×GSO6 identifies C

w2
Q with the subset

of elements of the form
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

t x1 x2 x3 x4 x5
a 0 0 b ∗

a′ b′ 0 ∗
c′ d ′ 0 ∗

c d ∗
tλ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(

g W

t g−1λ

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

t ∈ GL1,

(

a b
c d

)

,

(

a′ b′
c′ d ′

)

∈ GL2, g ∈ GL3. (50)
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Now we can expand ϕ along the abelian unipotent subgroup which consists of

elements of the form u1(W ) :=
(

I6,

(

I3 W
I3

))

, W ∈ 2∧3. The constant term

is of course zero. The group Cw2
Q acts transitively on the nontrivial characters. As a

representative for the open orbit we select the character ψ2,1(u1(W )) := ψ(W2,1).

The stabilizer of this representative can be described in terms of the coordinates from

(50) as the set of elements of Cw2
Q such that g ∈ GL3 is of the form

(

t1 u
g1

)

with

g1 ∈ GL2 and det g1 = λ. Denote this group by Cw2
1 . Now we write the integral as a

double integral, with the inner integral being

∫

[2∧3]

∫

U
w2
Q (A)\UQ(A)

fχ;s(w2u2u1(W )g)θU
w2
Q (φ, u2u1(W )g) du2ψ

−1
2,1(W ) dW. (51)

Now,

uQ(ξ, 0, 0)u1(W ) = u1(W )uQ(ξ, 0, 0)uQ(0, ξW,−ξW t ξ), (W ∈ 2∧3, ξ ∈ Mat6×3).

It follows that (51) is equal to

∫

[2∧3]

∫

U
w2
Q (A)\UQ(A)

fχ;s(w2u2g)
∑

ξ

[ωψ(u2g).φ](ξ)ψl(ξW tξ)ψ
−1
2,1(W ) du2 dW,

with ξ summed over 6 × 3 matrices such that rows 3, 4 and 6 are zero. Clearly the
integral on W picks off the terms such that ψl(ξW tξ)ψ

−1
2,1(W ) is trivial. Now, direct

calculation shows that

ξ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ξ1 ξ2 ξ3
ξ4 ξ5 ξ6
0 0 0
0 0 0
ξ7 ξ8 ξ9
0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, W =
⎛

⎝

y1 y2 0
y3 0 −y2
0 −y3 −y1

⎞

⎠ , "⇒ ψl (ξW t ξ)

= ψ

⎛

⎝det

⎛

⎝

y3 −y1 y2
ξ4 ξ5 ξ6
ξ7 ξ8 ξ9

⎞

⎠

⎞

⎠ .

So, in the coordinates above, the condition for ψl(ξW tξ)ψ
−1
2,1(W ) to be trivial is

ξ4 = ξ7 = 0 and det

(

ξ5 ξ6
ξ8 ξ9

)

= 1. Observe that if ξ1 is also zero, then the function

g �→ [ωψ(g).φ](ξ) is invariant on the left by

{

(

I6,
(

u

t u−1
))

∈ Cw2
Q : u =

(

1 x y
1

1

)

∈ GL3

}

. Thus, the contribution from such ξ is trivial by cuspidality. The
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group Cw2
1 permutes the remaining terms transitively, and the stabilizer of ξ0 is

Cw2
2 :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

t x1 x2 x3 x4 x5
a 0 0 b ∗

a′ b′ 0 ∗
c′ d ′ 0 ∗

c d ∗
tλ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(

g W

tg−1λ

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∈ Cw2
1 :

g =
⎛

⎝

t x1 x4
a b
c d

⎞

⎠

⎫

⎬

⎭

.

Expanding first on x1 and x4, and then on the unipotent radical of the diagonally
embedded GL2, and using Lemma 3.7 two more times gives the result. ��
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