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Abstract In this paper, we obtain some normality criteria of families of meromorphic
functions, which improve and generalize the related results of Gu, Pang-Yang-
Zalcman, and Zhang-Pang-Zalcman, respectively. Some examples are given to show
the sharpness of our results.
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1 Introduction and main results

Let D be a domain in the complex plane C, and F be a family of meromorphic
functions defined on D. F is said to be normal on D, in the sense of Montel, if for
any sequence { f,,} C F there exists a subsequence { fy,, }, such that { f,,, } converges
spherically locally uniformly on D, to a meromorphic function or oo (see [3],[8],[13]).

The following well-known normality criterion was conjectured by Hayman[3], and
proved by Gu [2].
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Theorem A Let k be a positive integer. Let F be a family of meromorphic functions
defined in a domain D. If for each f € F, f # 0and f® # 1, then F is normal in
D.

This result has undergone various extensions and improvements. In [5] (cf. [6],
[11]), Pang-Yang-Zalcman obtained.

Theorem B Let k be a positive integer. Let F be a family of meromorphic functions
defined in a domain D, all of whose zeros have multiplicity at least k + 2 and whose
poles are multiple. Let h(z) (5% 0) be a holomorphic functions on D. If for each f € F,
F®(2) # h(z), then F is normal in D.

When k£ = 1, an example [19, Example 1] (cf. [6]) shows that the condition on the
multiplicity of zeros of functions in F cannot be weakened. Zhang-Pang-Zalcman[14]
proved that when k > 2 the multiplicity of zeros of functions in F can be reduced
from k + 2 to k + 1 in Theorem B.

Theorem E Let k > 2 be a positive integer. Let F be a family of meromorphic
functions defined in a domain D, all of whose zeros have multiplicity at least k + 1
and whose poles are multiple. Let h(z)(# 0) be a holomorphic functions on D. If for
each f € F, f®(z) # h(z), then F is normal in D.

Also in [14], they indicated that one cannot further reduce the assumption on the
multiplicity of the zeros from k + 1 to &, by considering the following example.

Example 1 (see [14]) Let A ={z:|z| < 1}, h(z) = z, and let
F= {fn(z) = nzk}-

Clearly, all zeros of f; are of multiplicity &, and fn(k) (z) = nk! # z on A. However,
F fails to be equicontinuous at 0, and then F is not normal in A.

In this paper, we consider the case h(z) = z, then f ®)(z) # h(z) means that f&
has no fixed-points. We reduce the multiplicity of zeros of functions in F to k, but
restricting the values f® can take at the zeros of £, as follows.

Theorem 1 Let k > 4 be a positive integer, A > 1 be a constant. Let F be a family
of meromorphic functions in a domain D. If, for every function f € F, f has only
zeros of multiplicity at least k and satisfies the following conditions:
@ f@=0=[fP@)| <Al
®) fP@) #z
(c) All poles of f are multiple.
Then F is normal in D.
For the case k = 2 or 3, the multiplicity of poles of f € F need be at least three.

Theorem 2 Letk =2 or3, A > 1 be a constant. Let F be a family of meromorphic
Sfunctions in a domain D. If, for every function f € F, f has only zeros of multiplicity
at least k and satisfies the following conditions:

@ Springer



Normal families and fixed-points of meromorphic functions 473

@ f@)=0=|fP@)I =< Al
®) fO) #z
(c) All poles of f have multiplicity at least 3.

Then F is normal in D.

Example 1 shows that condition (a) in Theorems 1 and 2 cannot be removed. For
the case k = 1, the above theorems are no longer true even if the multiplicities of
poles of f € F are large enough, as is shown by the next example.

Example 2 Let j be a positive integer, A = {7 : |z| < 1}, and let

j+2 _ Jj+2
F=lfu = i} .

27/
Clearly,
flo =4 — 22
n 2nit2zi+1 :
For each n, f, has one pole z = 0 with multiplicity j, and j + 2 simple zeros
:2mm
Zm=+e' 772 (m =0,1,...,j +1)in A. We have

n

’ _ J _ ]+2 iz.’j’r’;
fn(zm) =Zm + 2nj+2Z{;l+1 - 2]’], e’ )
and then
Jj+2
|f;;(zm)| =< |Zml,

that is, f,(z) = 0= |f,(2)| < #|Z|. But, since f,,(1/n) = 0 and f,(0) = oo, F
fails to be equicontinuous at z = 0, and then F is not normal in A.

The following example shows that condition (c) in Theorem 2 is necessary, and the
number 3 is best possible.

Example 3 Let A = {z: |z| < 1}, and let

F= [fn(z) s 1/")3].
Clearly,
S =2+ s £
n®z
For each n, f,, has two zeros z; = 1/n and zo = —1/n of multiplicity 3. We have

1 2 1 2
== =
n n n n
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and If,,(3)(zi)| < 2|z|(i = 1,2), then f,(z) =0 = Ifn(B)(z)I < 2|z|. However F is
not normal at 0 since f;,(1/n) = 0 and f,(0) = oo.

The next example shows that condition (c) cannot be omitted in Theorem 1.

Example 4 Let k be a positive integer, A = {z : |z] < 1} and

1 (z—1/n)kt? ]

fI[fn(Z): k+D!'z—(k+2)/n

Clearly, the zero of f, is of multiplicity k 4+ 2, so that f(z) = 0= | f (k) @ < lzl;
the pole of f, is simple. On the other hand, since

(@) = (z"“ + Pe_1(2) + 4) :

(k + 1)! z—(k+2)/n

where P;_1(z) is a polynomial of degree k — 1 and a is a nonzero constant, we have

F£9(2) # 7. But F is not normal at 0 since f,(1/n) = 0 and f,((k + 2)/n) = 0.
In this paper, we write A = {z : |z] < 1}and A’ ={z:0 < |z] < 1}. Forzp € C

andr > 0, we write A(zo,7) = {z: |[z—z0] <r},and A'(z9,7r) ={z:0 < |z—20] <

r}.

2 Preliminary results

To prove our results, we need the following lemmas.

Lemma 1 [4, Lemma 2] Let k be a positive integer and let F be a family of mero-
morphic functions in a domain D, all of whose zeros have multiplicity at least k, and
suppose that there exists A > 1 such that | f ©)(z)| < A whenever f(z) =0, f € F.
If F is not normal at zo € D, then for each o, 0 < a < k, there exist a sequence of
complex numbers z, € D, z, — zo, a sequence of positive numbers p, — 0, and a
sequence of functions f, € F such that

Jn@n + pn?)
—_—

n

gn(8) = g()

locally uniformly with respect to the spherical metric, where g is a nonconstant mero-
morphic function on C, all of whose zeros have multiplicity at least k, such that
g% () < g*(0) = kA + 1. Moreover, g(¢) has order at most 2.

Here, as usual, g% (¢) = |g/(0)|/(1 + |g(¢)]?) is the spherical derivative.

Lemma 2 [11,Lemma5] Let f be a transcendental meromorphic function, k(> 2), £
be positive integers. If f has only zeros of order at least 3, then f® — z¢ has infinitely
many zeros.

The next is a generalization of Hayman inequality, which is due to Yang [12].
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Lemma 3 Let f be a transcendental meromorphic function, ¢ be a small meromor-
phic function of f, and k € N. Then

1 1
T(V, f) < 3N (V, 7) +4N (}", m) +S(r, f)

Lemma 4 [1, Corollary 2] Let f be meromorphic in C and of finite order p and E be
the set of its critical values. If f has at most 2p + card E' asymptotic values, where
E’ is the derived set of E.

Lemma 5 [7, Lemma 2.2] Let f be meromorphic in C and suppose that the set of all
finite critical and asymptotic values of f is bounded. Then there exists R > 0 such
that if |z| > R and | f(z)| > R, then

|f (2)[log | f(2)]

I @] = 167 2]

Lemma 6 Let f be a transcendental meromorphic function of finite order p, and let
k(> 2) be a positive integer. If [ has only zeros of multiplicity at least k, and there
exists A > 1 such that f(z) = 0 = |f®(2)| < Alz|, then f% has infinitely many
fix-points.

Proof Suppose that £ has finitely many fix-points. Lemma 3 implies that f has
infinitely many zeros, say z,(n = 1, 2, ...). Clearly, z, — 0o. Now set

Z2
g@) =7 - FeD().

Then g is also of finite order p, and g’(z) = z — f*(z) has only finitely many zeros.
By Lemma 4 or Denjoy-Carleman-Ahlfors’ theorem, g has at most 2p asymptotic
values, and then satisfies the hypotheses of Lemma 5 for some R > 0. It follows that

208" (zn)l _ loglg(za)]
gzl = 16w

for large n. Since g(z,) = z2/2 and g’ (zx)| = |za — F® (@) < (A + Dlzal, we
have

1
2(A+1) > —[2log|z,| —log2] — oo
167

as n — 00, a contradiction. Lemma 6 is proved. |

Lemma 7 [10, Lemma 5] Let f be meromorphic in C and of finite order, and letk > 2
be a positive integer and K be a positive number. Suppose that f has only zeros of
multiplicity at least k, | f ®(z)| < K whenever f(z) = 0, and f®(z) # 1. Then one
of the following two cases must occur:
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(1)
f(@) =az— B, (1)

wherea, f € C, and o - k! # 1.
2) Ifk =2, then

(z—c)*(z—)?

f@="— 2)
or
(-’
Ifk > 3, then
B 1 (Z—Cl)k+1
f(Z)_Eﬁ' 4

Here c1, ca, c are distinct complex numbers.

Lemma 8 [9, Lemma 8] Let f be a non-polynomial rational function and k be a
positive integer. If f®)(z) # 1, then

k—1

1
f(z):Ezuak_lz 4+ 4ag+

a
(z = bym’
where ai_1, ..., ao, a(# 0), b are constants and m is a positive integer.

Lemma 9 Let k(> 2) be a positive integer, and f be a rational function, all of whose
zeros are of multiplicity at least k. If % (z) # z, then one of the following three cases
must occur:

(1)
B (Z 4 C)k+] .
f@)= Ws 5)
(2)
@)ttt
f) = m, 6)
(3)
_ 2 _ 3
floy= BT @QZ T kg, %)

6(z — b)?
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(z—c1)(z—e2)?
24(z — b)2

)= (for k =3), ®)

where ¢ is nonzero constant, and c1, ¢y and b are distinct constants.

Proof Suppose first that f is a polynomial. Then f®)(z) = z 4 ¢, where c(# 0) is a
constant, so that

2
_ z
FE D) = E—i—cz—i—d

where d is a constant. If f vanishes at zo, then f*~1(zy) = 1(2)/2+ czo+d = Osince
f has only zeros of multiplicity at least k. It follows that f has at most two zeros. So
f has either only one zero of multiplicity k 4+ 1 or two distinct zeros of multiplicity
exactly k. If f has two distinct zeros of multiplicity exactly k, then deg f = 2k and
deg f® = k, which contradicts the fact that f®)(z) = z + ¢ and k > 2. Thus, f has
only one zero of multiplicity k + 1, and hence f has the form (5).

Suppose then that f is a nonpolynomial rational function. Set

8 = f(2) — ﬁzk“ + ot
Then g®(z) # 1, so by Lemma 8
1 & k—1 a
g(z) = a° +ak—12"" +---+ao+ T
where ax_1, ..., ap, a(# 0), b are constants and m is a positive integer. Thus

_ p@E—=b"+a

7)) =p@)+ = , 9
f@)=p@ G by by 9)
where
_ k+1 k=1
p(@) = T 1)!z + a1z + -+ ap.
Let ¢1,c¢2, -+ ,¢q be g distinct zeros of p(z)(z — b)™ + a, with multiplicity

ni,na, -+ ,ng. Clearly, n; > k, ¢; # b, and ¢; is a zero of (p(z)(z — b)" + a)’
with multiplicity n; — 1 > k — 1(1 <i < g). Since

(P —b)" + a)/ =@ -b0""" (P —b) +mp(), (10)
then ¢; must be a zero of p’(z)(z — b) + mp(z) with multiplicity n; — 1(> k — 1).
Note that deg[p(z)(z — b) + mp(z)] = k + 1. Now we divide into three cases.

Case 1. k =2.
Then deg[p’(z)(z — b) + mp(z)] = 3, and hence
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(a) p'(z)(z — b) + mp(z) has three simple zeros cy, ¢, and c¢3; or

(b) p’(z)(z —b) + mp(z) has one simple zero c| and one zero ¢, with multiplicity 2;
or

(¢) p'(z)(z — b) + mp(z) has only one zero ¢; with multiplicity 3.

For case (a), we deduce that m = 3, and

P () (z—b)+3p() =(z—c1)(z—c2)(z—¢3),

p@)(z—b)P +a= é(z — 1)z — )z — e3)*.

These, together with (10) give
1
(z—b)? = 5[(z —c)z—c) +(@—c)z—c3)+(z—c2)(z—c3)l

Equating coefficients, we have b = (¢ +¢2 +¢3)/3 and b = (ci1ca+ciec3+c2c3)/3,
so that

C% + C§ + C% =cic2 +c1c3 + cac3,
that is,
(1 —2)* 4 (c1 —e3)* + (2 —3)* =0,

and hence ¢; = ¢» = ¢3, a contradiction. Thus case (1) is ruled out.
For case (b), we deduce that m = 2 and

1
p(2)(z—b)* +a= g(z — )z — )’

Then, by (9), f has the form (7).
For case (c), we can deduce that m = 1 and

1 4
p@)(z—b)+a= g(z —c1)7,

This, together with (9), gives that f has the form (6).

Case 2. k = 3.
Since deg[p’(z)(z — b) + mp(2)] = 4, p'(z)(z — b) + mp(z) has two zeros cy, c2
with multiplicity 2 or one zero c¢1 with multiplicity 4. It follows that m = 2 and

1
p@)(z—b)+a= i )3z —e)?
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Normal families and fixed-points of meromorphic functions 479

orm = 1 and
p Z)\Z +a 2 Z C .

Then, by (9), f has the form (6) or (8).

Case 3. k > 4.

Noting thatdeg[ p’(z) (z—b)+mp(z)] = k+1, we conclude that p’(z) (z—b)+mp(z)
has only one zero ¢; with multiplicity k + 1. In fact, if p’(z)(z — b) + mp(z) has at
least two zeros ¢y, ¢ with multiplicity ny, no, > k — 1, then 2(k — 1) < k + 1, and
thus k < 3, a contradiction. Thus m = 1 and p(2)(z —¢) + b = %(z — k2, and
hence f has the form (6). This completes the proof of Lemma 9. O

Lemma 10 Let k > 3 be a positive integer; A > 1 be a constant. Let F be a family
of meromorphic functions in a domain D. Suppose that, for every f € F, f has only
zeros of multiplicity at least k, and satisfies the following conditions:

@ f(@)=0=[fO@)] <Al

®) fP@) #z

(¢) all poles of f are multiple.

Then F is normal in D\{0}.

Proof Suppose that F is not normal at a point zo € D\{0}. Giving a small r > 0
such that A(zp,r) € D\{0} and f(z) = 0 = [f®(2)| < Alzo| + 1 for f € F
and z € A(zp, r). Then by Lemma 1, for « = k, there exist a sequence of functions
fa € F, asequence of complex numbers z, — zo and a sequence of positive numbers
pn — 0, such that

80 (0) = Py fulzn + pn) — g(0)

converges sphericaly uniformly on compact subsets of C, where g is a non-constant
meromorphic functionon on C, all zeros of g have multiplicity at least k, and

¢ () < g*(0) = k(Alzol + 1) + 1

for all ¢ € C. Moreover, , g is of finite order. By Hurwitz’s theorem, all poles of g are
multiple.

We claim: (1) g = 0 = [§©] < Alzol: (2) g (0) # 20.

Let ¢y be a zero of g(¢). Then there exist ¢,, ¢y — &o, such that g,(¢,) =
Pn_k fn(zZn + pn&y) = 0 for n sufficiently large. Thus f,(z, + pnén) = 0, so that

|fn(k) (zn + PnCn)| < Alzy + pn&n| for sufficiently large n. Since

9@ = £O @ + pnt) — ¢P (),

we have |g® (¢0)| < Alzo|. We have proved (i).
Suppose that there exists £o such that g® (o) = zo. Since

0 # £ 20+ pnl) — @n + pud) = X)) — (20 + pu0) — &P () — 20,
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Hurwitz’s theorem implies that g®) (¢) = zg. Note that g has only zeros of multiplicity
at least k, we have

20
g ="@-af aeC
A simple calculation shows that

k/2 if |a| > 1;
#
O =y 00 iflal <1
But this contradicts g#(0) = k(A|zo| + 1) + 1, and thus (2) is proved.

By Lemma 7, g has the form (1) or (4) in Lemma 7. Similarly as above, we exclude
the case that g has the form (1), so that g has the form (4). But g has only multiple
poles, a contradiction. This completes the proof of Lemma 10. O

Lemma 11 Let F be a family of meromorphic functions in a domain D, A > 1 be a
constant. Suppose that, for every f € F, f has only zeros of multiplicity at least k,
and satisfies the following conditions:

(@ f(@)=0=|f"(2)| < Alzl.
) () #z
(¢) all poles of f are of multiplicity at least 3.

Then F is normal in D\{0}.

This lemma can be proved almost the same as Lemma 10. We omit the details here.

3 Proof of Theorems 1 and 2

Proof of Theorem 1 Since normality is a local property, by Lemma 10, we only need
to prove that F is normal at z = 0. Without loss of generality, we may assume
D = A. Suppose, on the contrary, F is not normal at the origin. Our goal is to obtain
a contradiction in the sequel.

Consider the family

Gz[g(z)z@:fe}‘].

We claim that f(0) # O for every f € F. Otherwise, if f(0) = 0, by the assumption
of Theorem 1, | f®)(0)| < 0, and then f®(0) = 0. But f® () # z, a contradiction.
Thus, for each g € G, g(0) = oo. Furthermore, all zeros of g(z) have multiplicity at
least k. On the other hand, by simple calculation, we have

§P ) =

0] (k=1
f Z(z) _ ke (11

Z

Since f(z) =0 = | f®(z)| < A|z|, we deduce that g(z) = 0 = |g® (2)| < A.
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Normal families and fixed-points of meromorphic functions 481

We first prove that G is normal at 0. Suppose not; by Lemma 1, there exist functions
gn € G, points z,, — 0 and positive numbers p, — 0 such that

&n(zn + pul)
k

Gn(8) = - G(2), (12)

n

converges spherically uniformly on compact subsets of C, where G is a non-constant
meromorphic functionon on C and of finite order, all zeros of G have multiplicity at
least k, and G*(¢) < G*(0) = kA + 1 forall ¢ € C.

We distinguish two cases.

Case 1. z,/pn — o0. Since G,(—z,/pn) = gn(O)/,o,’f, the pole of G, corre-
sponding to that of g, at O drifts to infity. Then, by Hurwitz’s theorem, G has only
mutiple poles. By (11) and (12), we have

GP ) = gPzn + put)
(k—1

k
_ fn( )(Zn'i‘png) _kgn )(Zn'f‘,on;) Pn
Zn + Pn¢ Pn Zn + Pn¢

Noting that

Pn

P
Zn + Pn¢

uniformly on compact subsets of C, and g,gk_l) (zn + pPn¢)/pn is locally bounded on

C\G~!(00) since g, (zn + pnt)/py — G(£). Thus

n(k) (Zn + Pnt)

G (), 13
o+ onC —> (©) (13)

uniformly on compact subsets of C\G ™! (c0).

Claim: () G(2) =0 = |GP ()] < A; () GP (@) # 1.

Indeed, if G(¢p) = 0, Hurwitz’s theorem and (12) imply that there exist ¢,, ¢, —
o, such that g,(z, + pn¢y) = 0, and then f,(z, + pn¢y) = O for n sufficiently
large. By assumption, |f,,(k) (@Zn + Pnln)| < Alzn + pnenl. It follows from (13) that
|G® (£9)] < A. Claim (I) is proved.

Since fn(k) (z) # z, Hurwitz’s theorem and (13) yield that either GP(@E) #1or
G®(¢) = 1 for any ¢ € C\G~!(00). Clearly, these also hold for all ¢ € C. If
G®(¢) = 1, noting that all zeros of G have multiplicity at least k, we have G(¢) =
(¢ —a)*/k!(a € C). As in the proof of Lemma 10,

k/2 if la| > 1;

#
GCO=11" ifg <1,

which contradicts G*(0) = kA + 1. Then Claim (II) is proved. Then by Lemma 7, G
has the form (1) or (4) in Lemma 7. The form (1) can be ruled out similarly as above.
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Thus

1@ —eptt!

O e

where c1, ¢ are distinct complex numbers. But, this contradicts that G has only mutiple
poles.

Case 2. zn/pn 7> 00. Taking subsequence, we can assume that z,,/p, — «, a
finite complex number. Then

1PE) _ Gt — znfpon) 5 G — o) = GO)

n

on C. Clearly, all zeros of G have multiplicity at least k, and all poles of G are multiple,
except possibly the pole at 0.
Set

H,(¢) = f’;(,f’jf). (14)

Then

H(¢) = f’;(fflg) = ;g”(/f:“ — ¢G@) = HE) (15)

n

spherically uniformly on compact subsets of C, and

(k)
Hék)(é.) _ S (ont) = H(k)(g‘) (16)

n

locally uniformly on C\ H~!(c0). Obviously, all zeros of H have multiplicity at least
k, and all poles of H are multiple. Since G(0) = oo, H(0) # 0.

Claim: (1IN H(§) = 0= |[HO(©) < Algl; AV) HO(©) # ¢.

If H(¢p) = 0, by Hurwitz’s theorem and (15), there exist {, — o such that
fn(ontn) = 0 for for n sufficiently large. By the assumption, |f,,(k) (Pn&)| < Alpnlnl.
Then, it follows from (16) that |H® (¢9)| < A|¢o|. Claim (III) is proved.

Suppose that there exists ¢ such that H ) (¢o) = ¢o. By (16),

(k) —
0 # W =H @) -t > HY@0) ¢,

uniformly on compact subsets of C\H~!(co). Hurwitz’s theorem implies that
H®(¢) = ¢ on C\H ™' (00), and then on C. It follows that H is a polynomial of
degree k + 1. Since all zeros of H have multiplicity at least k, and noting that k > 4,
we know that H has a single zero ¢; with multiplicity k + 1, so that H®(z;) = 0, and
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Normal families and fixed-points of meromorphic functions 483

hence {1 = 0 since H® (¢) = ¢. But H(0) # 0, we arrive at a contradiction. This
proves claim (IV).

Then, by Lemma 6, H must be a rational function, and thus Lemma 9 implies that
H has the form (5) or (6) in Lemma 9. The form (6) can be excluded since all poles
of H are multiple. Thus we have

+ k+1
H() = % (17)

where c(# 0) is a constant.
Next we will show that (17) is impossible. Indeed, combining (15) and (17) gives

falpnd) (& 40!
pk+1 (k+D! -

(18)

Note that all zeros of f;, have multiplicity at least k and k > 4, there exist points
Zn.0 = —c such that z, 0 = p,¢n.0 1S a zero of f,, with multiplicity k 4 1.

We now consider two subcases.

Case 2.1 There exists 0 < § < 1 such that the functions f;(z) (for large n) are all
holomorphic on A(O0, §).

Since { f,,} is normal on A’(0, §), but not normal at 0, it follows from the maximum
modulus principle that f,, — oo locally uniformly on A’(0, §).

Suppose that there exists 0 < o < § such that each f, has only one zero z, 0 in
A0, 0). Set

fn(Z)

) = o

19)

Then {K,} is a sequence of nonvanishing holomorphic functions on A(0, o), and
K, (z) — oo locally uniformly on A’(0, o). It follows that {1/K}} is holomorphic on
A(0,0), and 1/K,,(z) — 0 locally uniformly on A’(0, o), and hence on A(0, o) by
the maximum modulus principle. So K, (z) — oo locally uniformly on A(0, o). In
particular, K, (2z,,0) — oo. But, by (18) and (19),

Km0y = 213200 _ FiCoito) 1
T s PR T k+ DY

a contradiction.

Hence, taking a subsequence if necessary, for any 0 < o < §, f; has at least two
distinct zeros in A(0, o) for sufficiently large n. We assume that z,, 1 is a zero of f,
on A(0, 0)\{zn.0}. Clearly, z,1 — 0. Let &y.1 = zu.1/pn, it follows froms (18) that
Zn1 — 00. Hence z,,,0/20,1 = n,0/En,1 — 0. Set

fn(Zn,IZ)

k+1
Zn,l

L,(z) =
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Then, for sufficiently large n, {L,} is well-defined and holomorphic on each bounded
set of C, and all of whose zeros have multiplicity at least k. By the assumption, we
have L,(z) = 0 = [LP(2)| < Alzl, and L¥(2) # z. By Lemma 10, {L,} is normal
on the punctured complex plane C* = C\{0}. We claim that {L,} is also normal at 0.
Otherwise, the maximum modulus principle implies that L,, — oo locally uniformly
on C*. But, this is impossible since L, (1) = 0. Hence {L,} is normal on the whole
plane C.
Taking a subsequence and renumbering, we assume that

Ly(z) = L(2),
and then
LB () = LB () (20)

locally uniformly on C, where L is entire, all zeros of L have multiplicity at least k.
Clearly, L(1) = 0. On the other hand, L, (z,,0/2x,1) = 0 and z,, 0/z,,1 — 0, we get
that L(0) = 0. Since L,(z) = 0 = |L£,k) (z)] < Alz|, an argument similar to that in
Claim III yields that L(z) = 0 = |L® ()| < |z|. So it follows from L(0) = 0 that
L®(0) = 0. Since LY (z) # z, Hurwitz’s theorem and (20) imply that L®) (z) = z.
Note that all zeros of L have multiplicity at least k and L(0) = 0, we deduce that
L(z) = ZT1/(k + 1)!. But, this in impossible since L(1) = 0.

Case 2.2 By taking a subsequence, if necessary, for any § > 0, f;, has at least one
pole on A(0, §) for all n.

Then there exist points z, oo — 0 such that f,(z, o) = 0o. We may assume that
Zn.o00 18 the pole of f;, of smallest modulus. Let {,; oo = 25,00/ Pn- It follows from (18)
that £ 0o — 00, and then z,,0/2n,00 = $n,0/5n,00 = 0. Now set

M, (2) = S (Zkl:_c;oz)

Zn,00

Then, for sufficiently large n, {M,} is well-defined for each z € C, all of whose
zeros have multiplicity at least k and whose poles are are multiple. Moreover, {M,,} is
holomorphic on A for sufficiently large n. By the assumption, we have M,,(z) = 0 =
|M,(,k) (2)| < Alz|,and M,(,k) (z) # z.Lemma 10 implies that {M},} is normal on C*. We
claim that {M,,} is also normal at 0. Otherwise, {M,,} is normal on A’, but not normal
at 0. Since {M, } is holomorphic on A, he maximum modulus principle implies that
M, — oo. But M, (2.,0/2n,00) = 0 and z,,0/2n,00 — 0. This contradiction proves
our claim. Hence, {M,,} is normal on C.
Then, taking a subsequence and renumbering,

My (2) — M(2)

spherically uniformly on compact subsets of C, where M is meromorphic, all of
whose zeros have multiplicity at least k. Clearly, M (1) = oo. On the other hand,
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M, (21,0/2n.00) = 0and z,,0/z2n,00 = 0, we obtain M (0) = 0. Arguing as in Case 2.1
(for L(z)), we have M (z) = zEt1/(k + 1)!. But, M(1) = oo, a contradiction. Then
we have shown that (17) is impossible.

We thus have proved that G is normal at 0.

We now turn to show that is normal at z = 0. Since G is normal at 0, then the
family G is equicontinuous at O with respect to the spherical distance. On the other
hand, g(0) = oo for each g € G, so there exists § > 0 such that |g(z)| > 1 for all
g € G and each z € A(0, §). It follows that f(z) # O forall f € F and z € A(0, 5).
Since F is normal on A’ but not normal at z = 0, the family 1/F = {1/f : f € F}is
holomorphic in Ds and normal on A’(0, §), but not normal at z = 0. Thus there exists
a sequence {1/f,} C 1/F which converges locally uniformly in A’(0, §), but not on
A(0, 8). The maximum modulus principle implies that 1/f,, — oo in A’(0, 8). Thus
fu — 0 converges locally uniformly in A’(0, §), and hence so does {g,} C G, where
gn(2) = fu(@)/z. But |g,(2)| = 1 for z € A(0,§), a contradiction. This completes
the proof of Theorem 1. O

Proof of Theorem 2 Using the same argument as in the proof of Theorem 1, we can
prove Theorem 2. We here omit the details. O
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