

Normal families and fixed-points of meromorphic functions

Yan Xu1

Received: 3 June 2014 / Accepted: 17 November 2015 / Published online: 28 November 2015 © Springer-Verlag Wien 2015

Abstract In this paper, we obtain some normality criteria of families of meromorphic functions, which improve and generalize the related results of Gu, Pang-Yang-Zalcman, and Zhang-Pang-Zalcman, respectively. Some examples are given to show the sharpness of our results.

Keywords Meromorphic function · Fixed-point · Normal family

Mathematics Subject Classification 30D45

1 Introduction and main results

Let *D* be a domain in the complex plane \mathbb{C} , and $\mathcal F$ be a family of meromorphic functions defined on D . $\mathcal F$ is said to be normal on D , in the sense of Montel, if for any sequence $\{f_n\} \subset \mathcal{F}$ there exists a subsequence $\{f_{n_k}\}$, such that $\{f_{n_k}\}$ converges spherically locally uniformly on *D*, to a meromorphic function or ∞ (see [\[3\]](#page-14-0), [\[8\]](#page-14-1), [\[13\]](#page-14-2)).

The following well-known normality criterion was conjectured by Hayman[\[3\]](#page-14-0), and proved by Gu [\[2](#page-14-3)].

Communicated by A. Constantin.

 \boxtimes Yan Xu xuyan@njnu.edu.cn

Research supported by NNSF of China (Grant Nos. 11171045, 11471163) and Doctoral Fund of Ministry of Education of China (Grant No. 20123207110003).

¹ Institute of Mathematics, School of Mathematics, Nanjing Normal University, Nanjing 210023, People's Republic of China

Theorem A *Let k be a positive integer. Let F be a family of meromorphic functions defined in a domain D. If for each* $f \in \mathcal{F}$ *,* $f \neq 0$ *and* $f^{(k)} \neq 1$ *, then* $\mathcal F$ *is normal in D.*

This result has undergone various extensions and improvements. In [\[5](#page-14-4)] (cf. [\[6](#page-14-5)], [\[11](#page-14-6)]), Pang-Yang-Zalcman obtained.

Theorem B *Let k be a positive integer. Let F be a family of meromorphic functions defined in a domain D, all of whose zeros have multiplicity at least k* + 2 *and whose poles are multiple. Let* $h(z) \neq 0$ *be a holomorphic functions on D. If for each* $f \in \mathcal{F}$, $f^{(k)}(z) \neq h(z)$, then *F* is normal in *D*.

When $k = 1$, an example [19, Example 1] (cf. [\[6](#page-14-5)]) shows that the condition on the multiplicity of zeros of functions in $\mathcal F$ cannot be weakened. Zhang-Pang-Zalcman[\[14\]](#page-14-7) proved that when $k > 2$ the multiplicity of zeros of functions in $\mathcal F$ can be reduced from $k + 2$ to $k + 1$ in Theorem B.

Theorem E Let $k \geq 2$ be a positive integer. Let F be a family of meromorphic *functions defined in a domain D, all of whose zeros have multiplicity at least* $k + 1$ *and whose poles are multiple. Let* $h(z) \neq 0$ *be a holomorphic functions on D. If for* $\text{each } f \in \mathcal{F}, f^{(k)}(z) \neq h(z), \text{ then } \mathcal{F} \text{ is normal in } D.$

Also in [\[14\]](#page-14-7), they indicated that one cannot further reduce the assumption on the multiplicity of the zeros from $k + 1$ to k , by considering the following example.

Example 1 (see [\[14\]](#page-14-7)) Let $\Delta = \{z : |z| < 1\}$, $h(z) = z$, and let

$$
\mathcal{F} = \left\{ f_n(z) = nz^k \right\}.
$$

Clearly, all zeros of f_n are of multiplicity k , and $f_n^{(k)}(z) = nk! \neq z$ on Δ . However, *F* fails to be equicontinuous at 0, and then *F* is not normal in Δ .

In this paper, we consider the case $h(z) = z$, then $f^{(k)}(z) \neq h(z)$ means that $f^{(k)}$ has no fixed-points. We reduce the multiplicity of zeros of functions in F to k , but restricting the values $f^{(k)}$ can take at the zeros of f, as follows.

Theorem 1 Let $k \geq 4$ be a positive integer, $A > 1$ be a constant. Let \mathcal{F} be a family *of meromorphic functions in a domain D. If, for every function* $f \in \mathcal{F}$ *, f has only zeros of multiplicity at least k and satisfies the following conditions:*

- (a) $f(z) = 0 \Rightarrow |f^{(k)}(z)| \le A|z|$.
- (b) $f^{(k)}(z) \neq z$.
- (c) *All poles of f are multiple.*

Then F is normal in D.

For the case $k = 2$ or 3, the multiplicity of poles of $f \in \mathcal{F}$ need be at least three.

Theorem 2 *Let* $k = 2$ *or* 3*,* $A > 1$ *be a constant. Let* F *be a family of meromorphic functions in a domain D. If, for every function* $f \in \mathcal{F}$ *, f has only zeros of multiplicity at least k and satisfies the following conditions:*

 $f(z) = 0 \Rightarrow |f^{(k)}(z)| \le A|z|.$ (b) $f^{(k)}(z) \neq z$. (c) *All poles of f have multiplicity at least* 3*.*

Then F is normal in D.

Example 1 shows that condition (a) in Theorems [1](#page-1-0) and [2](#page-1-1) cannot be removed. For the case $k = 1$, the above theorems are no longer true even if the multiplicities of poles of $f \in \mathcal{F}$ are large enough, as is shown by the next example.

Example 2 Let *j* be a positive integer, $\Delta = \{z : |z| < 1\}$, and let

$$
\mathcal{F} = \left\{ f_n(z) = \frac{z^{j+2} - 1/n^{j+2}}{2z^j} \right\}.
$$

Clearly,

$$
f'_n(z) = z + \frac{j}{2n^{j+2}z^{j+1}} \neq z.
$$

For each *n*, f_n has one pole $z = 0$ with multiplicity *j*, and $j + 2$ simple zeros $z_m = \frac{1}{n} e^{i \frac{2m\pi}{j+2}}$ (*m* = 0, 1, ..., *j* + 1) in Δ . We have

$$
f'_n(z_m) = z_m + \frac{j}{2n^{j+2}z_m^{j+1}} = \frac{j+2}{2n}e^{i\frac{2m\pi}{j+2}},
$$

and then

$$
|f_n'(z_m)| \le \frac{j+2}{2}|z_m|,
$$

that is, $f_n(z) = 0 \Rightarrow |f'_n(z)| \le \frac{j+2}{2}|z|$. But, since $f_n(1/n) = 0$ and $f_n(0) = \infty$, *F* fails to be equicontinuous at $z = 0$, and then $\mathcal F$ is not normal in Δ .

The following example shows that condition (c) in Theorem [2](#page-1-1) is necessary, and the number 3 is best possible.

Example 3 Let $\Delta = \{z : |z| < 1\}$, and let

$$
\mathcal{F} = \left\{ f_n(z) = \frac{(z - 1/n)^3 (z + 1/n)^3}{24z^2} \right\}.
$$

Clearly,

$$
f_n^{(3)}(z) = z + \frac{1}{n^6 z^5} \neq z.
$$

For each *n*, f_n has two zeros $z_1 = 1/n$ and $z_2 = -1/n$ of multiplicity 3. We have

$$
f_n^{(3)}(\frac{1}{n}) = \frac{2}{n}, \quad f_n^{(3)}(-\frac{1}{n}) = -\frac{2}{n},
$$

 \mathcal{D} Springer

and $|f_n^{(3)}(z_i)| \le 2|z_i|(i = 1, 2)$, then $f_n(z) = 0 \Rightarrow |f_n^{(3)}(z)| \le 2|z|$. However *F* is not normal at 0 since $f_n(1/n) = 0$ and $f_n(0) = \infty$.

The next example shows that condition (c) cannot be omitted in Theorem [1.](#page-1-0)

Example 4 Let *k* be a positive integer, $\Delta = \{z : |z| < 1\}$ and

$$
\mathcal{F} = \left\{ f_n(z) = \frac{1}{(k+1)!} \frac{(z-1/n)^{k+2}}{z-(k+2)/n} \right\}.
$$

Clearly, the zero of f_n is of multiplicity $k + 2$, so that $f(z) = 0 \Rightarrow |f^{(k)}(z)| \le |z|$; the pole of f_n is simple. On the other hand, since

$$
f_n(z) = \frac{1}{(k+1)!} \left(z^{k+1} + P_{k-1}(z) + \frac{a}{z - (k+2)/n} \right),
$$

where $P_{k-1}(z)$ is a polynomial of degree $k-1$ and a is a nonzero constant, we have $f_n^{(k)}(z) \neq z$. But *F* is not normal at 0 since $f_n(1/n) = 0$ and $f_n((k+2)/n) = \infty$.

In this paper, we write $\Delta = \{z : |z| < 1\}$ and $\Delta' = \{z : 0 < |z| < 1\}$. For $z_0 \in \mathbb{C}$ and $r > 0$, we write $\Delta(z_0, r) = \{z : |z - z_0| < r\}$, and $\Delta'(z_0, r) = \{z : 0 < |z - z_0| < r\}$ *r*}.

2 Preliminary results

To prove our results, we need the following lemmas.

Lemma 1 [\[4](#page-14-8), Lemma 2] *Let k be a positive integer and let F be a family of meromorphic functions in a domain D, all of whose zeros have multiplicity at least k, and suppose that there exists A* \geq 1 *such that* $|f^{(k)}(z)| \leq$ *A whenever* $f(z) = 0, f \in \mathcal{F}$. *If F* is not normal at $z_0 \in D$, then for each α , $0 \leq \alpha \leq k$, there exist a sequence of *complex numbers* $z_n \in D$, $z_n \to z_0$, a sequence of positive numbers $\rho_n \to 0$, and a *sequence of functions* $f_n \in \mathcal{F}$ *such that*

$$
g_n(\zeta) = \frac{f_n(z_n + \rho_n \zeta)}{\rho_n^{\alpha}} \to g(\zeta)
$$

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function on C*, all of whose zeros have multiplicity at least k, such that* $g^{\#}(\zeta) \leq g^{\#}(0) = kA + 1$ *. Moreover,* $g(\zeta)$ has order at most 2*.*

Here, as usual, $g^{\#}(\zeta) = |g'(\zeta)|/(1 + |g(\zeta)|^2)$ is the spherical derivative.

Lemma 2 [\[11](#page-14-6), Lemma 5] *Let f be a transcendental meromorphic function, k*(\geq 2), ℓ *be positive integers. If f has only zeros of order at least* 3*, then* $f^{(k)} - z^{\ell}$ *has infinitely many zeros.*

The next is a generalization of Hayman inequality, which is due to Yang [\[12](#page-14-9)].

Lemma 3 Let f be a transcendental meromorphic function, φ be a small meromor*phic function of f, and* $k \in \mathbb{N}$ *. Then*

$$
T(r, f) \le 3N\left(r, \frac{1}{f}\right) + 4N\left(r, \frac{1}{f^{(k)} - \varphi}\right) + S(r, f).
$$

Lemma 4 [\[1](#page-14-10), Corollary 2] *Let f be meromorphic in* C *and of finite order* ρ *and E be the set of its critical values. If f has at most* $2ρ + cardE'$ *asymptotic values, where E is the derived set of E.*

Lemma 5 [\[7](#page-14-11), Lemma 2.2] *Let f be meromorphic in* C *and suppose that the set of all finite critical and asymptotic values of f is bounded. Then there exists* $R > 0$ *such that if* $|z| > R$ *and* $|f(z)| > R$ *, then*

$$
|f'(z)| \ge \frac{|f(z)| \log |f(z)|}{16\pi |z|}.
$$

Lemma 6 *Let f be a transcendental meromorphic function of finite order* ρ*, and let k*(≥ 2) *be a positive integer. If f has only zeros of multiplicity at least k, and there exists* $A > 1$ *such that* $f(z) = 0 \Rightarrow |f^{(k)}(z)| \leq A|z|$ *, then* $f^{(k)}$ *has infinitely many fix-points.*

Proof Suppose that $f^{(k)}$ has finitely many fix-points. Lemma [3](#page-3-0) implies that f has infinitely many zeros, say $z_n(n = 1, 2, \ldots)$. Clearly, $z_n \to \infty$. Now set

$$
g(z) = \frac{z^2}{2} - f^{(k-1)}(z).
$$

Then *g* is also of finite order ρ , and $g'(z) = z - f^{(k)}(z)$ has only finitely many zeros. By Lemma [4](#page-4-0) or Denjoy-Carleman-Ahlfors' theorem, g has at most 2ρ asymptotic values, and then satisfies the hypotheses of Lemma [5](#page-4-1) for some $R > 0$. It follows that

$$
\frac{|z_n g'(z_n)|}{|g(z_n)|} \ge \frac{\log |g(z_n)|}{16\pi}
$$

for large *n*. Since $g(z_n) = z_n^2/2$ and $|g'(z_n)| = |z_n - f^{(k)}(z_n)| \le (A+1)|z_n|$, we have

$$
2(A+1) \ge \frac{1}{16\pi} [2\log|z_n| - \log 2] \to \infty
$$

as $n \to \infty$, a contradiction. Lemma [6](#page-4-2) is proved.

Lemma 7 [\[10](#page-14-12), Lemma 5] *Let f be meromorphic in* $\mathbb C$ *and of finite order, and let* $k \geq 2$ *be a positive integer and K be a positive number. Suppose that f has only zeros of multiplicity at least k,* $|f^{(k)}(z)| < K$ whenever $f(z) = 0$, and $f^{(k)}(z) \neq 1$. Then one *of the following two cases must occur:*

(1)

$$
f(z) = \alpha (z - \beta)^k, \tag{1}
$$

where $\alpha, \beta \in \mathbb{C}$ *, and* $\alpha \cdot k! \neq 1$ *.* (2) *If k* = 2*, then*

$$
f(z) = \frac{(z - c_1)^2 (z - c_2)^2}{2(z - c)^2},
$$
\n(2)

or

$$
f(z) = \frac{(z - c_1)^3}{2(z - c)}.
$$
 (3)

If $k \geq 3$ *, then*

$$
f(z) = \frac{1}{k!} \frac{(z - c_1)^{k+1}}{(z - c)}.
$$
 (4)

*Here c*1, *c*2, *c are distinct complex numbers.*

Lemma 8 [\[9](#page-14-13), Lemma 8] *Let f be a non-polynomial rational function and k be a positive integer. If* $f^{(k)}(z) \neq 1$ *, then*

$$
f(z) = \frac{1}{k!}z^{k} + a_{k-1}z^{k-1} + \cdots + a_0 + \frac{a}{(z-b)^m},
$$

where $a_{k-1}, \ldots, a_0, a \neq 0$, *b* are constants and *m* is a positive integer.

Lemma 9 *Let* $k \geq 2$ *) be a positive integer, and f be a rational function, all of whose* zeros are of multiplicity at least k. If $f^{(k)}(z) \neq z$, then one of the following three cases *must occur:*

(1)

$$
f(z) = \frac{(z+c)^{k+1}}{(k+1)!};
$$
\n(5)

(2)

$$
f(z) = \frac{(z - c_1)^{k+2}}{(k+1)!(z - b)};
$$
\n(6)

(3)

$$
f(z) = \frac{(z - c_1)^2 (z - c_2)^3}{6(z - b)^2} (for \, k = 2),\tag{7}
$$

² Springer

$$
f(z) = \frac{(z - c_1)^3 (z - c_2)^3}{24(z - b)^2} (for \, k = 3),\tag{8}
$$

*where c is nonzero constant, and c*1, *c*² *and b are distinct constants.*

Proof Suppose first that *f* is a polynomial. Then $f^{(k)}(z) = z + c$, where $c \neq 0$) is a constant, so that

$$
f^{(k-1)}(z) = \frac{z^2}{2} + cz + d
$$

where *d* is a constant. If *f* vanishes at z_0 , then $f^{(k-1)}(z_0) = z_0^2/2 + cz_0 + d = 0$ since *f* has only zeros of multiplicity at least *k*. It follows that *f* has at most two zeros. So *f* has either only one zero of multiplicity $k + 1$ or two distinct zeros of multiplicity exactly *k*. If *f* has two distinct zeros of multiplicity exactly *k*, then deg $f = 2k$ and deg $f^{(k)} = k$, which contradicts the fact that $f^{(k)}(z) = z + c$ and $k \ge 2$. Thus, *f* has only one zero of multiplicity $k + 1$, and hence f has the form [\(5\)](#page-5-0).

Suppose then that *f* is a nonpolynomial rational function. Set

$$
g(z) = f(z) - \frac{1}{(k+1)!} z^{k+1} + \frac{1}{k!} z^k.
$$

Then $g^{(k)}(z) \neq 1$, so by Lemma [8](#page-5-1)

$$
g(z) = \frac{1}{k!}z^{k} + a_{k-1}z^{k-1} + \cdots + a_0 + \frac{a}{(z-b)^m},
$$

where $a_{k-1}, \ldots, a_0, a \neq 0$, *b* are constants and *m* is a positive integer. Thus

$$
f(z) = p(z) + \frac{a}{(z-b)^m} = \frac{p(z)(z-b)^m + a}{(z-b)^m},
$$
\n(9)

where

$$
p(z) = \frac{1}{(k+1)!} z^{k+1} + a_{k-1} z^{k-1} + \dots + a_0.
$$

Let c_1, c_2, \dots, c_q be *q* distinct zeros of $p(z)(z - b)^m + a$, with multiplicity *n*₁, *n*₂, ···, *n_q*. Clearly, *n_i* $\geq k$, *c_i* $\neq b$, and *c_i* is a zero of $(p(z)(z - b)^m + a)^m$ with multiplicity $n_i - 1 \ge k - 1$ ($1 \le i \le q$). Since

$$
(p(z)(z-b)^m + a)' = (z-b)^{m-1} (p'(z)(z-b) + mp(z)),
$$
 (10)

then c_i must be a zero of $p'(z)(z - b) + mp(z)$ with multiplicity $n_i - 1(\geq k - 1)$. Note that $\deg[p'(z)(z - b) + mp(z)] = k + 1$. Now we divide into three cases.

Case 1.
$$
k = 2
$$
.
Then deg[$p'(z)(z - b) + mp(z)$] = 3, and hence

 \mathcal{D} Springer

- (a) $p'(z)(z b) + mp(z)$ has three simple zeros c_1, c_2 , and c_3 ; or
- (b) $p'(z)(z b) + mp(z)$ has one simple zero c_1 and one zero c_2 with multiplicity 2; or
- (c) $p'(z)(z b) + mp(z)$ has only one zero c_1 with multiplicity 3.

For case (a), we deduce that $m = 3$, and

$$
p'(z)(z - b) + 3p(z) = (z - c_1)(z - c_2)(z - c_3),
$$

$$
p(z)(z - b)3 + a = \frac{1}{6}(z - c1)2(z - c2)2(z - c3)2.
$$

These, together with [\(10\)](#page-6-0) give

$$
(z-b)^2 = \frac{1}{3}[(z-c_1)(z-c_2) + (z-c_1)(z-c_3) + (z-c_2)(z-c_3)].
$$

Equating coefficients, we have $b = (c_1 + c_2 + c_3)/3$ and $b^2 = (c_1c_2 + c_1c_3 + c_2c_3)/3$, so that

$$
c_1^2 + c_2^2 + c_2^2 = c_1c_2 + c_1c_3 + c_2c_3,
$$

that is,

$$
(c_1 - c_2)^2 + (c_1 - c_3)^2 + (c_2 - c_3)^2 = 0,
$$

and hence $c_1 = c_2 = c_3$, a contradiction. Thus case (1) is ruled out.

For case (b), we deduce that $m = 2$ and

$$
p(z)(z-b)^{2} + a = \frac{1}{6}(z-c_{1})^{2}(z-c_{2})^{3}.
$$

Then, by (9) , f has the form (7) .

For case (c), we can deduce that $m = 1$ and

$$
p(z)(z - b) + a = \frac{1}{6}(z - c_1)^4,
$$

This, together with (9) , gives that *f* has the form (6) .

Case 2. $k = 3$.

Since $\deg[p'(z)(z - b) + mp(z)] = 4$, $p'(z)(z - b) + mp(z)$ has two zeros c_1, c_2 with multiplicity 2 *or* one zero c_1 with multiplicity 4. It follows that $m = 2$ and

$$
p(z)(z - b)^2 + a = \frac{1}{24}(z - c_1)^3(z - c_2)^3
$$

² Springer

 $or m = 1$ and

$$
p(z)(z - b) + a = \frac{1}{24}(z - c_1)^5.
$$

Then, by (9) , f has the form (6) or (8) .

Case $3. k > 4$.

Noting that $\deg[p'(z)(z-b) + mp(z)] = k+1$, we conclude that $p'(z)(z-b) + mp(z)$ has only one zero c_1 with multiplicity $k + 1$. In fact, if $p'(z)(z - b) + mp(z)$ has at least two zeros c_1 , c_2 with multiplicity n_1 , n_2 , $\geq k - 1$, then $2(k - 1) \leq k + 1$, and thus $k \leq 3$, a contradiction. Thus $m = 1$ and $p(z)(z - c) + b = \frac{1}{k!}(z - c_1)^{k+2}$, and hence *f* has the form [\(6\)](#page-5-3). This completes the proof of Lemma [9.](#page-5-4)

Lemma 10 *Let* $k \geq 3$ *be a positive integer,* $A > 1$ *be a constant. Let* $\mathcal F$ *be a family of meromorphic functions in a domain D. Suppose that, for every* $f \in \mathcal{F}$ *, f has only zeros of multiplicity at least k, and satisfies the following conditions:*

(a) $f(z) = 0 \Rightarrow |f^{(k)}(z)| \le A|z|$.

(b) $f^{(k)}(z) \neq z$.

(c) *all poles of f are multiple.*

Then F *is normal in* $D\setminus\{0\}$ *.*

Proof Suppose that *F* is not normal at a point $z_0 \in D \setminus \{0\}$. Giving a small $r > 0$ such that $\Delta(z_0, r) \subset D \setminus \{0\}$ and $f(z) = 0 \Rightarrow |f^{(k)}(z)| \le A|z_0| + 1$ for $f \in \mathcal{F}$ and $z \in \Delta(z_0, r)$. Then by Lemma [1,](#page-3-1) for $\alpha = k$, there exist a sequence of functions $f_n \in \mathcal{F}$, a sequence of complex numbers $z_n \to z_0$ and a sequence of positive numbers $\rho_n \to 0$, such that

$$
g_n(\zeta) = \rho_n^{-k} f_n(z_n + \rho_n \zeta) \to g(\zeta)
$$

converges sphericaly uniformly on compact subsets of C, where *g* is a non-constant meromorphic functionon on C, all zeros of *g* have multiplicity at least *k*, and

$$
g^{\#}(\zeta) \le g^{\#}(0) = k(A|z_0| + 1) + 1
$$

for all $\zeta \in \mathbb{C}$. Moreover, , g is of finite order. By Hurwitz's theorem, all poles of g are multiple.

We claim: (1) $g = 0 \Rightarrow |g^{(k)}| \le A |z_0|$; (2) $g^{(k)}(\zeta) \ne z_0$.

Let ζ_0 be a zero of $g(\zeta)$. Then there exist ζ_n , $\zeta_n \to \zeta_0$, such that $g_n(\zeta_n)$ = $\rho_n^{-k} f_n(z_n + \rho_n \zeta_n) = 0$ for *n* sufficiently large. Thus $f_n(z_n + \rho_n \zeta_n) = 0$, so that $|f_n^{(k)}(z_n + \rho_n \zeta_n)| \leq A |z_n + \rho_n \zeta_n|$ for sufficiently large *n*. Since

$$
g_n^{(k)}(\zeta_n) = f_n^{(k)}(z_n + \rho_n \zeta_n) \to g^{(k)}(\zeta_0),
$$

we have $|g^{(k)}(\zeta_0)| \leq A |z_0|$. We have proved (i).

Suppose that there exists ζ_0 such that $g^{(k)}(\zeta_0) = z_0$. Since

$$
0 \neq f_n^{(k)}(z_n + \rho_n \zeta) - (z_n + \rho_n \zeta) = g_n^{(k)}(\zeta) - (z_n + \rho_n \zeta) \to g^{(k)}(\zeta) - z_0,
$$

Hurwitz's theorem implies that $g^{(k)}(\zeta) \equiv z_0$. Note that *g* has only zeros of multiplicity at least *k*, we have

$$
g(\zeta) = \frac{z_0}{k!} (z - \alpha)^k, \quad \alpha \in \mathbb{C}.
$$

A simple calculation shows that

$$
g^{\#}(0) \le \begin{cases} k/2 & \text{if } |\alpha| \ge 1; \\ |z_0| & \text{if } |\alpha| < 1. \end{cases}
$$

But this contradicts $g^{\#}(0) = k(A|z_0| + 1) + 1$, and thus (2) is proved.

By Lemma [7,](#page-4-3) *g* has the form [\(1\)](#page-5-5) or [\(4\)](#page-5-6) in Lemma [7.](#page-4-3) Similarly as above, we exclude the case that *g* has the form (1) , so that *g* has the form (4) . But *g* has only multiple poles, a contradiction. This completes the proof of Lemma [10.](#page-8-0)

Lemma 11 Let $\mathcal F$ be a family of meromorphic functions in a domain D, $A > 1$ be a *constant. Suppose that, for every* $f \in \mathcal{F}$ *, f has only zeros of multiplicity at least k, and satisfies the following conditions:*

(a) $f(z) = 0 \Rightarrow |f''(z)| \le A|z|$. (b) $f''(z) \neq z$. (c) *all poles of f are of multiplicity at least 3.*

Then F *is normal in* $D\setminus\{0\}$ *.*

This lemma can be proved almost the same as Lemma [10.](#page-8-0) We omit the details here.

3 Proof of Theorems 1 and 2

Proof of Theorem 1 Since normality is a local property, by Lemma [10,](#page-8-0) we only need to prove that *F* is normal at $z = 0$. Without loss of generality, we may assume $D = \Delta$. Suppose, on the contrary, $\mathcal F$ is not normal at the origin. Our goal is to obtain a contradiction in the sequel.

Consider the family

$$
\mathcal{G} = \left\{ g(z) = \frac{f(z)}{z} : f \in \mathcal{F} \right\}.
$$

We claim that $f(0) \neq 0$ for every $f \in \mathcal{F}$. Otherwise, if $f(0) = 0$, by the assumption of Theorem 1, $|f^{(k)}(0)| \le 0$, and then $f^{(k)}(0) = 0$. But $f^{(k)}(z) \ne z$, a contradiction. Thus, for each $g \in \mathcal{G}$, $g(0) = \infty$. Furthermore, all zeros of $g(z)$ have multiplicity at least *k*. On the other hand, by simple calculation, we have

$$
g^{(k)}(z) = \frac{f^{(k)}(z)}{z} - \frac{kg^{(k-1)}(z)}{z}.
$$
 (11)

Since $f(z) = 0 \Rightarrow |f^{(k)}(z)| \le A|z|$, we deduce that $g(z) = 0 \Rightarrow |g^{(k)}(z)| \le A$.

We first prove that G is normal at 0. Suppose not; by Lemma [1,](#page-3-1) there exist functions $g_n \in \mathcal{G}$, points $z_n \to 0$ and positive numbers $\rho_n \to 0$ such that

$$
G_n(\zeta) = \frac{g_n(z_n + \rho_n \zeta)}{\rho_n^k} \to G(\zeta),\tag{12}
$$

converges spherically uniformly on compact subsets of C, where *G* is a non-constant meromorphic functionon on C and of finite order, all zeros of *G* have multiplicity at least *k*, and $G^{\#}(\zeta) \leq G^{\#}(0) = kA + 1$ for all $\zeta \in \mathbb{C}$.

We distinguish two cases.

Case 1. $z_n/\rho_n \to \infty$. Since $G_n(-z_n/\rho_n) = g_n(0)/\rho_n^k$, the pole of G_n corresponding to that of g_n at 0 drifts to infity. Then, by Hurwitz's theorem, G has only mutiple poles. By (11) and (12) , we have

$$
G_n^{(k)}(\zeta) = g_n^{(k)}(z_n + \rho_n \zeta)
$$

=
$$
\frac{f_n^{(k)}(z_n + \rho_n \zeta)}{z_n + \rho_n \zeta} - k \frac{g_n^{(k-1)}(z_n + \rho_n \zeta)}{\rho_n} \frac{\rho_n}{z_n + \rho_n \zeta}.
$$

Noting that

$$
\frac{\rho_n}{z_n+\rho_n\zeta}\to 0
$$

uniformly on compact subsets of \mathbb{C} , and $g_n^{(k-1)}(z_n + \rho_n \zeta)/\rho_n$ is locally bounded on $\mathbb{C}\backslash G^{-1}(\infty)$ since $g_n(z_n + \rho_n \zeta)/\rho_n^k \to G(\zeta)$. Thus

$$
\frac{f_n^{(k)}(z_n + \rho_n \zeta)}{z_n + \rho_n \zeta} \to G^{(k)}(\zeta),\tag{13}
$$

uniformly on compact subsets of $\mathbb{C}\backslash G^{-1}(\infty)$.

 $\text{Claim: (I) } G(\zeta) = 0 \Rightarrow |G^{(k)}(\zeta)| \leq A; \text{(II) } G^{(k)}(\zeta) \neq 1.$

Indeed, if $G(\zeta_0) = 0$, Hurwitz's theorem and [\(12\)](#page-10-0) imply that there exist ζ_n , $\zeta_n \to$ ζ_0 , such that $g_n(z_n + \rho_n \zeta_n) = 0$, and then $f_n(z_n + \rho_n \zeta_n) = 0$ for *n* sufficiently large. By assumption, $|f_n^{(k)}(z_n + \rho_n \zeta_n)| \leq A |z_n + \rho_n \zeta_n|$. It follows from [\(13\)](#page-10-1) that $|G^{(k)}(\zeta_0)| \leq A$. Claim (I) is proved.

Since $f_n^{(k)}(z) \neq z$, Hurwitz's theorem and [\(13\)](#page-10-1) yield that either $G^{(k)}(\zeta) \neq 1$ or $G^{(k)}(\zeta) \equiv 1$ for any $\zeta \in \mathbb{C} \backslash G^{-1}(\infty)$. Clearly, these also hold for all $\zeta \in \mathbb{C}$. If $G^{(k)}(\zeta) \equiv 1$, noting that all zeros of *G* have multiplicity at least *k*, we have $G(\zeta) =$ $(\zeta - \alpha)^k / k! (\alpha \in \mathbb{C})$. As in the proof of Lemma [10,](#page-8-0)

$$
G^{\#}(0) \leq \begin{cases} k/2 & \text{if } |\alpha| \geq 1; \\ 1 & \text{if } |\alpha| < 1. \end{cases}
$$

which contradicts $G^*(0) = kA + 1$. Then Claim (II) is proved. Then by Lemma [7,](#page-4-3) *G* has the form [\(1\)](#page-5-5) or [\(4\)](#page-5-6) in Lemma [7.](#page-4-3) The form (1) can be ruled out similarly as above. Thus

$$
G(\zeta) = \frac{1}{k!} \frac{(\zeta - c_1)^{k+1}}{(\zeta - c)},
$$

where c_1 , c are distinct complex numbers. But, this contradicts that G has only mutiple poles.

Case 2. $z_n/\rho_n \nightharpoonup \infty$. Taking subsequence, we can assume that $z_n/\rho_n \rightarrow \alpha$, a finite complex number. Then

$$
\frac{g_n(\rho_n \zeta)}{\rho_n^k} = G_n(\zeta - z_n/\rho_n) \stackrel{\chi}{\to} G(\zeta - \alpha) = \widetilde{G}(\zeta)
$$

on $\mathbb C$. Clearly, all zeros of \widetilde{G} have multiplicity at least *k*, and all poles of \widetilde{G} are multiple, except possibly the pole at 0.

Set

$$
H_n(\zeta) = \frac{f_n(\rho_n \zeta)}{\rho_n^{k+1}}.
$$
\n(14)

Then

$$
H_n(\zeta) = \frac{f_n(\rho_n \zeta)}{\rho_n^{k+1}} = \zeta \frac{g_n(\rho_n \zeta)}{\rho_n^k} \to \zeta \widetilde{G}(\zeta) = H(\zeta)
$$
 (15)

spherically uniformly on compact subsets of \mathbb{C} , and

$$
H_n^{(k)}(\zeta) = \frac{f_n^{(k)}(\rho_n \zeta)}{\rho_n} \to H^{(k)}(\zeta)
$$
 (16)

locally uniformly on $\mathbb{C} \setminus H^{-1}(\infty)$. Obviously, all zeros of *H* have multiplicity at least *k*, and all poles of *H* are multiple. Since $G(0) = \infty$, $H(0) \neq 0$.

Claim: (III) $H(\zeta) = 0 \Rightarrow |H^{(k)}(\zeta)| \le A|\zeta|$; (IV) $H^{(k)}(\zeta) \ne \zeta$.

If $H(\zeta_0) = 0$, by Hurwitz's theorem and [\(15\)](#page-11-0), there exist $\zeta_n \to \zeta_0$ such that $f_n(\rho_n \zeta_n) = 0$ for for *n* sufficiently large. By the assumption, $|f_n^{(k)}(\rho_n \zeta_n)| \leq A |\rho_n \zeta_n|$. Then, it follows from [\(16\)](#page-11-1) that $|H^{(k)}(\zeta_0)| \leq A |\zeta_0|$. Claim (III) is proved.

Suppose that there exists ζ_0 such that $H^{(k)}(\zeta_0) = \zeta_0$. By [\(16\)](#page-11-1),

$$
0 \neq \frac{f_n^{(k)}(\rho_n \zeta) - \rho_n \zeta}{\rho_n} = H_n^{(k)}(\zeta) - \zeta \to H^{(k)}(\zeta) - \zeta,
$$

uniformly on compact subsets of $\mathbb{C}\setminus H^{-1}(\infty)$. Hurwitz's theorem implies that $H^{(k)}(\zeta) \equiv \zeta$ on $\mathbb{C}[H^{-1}(\infty))$, and then on \mathbb{C} . It follows that *H* is a polynomial of degree $k + 1$. Since all zeros of *H* have multiplicity at least *k*, and noting that $k > 4$, we know that *H* has a single zero ζ_1 with multiplicity $k + 1$, so that $H^{(k)}(\zeta_1) = 0$, and

hence $\zeta_1 = 0$ since $H^{(k)}(\zeta) \equiv \zeta$. But $H(0) \neq 0$, we arrive at a contradiction. This proves claim (IV).

Then, by Lemma [6,](#page-4-2) *H* must be a rational function, and thus Lemma [9](#page-5-4) implies that *H* has the form [\(5\)](#page-5-0) or [\(6\)](#page-5-3) in Lemma [9.](#page-5-4) The form (6) can be excluded since all poles of *H* are multiple. Thus we have

$$
H(\zeta) = \frac{(\zeta + c)^{k+1}}{(k+1)!}
$$
 (17)

where $c \neq 0$ is a constant.

Next we will show that (17) is impossible. Indeed, combining (15) and (17) gives

$$
\frac{f_n(\rho_n \zeta)}{\rho_n^{k+1}} \to \frac{(\zeta + c)^{k+1}}{(k+1)!}.\tag{18}
$$

Note that all zeros of f_n have multiplicity at least *k* and $k \geq 4$, there exist points $\zeta_{n,0} \rightarrow -c$ such that $z_{n,0} = \rho_n \zeta_{n,0}$ is a zero of f_n with multiplicity $k + 1$.

We now consider two subcases.

Case 2.1 There exists $0 < \delta \le 1$ such that the functions $f_n(z)$ (for large *n*) are all holomorphic on $\Delta(0, \delta)$.

Since $\{f_n\}$ is normal on $\Delta'(0, \delta)$, but not normal at 0, it follows from the maximum modulus principle that $f_n \to \infty$ locally uniformly on $\Delta'(0, \delta)$.

Suppose that there exists $0 < \sigma < \delta$ such that each f_n has only one zero $z_{n,0}$ in $\Delta(0, \sigma)$. Set

$$
K_n(z) = \frac{f_n(z)}{(z - z_{n,0})^{k+1}}.
$$
\n(19)

Then $\{K_n\}$ is a sequence of nonvanishing holomorphic functions on $\Delta(0,\sigma)$, and $K_n(z) \to \infty$ locally uniformly on $\Delta'(0, \sigma)$. It follows that $\{1/K_n\}$ is holomorphic on $\Delta(0, \sigma)$, and $1/K_n(z) \to 0$ locally uniformly on $\Delta'(0, \sigma)$, and hence on $\Delta(0, \sigma)$ by the maximum modulus principle. So $K_n(z) \to \infty$ locally uniformly on $\Delta(0, \sigma)$. In particular, $K_n(2z_{n,0}) \to \infty$. But, by [\(18\)](#page-12-1) and [\(19\)](#page-12-2),

$$
K_n(2z_{n,0}) = \frac{f_n(2z_{n,0})}{z_{n,0}^{k+1}} = \frac{f_n(2\rho_n \zeta_{n,0})}{\rho_n^{k+1} \zeta_{n,0}^{k+1}} \to \frac{1}{(k+1)!},
$$

a contradiction.

Hence, taking a subsequence if necessary, for any $0 < \sigma < \delta$, f_n has at least two distinct zeros in $\Delta(0, \sigma)$ for sufficiently large *n*. We assume that $z_{n,1}$ is a zero of f_n on $\Delta(0, \sigma) \setminus \{z_{n,0}\}.$ Clearly, $z_{n,1} \to 0.$ Let $\zeta_{n,1} = z_{n,1}/\rho_n$, it follows froms [\(18\)](#page-12-1) that $\zeta_{n,1} \to \infty$. Hence $z_{n,0}/z_{n,1} = \zeta_{n,0}/\zeta_{n,1} \to 0$. Set

$$
L_n(z) = \frac{f_n(z_{n,1}z)}{z_{n,1}^{k+1}}.
$$

Then, for sufficiently large n , $\{L_n\}$ is well-defined and holomorphic on each bounded set of \mathbb{C} , and all of whose zeros have multiplicity at least k . By the assumption, we have $L_n(z) = 0 \Rightarrow |L_n^{(k)}(z)| \le A|z|$, and $L_n^{(k)}(z) \ne z$. By Lemma [10,](#page-8-0) $\{L_n\}$ is normal on the punctured complex plane $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. We claim that $\{L_n\}$ is also normal at 0. Otherwise, the maximum modulus principle implies that $L_n \to \infty$ locally uniformly on \mathbb{C}^* . But, this is impossible since $L_n(1) = 0$. Hence $\{L_n\}$ is normal on the whole plane C.

Taking a subsequence and renumbering, we assume that

$$
L_n(z)\to L(z),
$$

and then

$$
L_n^{(k)}(z) \to L^{(k)}(z) \tag{20}
$$

locally uniformly on C, where *L* is entire, all zeros of *L* have multiplicity at least *k*. Clearly, $L(1) = 0$. On the other hand, $L_n(z_{n,0}/z_{n,1}) = 0$ and $z_{n,0}/z_{n,1} \rightarrow 0$, we get that $L(0) = 0$. Since $L_n(z) = 0 \Rightarrow |L_n^{(k)}(z)| \leq A|z|$, an argument similar to that in Claim III yields that $L(z) = 0 \Rightarrow |L^{(k)}(z)| \le |z|$. So it follows from $L(0) = 0$ that $L^{(k)}(0) = 0$. Since $L_n^{(k)}(z) \neq z$, Hurwitz's theorem and (20) imply that $L^{(k)}(z) \equiv z$. Note that all zeros of *L* have multiplicity at least *k* and $L(0) = 0$, we deduce that $L(z) = z^{k+1}/(k+1)!$. But, this in impossible since $L(1) = 0$.

Case 2.2 By taking a subsequence, if necessary, for any $\delta > 0$, f_n has at least one pole on $\Delta(0, \delta)$ for all *n*.

Then there exist points $z_{n,\infty} \to 0$ such that $f_n(z_{n,\infty}) = \infty$. We may assume that *z*_n, ∞ is the pole of *f_n* of smallest modulus. Let $\zeta_{n,\infty} = z_{n,\infty}/\rho_n$. It follows from [\(18\)](#page-12-1) that $\zeta_{n,\infty} \to \infty$, and then $z_{n,0}/z_{n,\infty} = \zeta_{n,0}/\zeta_{n,\infty} \to 0$. Now set

$$
M_n(z) = \frac{f_n(z_{n,\infty}z)}{z_{n,\infty}^{k+1}}.
$$

Then, for sufficiently large *n*, $\{M_n\}$ is well-defined for each $z \in \mathbb{C}$, all of whose zeros have multiplicity at least *k* and whose poles are are multiple. Moreover, $\{M_n\}$ is holomorphic on Δ for sufficiently large *n*. By the assumption, we have $M_n(z) = 0 \Rightarrow$ $|M_n^{(k)}(z)| \leq A|z|$, and $M_n^{(k)}(z) \neq z$. Lemma [10](#page-8-0) implies that $\{M_n\}$ is normal on \mathbb{C}^* . We claim that $\{M_n\}$ is also normal at 0. Otherwise, $\{M_n\}$ is normal on Δ' , but not normal at 0. Since $\{M_n\}$ is holomorphic on Δ , he maximum modulus principle implies that $M_n \to \infty$. But $M_n(z_{n,0}/z_{n,\infty}) = 0$ and $z_{n,0}/z_{n,\infty} \to 0$. This contradiction proves our claim. Hence, $\{M_n\}$ is normal on \mathbb{C} .

Then, taking a subsequence and renumbering,

$$
M_n(z)\to M(z)
$$

spherically uniformly on compact subsets of C, where *M* is meromorphic, all of whose zeros have multiplicity at least *k*. Clearly, $M(1) = \infty$. On the other hand,

 $M_n(z_{n,0}/z_{n,\infty}) = 0$ and $z_{n,0}/z_{n,\infty} \to 0$, we obtain $M(0) = 0$. Arguing as in Case 2.1 (for $L(z)$), we have $M(z) = z^{k+1}/(k+1)!$. But, $M(1) = \infty$, a contradiction. *Then we have shown that* [\(17\)](#page-12-0) *is impossible*.

We thus have proved that *G* is normal at 0.

We now turn to show that is normal at $z = 0$. Since G is normal at 0, then the family *G* is equicontinuous at 0 with respect to the spherical distance. On the other hand, $g(0) = \infty$ for each $g \in G$, so there exists $\delta > 0$ such that $|g(z)| > 1$ for all *g* ∈ *G* and each z ∈ Δ (0, δ). It follows that $f(z) \neq 0$ for all $f \in \mathcal{F}$ and $z \in \Delta$ (0, δ). Since *F* is normal on Δ' but not normal at $z = 0$, the family $1/\mathcal{F} = \{1/f : f \in \mathcal{F}\}\)$ is holomorphic in D_{δ} and normal on $\Delta'(0, \delta)$, but not normal at $z = 0$. Thus there exists a sequence $\{1/f_n\} \subset 1/\mathcal{F}$ which converges locally uniformly in $\Delta'(0, \delta)$, but not on $\Delta(0, \delta)$. The maximum modulus principle implies that $1/f_n \to \infty$ in $\Delta'(0, \delta)$. Thus $f_n \to 0$ converges locally uniformly in $\Delta'(0, \delta)$, and hence so does $\{g_n\} \subset \mathcal{G}$, where $g_n(z) = f_n(z)/z$. But $|g_n(z)| \ge 1$ for $z \in \Delta(0, \delta)$, a contradiction. This completes the proof of Theorem 1. 

Proof of Theorem 2 Using the same argument as in the proof of Theorem [1,](#page-1-0) we can prove Theorem [2.](#page-1-1) We here omit the details.

Acknowledgments The author is grateful to the referee for his/her valuable comments.

References

- 1. Bergweiler, W., Eremenko, A.: On the singularities of the inverse to a meromorphic function of finite order. Rev. Mat. Iberoam **11**, 355–373 (1995)
- 2. Gu, Y.X.: A normal criterion of meromorphic families. Sci. Math. Issue (I), 276–274 (1979)
- 3. Hayman, W.K.: Meromorphic functions. Clarendon Press, Oxford (1964)
- 4. Pang, X.C., Zalcman, L.: Normal families and shared values. Bull. London Math. Soc. **32**, 325–331 (2000)
- 5. Pang, X.C., Yang, D.G., Zalcman, L.: Normal families of meromorphic functions whose derivatives omit a function. Comput. Methods Funct **2**, 257–265 (2002)
- 6. Pang, X.C., Zalcman, L.: Normal families of meromorphic functions with multiple zeros and poles. Israel J. Math. **136**, 1–9 (2003)
- 7. Rippon, P.J., Stallard, G.M.: Iteration of a class of hyperbolic meromorphic functions. Proc. Amer. Math. Soc. **127**, 3251–3258 (1999)
- 8. Schiff, J.: Normal families. Springer-Verlag, New York/Berlin (1993)
- 9. Wang, Y.F., Fang, M.L.: Picard values and normal families of meromorphic functions with multiple zeros. Acta Math. Sinica (N.S.). **14**(1), 17–26 (1998)
- 10. Xu, Y., Fang, M.L.: On normal families of meromorphic functions. J. Aust. Math. Soc. **74**, 155–164 (2003)
- 11. Xu, Y.: Normality and exceptional functions of derivatives. J. Aust. Math. Soc. **76**, 403–413 (2004)
- 12. Yang, L.: Normality for families of meromorphic functions. Sci. Sinica Ser. A **29**, 1263–1274 (1986)
- 13. Yang, L.: Value distribution theory. Springer-Verlag & Science Press, Berlin (1993)
- 14. Zhang, G.M., Pang, X.C., Zalcman, L.: Normal families and omitted functions II. Bull. London Math. Soc. **41**, 63–71 (2009)