

Continued fractions for some transcendental numbers

Andrew N. W. Hone¹

Received: 16 September 2015 / Accepted: 13 November 2015 / Published online: 14 December 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We consider series of the form

$$\frac{p}{q} + \sum_{j=2}^{\infty} \frac{1}{x_j},$$

where $x_1 = q$ and the integer sequence (x_n) satisfies a certain non-autonomous recurrence of second order, which entails that $x_n | x_{n+1}$ for $n \ge 1$. It is shown that the terms of the sequence, and multiples of the ratios of successive terms, appear interlaced in the continued fraction expansion of the sum of the series, which is a transcendental number.

Keywords Continued fraction \cdot Non-autonomous recurrence \cdot Transcendental number

Mathematics Subject Classification Primary 11J70; Secondary 11B37

1 Introduction

In recent work [5], we considered the integer sequence

 $1, 1, 2, 12, 936, 68408496, 342022190843338960032, \dots$ (1.1)

Communicated by A. Constantin.

Andrew N. W. Hone anwh@kent.ac.uk; A.N.W.Hone@kent.ac.uk

¹ School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NF, UK

(sequence A112373 in Sloane's Online Encyclopedia of Integer Sequences), which is generated from the initial values $x_0 = x_1 = 1$ by the nonlinear recurrence relation

$$x_{n+2} x_n = x_{n+1}^2 (x_{n+1} + 1),$$
(1.2)

and proved some observations of Hanna, namely that the sum

$$\sum_{j=1}^{\infty} \frac{1}{x_j} \tag{1.3}$$

has the continued fraction expansion

$$[x_0; y_0, x_1, y_1, x_2, \dots, y_{j-1}, x_j, \dots],$$
(1.4)

where $y_i = x_{i+1}/x_i \in \mathbb{N}$ and we use the notation

for continued fractions. Furthermore, we generalized this result by obtaining the explicit continued fraction expansion for the sum of reciprocals (1.3) in the case of a sequence (x_n) generated by a nonlinear recurrence of the form

$$x_{n+1} x_{n-1} = x_n^2 F(x_n), (1.5)$$

with $F(x) \in \mathbb{Z}_{\geq 0}[x]$ and F(0) = 1; so (1.2) corresponds to the particular case F(x) = x + 1.

All of the recurrences (1.5) exhibit the Laurent phenomenon [4], and starting from $x_0 = x_1 = 1$ they generate a sequence of positive integers satisfying $x_n|x_{n+1}$. The latter fact means that the sum (1.3) is an Engel series (see Theorem 2.3 in Duverney's book [3], for instance).

The purpose of this note is to present a further generalization of the results in [5], by considering a sum

$$S = \frac{p}{q} + \sum_{j=2}^{\infty} \frac{1}{x_j},$$
 (1.6)

with the terms x_n satisfying the recurrence

$$x_{n+1} x_{n-1} = x_n^2 (z_n x_n + 1), \qquad (1.7)$$

for $n \ge 2$, where (z_n) is a sequence of positive integers, $x_1 = q$, and x_2 is specified suitably. Observe that, in contrast to (1.5), the recurrence (1.7) can be viewed as a

non-autonomous dynamical system for x_n , because the coefficient z_n can vary independently (unless it is taken to be $G(x_n)$, for some function G). The same argument as used in [5], based on Roth's theorem, shows the transcendence of any number S defined by a sum of the form (1.6) with such a sequence (x_n) .

2 The main result

We start with a rational number written in lowest terms as p/q, and suppose that the continued fraction of this number is given as

$$\frac{p}{q} = [a_0; a_1, a_2, a_3, \dots, a_{2k}]$$
(2.1)

for some $k \ge 0$. Note that, in accordance with a comment on p. 230 of [7], there is no loss of generality in assuming that the index of the final coefficient is even. For the convergents we denote numerators and denominators by p_n and q_n , respectively, and use the correspondence between matrix products and continued fractions, which says that

$$\mathbf{M}_{n} := \begin{pmatrix} p_{n} & p_{n-1} \\ q_{n} & q_{n-1} \end{pmatrix} = \begin{pmatrix} a_{0} & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_{1} & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_{n} & 1 \\ 1 & 0 \end{pmatrix}, \qquad (2.2)$$

yielding the determinantal identity

$$\det \mathbf{M}_n = p_n q_{n-1} - p_{n-1} q_n = (-1)^{n+1}.$$
(2.3)

Now for a given sequence (z_n) of positive integers, we define a new sequence (x_n) by

$$x_1 = q, \quad x_{n+1} = x_n y_{n-1} (x_n z_n + 1) \text{ for } n \ge 1,$$
 (2.4)

where

$$y_0 = q_{2k-1} + 1, \qquad y_n = \frac{x_{n+1}}{x_n} \quad \text{for} \quad n \ge 1.$$
 (2.5)

It is clear from (2.4) and (2.5) that (x_n) is an increasing sequence of positive integers such that $x_n|x_{n+1}$ for all $n \ge 1$; (y_n) also consists of positive integers, and is an increasing sequence as well. The recurrence (1.7) for $n \ge 2$ follows immediately from (2.4) and (2.5).

Theorem 2.1 The partial sums of (1.6) are given by

$$S_n := \frac{p}{q} + \sum_{j=2}^n \frac{1}{x_j} = [a_0; a_1, \dots, a_{2(k+n-1)}]$$

for all $n \ge 1$, where the coefficients appearing after a_{2k} are

$$a_{2k+2j-1} = y_{j-1}z_j, \quad a_{2k+2j} = x_j \quad for \quad j \ge 1.$$

Proof For n = 1, S_1 is just (2.1), and we note that $q_{2k-1} = y_0 - 1$ and $q_{2k} = q = x_1$. Proceeding by induction, we suppose that $q_{2k+2n-3} = y_{n-1} - 1$ and $q_{2k+2n-2} = x_n$, and calculate the product

$$\mathbf{M}_{2k+2n} = \mathbf{M}_{2k+2n-2} \begin{pmatrix} a_{2k+2n-1} & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_{2k+2n} & 1\\ 1 & 0 \end{pmatrix} \\ = \mathbf{M}_{2k+2n-2} \begin{pmatrix} y_{n-1}z_n & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_n & 1\\ 1 & 0 \end{pmatrix} \\ = \begin{pmatrix} p_{2k+2n-2} & p_{2k+2n-3}\\ q_{2k+2n-2} & q_{2k+2n-3} \end{pmatrix} \begin{pmatrix} x_n y_{n-1}z_n & y_{n-1}z_n\\ x_n & 1 \end{pmatrix}$$

By making use of (2.4) and (2.5), this gives $p_{2k+2n} = (x_n y_{n-1} z_n + 1) p_{2k+2n-2} + x_n p_{2k+2n-3}$,

$$q_{2k+2n-1} = y_{n-1}z_n q_{2k+2n-2} + q_{2k+2n-3} = x_n y_{n-1}z_n + y_{n-1} - 1$$

= $\frac{x_{n+1}}{x_n} - 1 = y_n - 1,$

and

$$q_{2k+2n} = (x_n y_{n-1} z_n + 1)q_{2k+2n-2} + x_n q_{2k+2n-3}$$

= $(x_n y_{n-1} z_n + 1)x_n + x_n (y_{n-1} - 1) = x_{n+1},$

which are the required denominators for the (2k + 2n - 1)th and (2k + 2n)th convergents. Thus we have

$$S_{n+1} = S_n + \frac{1}{x_{n+1}} = \frac{p_{2k+2n-2}}{q_{2k+2n-2}} + \frac{1}{q_{2k+2n}} = \frac{1}{q_{2k+2n}} \left(\frac{x_{n+1}}{x_n} p_{2k+2n-2} + 1 \right).$$

From (2.3) and (2.4), the bracketed expression above can be rewritten as

$$\left(y_{n-1}(x_n z_n + 1) - q_{2n+2k-3} \right) p_{2k+2n-2} + q_{2n+2k-2} p_{2k+2n-3} = \left(y_{n-1}(x_n z_n + 1) - y_{n-1} + 1 \right) p_{2k+2n-2} + x_n p_{2k+2n-3}$$

giving

$$S_{n+1} = \frac{1}{q_{2k+2n}} \Big((x_n y_{n-1} z_n + 1) p_{2k+2n-2} + x_n p_{2k+2n-3} \Big) = \frac{p_{2k+2n}}{q_{2k+2n}},$$

which is the required result.

Upon taking the limit $n \to \infty$ we obtain the infinite continued fraction expansion for the sum *S*, which is clearly irrational. To show that *S* is transcendental, we need the following growth estimate for x_n :

Lemma 2.2 The terms of a sequence defined by (2.4) satisfy

$$x_{n+1} > x_n^{5/2}$$

for all $n \geq 3$.

Proof Since (x_n) is an increasing sequence, the recurrence relation (1.7) gives

$$x_{n+1} > \frac{x_n^3}{x_{n-1}} > x_n^2$$

for $n \ge 2$. Hence $x_{n-1} < x_n^{1/2}$ for $n \ge 3$, and putting this back into the first inequality above yields $x_{n+1} > x_n^3/x_n^{1/2} = x_n^{5/2}$, as required.

The preceding growth estimate for x_n means that *S* can be well approximated by rational numbers.

Theorem 2.3 The sum

$$S = \frac{p}{q} + \sum_{j=2}^{\infty} \frac{1}{x_j} = [a_0; a_1, \dots, a_{2k}, y_0 z_1, x_1, y_1 z_2, \dots, y_{j-1} z_j, x_j, \dots]$$

is a transcendental number.

Proof This is the same as the proof of Theorem 4 in [5], which we briefly outline here. Let $P_n = p_{2k+2n-2}$ and $Q_n = q_{2k+2n-2}$. Approximating the irrational number *S* by the partial sum $S_n = P_n/Q_n$, then using Lemma 2.2 and a comparison with a geometric sum, gives the upper bound

$$\left| S - \frac{P_n}{Q_n} \right| = \sum_{j=n+1}^{\infty} \frac{1}{x_j} < \frac{1}{x_n^{5/2 - \epsilon}} = \frac{1}{Q_n^{5/2 - \epsilon}}$$

for any $\epsilon > 0$, whenever *n* is sufficiently large. Roth's theorem [6] (see also chapter VI in [1]) says that, for an arbitrary fixed $\kappa > 2$, an irrational algebraic number α has only finitely many rational approximations P/Q for which $\left|\alpha - \frac{P}{Q}\right| < \frac{1}{Q^{\kappa}}$; so *S* is transcendental.

For other examples of transcendental numbers whose continued fraction expansion is explicitly known, see [2] and references therein.

3 Examples

The autonomous recurrences (1.5) considered in [5], where the polynomial F has positive integer coefficients and F(0) = 1, give an infinite family of examples. In that case, one has p = 1 and $x_1 = q = 1$, so that k = 0, $y_0 = 1$ and $z_n =$

 $(F(x_n) - 1)/x_n$. More generally, one could take $z_n = G(x_n)$ for any non-vanishing arithmetical function *G*.

In general, it is sufficient to take the initial term in (1.6) lying in the range $0 < p/q \le 1$, since going outside this range only alters the value of a_0 . As a particular example, we take

$$\frac{p}{q} = \frac{2}{7} = [0; 3, 2], \quad z_n = n \text{ for } n \ge 1,$$

so that k = 1, and $q_1 = 3$ which gives $y_0 = 2$. Hence $x_1 = 7$, $x_2 = 112$, and the sequence (x_n) continues with

403200, 1755760043520000, 53695136666462381094317154204367872000000,

The sum S is the transcendental number

$$\frac{2}{7} + \frac{1}{112} + \frac{1}{403200} + \frac{1}{1755760043520000} + \dots \approx 0.2946453373015879,$$

with continued fraction expansion

 $[0; 3, 2, 2, 7, 32, 112, 10800, 403200, 17418254400, 1755760043520000, \ldots].$

Acknowledgements This work is supported by Fellowship EP/M004333/1 from the Engineering and Physical Sciences Research Council. The original inspiration came from Paul Hanna's observations concerning the nonlinear recurrence sequences described in [5], which were communicated via the Seqfan mailing list. The author is grateful to Jeffrey Shallit for helpful correspondence on related matters.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- Cassels, J.W.S.: An Introduction to Diophantine Approximation. Cambridge University Press, Cambridge (1957)
- Davison, J.L., Shallit, J.O.: Continued fractions for some alternating series. Monatsh. Math. 111, 119– 126 (1991)
- Duverney, D.: Number Theory: An Elementary Introduction Through Diophantine Problems, World Scientific (2010)
- 4. Fomin, S., Zelevinsky, A.: The Laurent Phenomenon. Adv. Appl. Math. 28, 119-144 (2002)
- Hone, A.N.W.: Curious continued fractions, nonlinear recurrences and transcendental numbers. J. Integer Seq. 18 (2015) (Article 15.8.4)
- 6. Roth, K.F.: Rational approximations to algebraic numbers. Mathematika 2, 1–20 (1955)
- Shallit, J.O.: Simple continued fractions for some irrational numbers. II. J. Number Theory 14, 228–231 (1982)