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Abstract Let M be an n(≥3)-dimensional closed hypersurface in a unit sphere with
constant m-th order mean curvature and with two distinct principal curvatures. We
obtain a sharp curvature integral for M in terms of Ricci curvature, which gives a
characterization of a Clifford hypersurface. Moreover we give a generalization of
Simons’ integral inequality for closed hypersurface with vanishing m-th order mean
curvature by making use of the Laplacian of the function of principal curvatures.

Keywords Clifford hypersurface · Simons’ integral inequality · Ricci curvature ·
Higher-order mean curvature
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1 Introduction

Let M be an n-dimensional closed minimal hypersurface in an (n + 1)-dimensional
unit sphere Sn+1. In his celebrated paper [14], Simons proved that either M is totally
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geodesic, or |A|2 ≡ n, or |A|2(x) > n at some point x ∈ M . Here |A|2 denotes the
squared norm of the second fundamental form on M . Motivated by this result, Chern
et al. [9] and Lawson [8] proved independently that if |A|2 ≡ n, then M is isometric to
a Clifford minimal hypersurface. This characterization was generalized into the case
of hypersurfaces with constant mean curvature by Alencar and do Carmo [1].

On the other hand,Otsuki [12] classifiedminimal hypersurfaces in a unit spherewith
two distinct principal curvatures. He proved that if the multiplicities of two distinct
principal curvatures are at least 2, then the minimal hypersurface is locally congruent
to a Clifford minimal hypersurface. Furthermore, he was able to prove that if one of
the two distinct principal curvatures is simple, then there are infinitely many minimal
hypersurfaces other than Clifford minimal hypersurfaces. In this direction, Perdomo
[13] and Wang [15] independently obtained a curvature integral inequality for closed
minimal hypersurfaces in Sn+1 with two distinct principal curvatures. More precisely,
they proved

Theorem [13,15] Let M be an n(≥3)-dimensional closed minimal hypersurface in
S
n+1 with two distinct principal curvatures, one of them being simple. Then

∫
M

|A|2 ≤ nVol(M),

where Vol(M) denotes the volume of M. Moreover, equality holds if and only if M is

isometric to a Clifford minimal hypersurface Sn−1
(√

n−1
n

)
× S

1
(√

1
n

)
.

It turned out that the similar curvature integral inequality holds when the m-th order
mean curvature Hm vanishes, which was obtained by Wei [17]. More generally, we
consider n-dimensional closed hypersurfaces with constantm-th order mean curvature
in a unit sphere with two distinct principal curvatures. Applying the similar argument
as in [12] shows that if the multiplicities of two distinct principal curvatures are at least
2, then a closed hypersurface with constant m-th order mean curvature is congruent
to a Clifford hypersurface (see also [20]). Thus it suffices to consider the case where
one of the two distinct principal curvatures is simple.

In this paper, we first obtain a sharp curvature integral inequality in case of constant
m-th order mean curvature. In fact, we prove the following (Theorem 4.1):

Theorem Let M be an n(≥3)-dimensional closed hypersurface in Sn+1 with constant
m-th order mean curvature Hm and with two distinct principal curvatures λ and
μ, μ being simple (i.e., multiplicity 1). For the unit principal direction vector en
corresponding to μ, we have

∫
M
Ric(en, en) ≥ 0,

where Ric denotes the Ricci curvature. Moreover, equality holds if and only if M is

isometric to a Clifford hypersurface Sn−1
(

1√
1+λ2

)
×S

1
( |λ|√

1+λ2

)
, where λ is the root

of the equation (n − m)λm − mλm−2 = nHm .
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We remark that if Hm ≡ 0 for 1 ≤ m < n, then

Ric(en, en) = (n − 1)(1 + λμ) = (n − 1)

(
1 − m(n − m)

n(m2 − 2m + n)
|A|2

)
.

Therefore it can be regarded as an extension of [13,15,17]. It immediately follows
from the above theorem that if Ric(en, en) ≤ 0 on such a hypersurface M , then M is
isometric to a Clifford hypersurface.

Furthermore, we analyse the Laplacian of the function of principal curvatures to
give a characterization theorem under a pointwise Ricci curvature assumption. More
precisely, we obtain the following theorem (see Corollary 4.3 and Theorem 4.4):

Theorem Let M be an n(≥3)-dimensional closed hypersurface in Sn+1 with constant
m-th order mean curvature Hm and with two distinct principal curvatures λ and μ,
μ being simple. Denote by en the unit principal direction vector corresponding to
μ. Either if Ric(en, en) ≥ 0 or Ric(en, en) ≤ 0 on M, then M is isometric to a

Clifford hypersurface Sn−1
(

1√
1+λ2

)
×S

1
( |λ|√

1+λ2

)
, where λ is the root of the equation

(n − m)λm − mλm−2 = nHm .

As a consequence of the above theorem, when Hm ≡ 0 for 1 ≤ m < n, the Ricci
curvature assumption on M is equivalent to the condition

|A|2 ≤ n(m2 − 2m + n)

m(n − m)
or |A|2 ≥ n(m2 − 2m + n)

m(n − m)
.

Thus the above theorem generalizes the previous results in [3,5,6,12,16,18,20].

The Ricci curvature of a Cliffordminimal hypersurface Sn−k
(√

n−k
n

)
×S

k
(√

k
n

)

varies between n(k−1)
k and n(n−k−1)

n−k . Thus it is natural to ask whether it is isometric

to a Clifford minimal hypersurface S
n−1

(√
n−1
n

)
× S

1
(√

1
n

)
, provided M is a

closed minimal hypersurface in S
n+1 and the Ricci curvature of M satisfies 0 ≤

Ric(M) ≤ n(n−2)
n−1 . Li [10] gave an affirmative answer for the minimal hypersurfaces

in S
4. Hasanis and Vlachos [7] extended this result to minimal hypersurfaces in a

unit sphere of arbitrary dimension. Zhang [21] also generalized Li’s result to compact
hypersurfaces with constant mean curvature in a unit sphere. Moreover, Cheng and
Ishikawa [4] proved that there exists a constant ε(n) > 0 such that if M is a closed
minimal hypersurface with Ricci curvature Ric(M) ≥ n/2 and n ≤ |A|2 ≤ n + ε(n),
then M is isometric to a Clifford minimal hypersurface. As to the case of hypersurface
with constant m-th order mean curvature and with two distinct principal curvatures,
our above theorem can be thought of as an extension of these results as well.

Finally we also generalize Simons’ integral inequality to the case of closed hyper-
surfaces with Hm ≡ 0 as follows (Theorem 4.7):
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Theorem Let M be an n(≥3)-dimensional closed hypersurface in Sn+1 with Hm ≡ 0
and with two distinct principal curvatures, one of them being simple. Then we have

⎧⎪⎪⎨
⎪⎪⎩

∫
M

|A|p
(

|A|2 − n(m2 − 2m + n)

m(n − m)

)
≤ 0 if p < n−2

n m,

∫
M

|A|p
(

|A|2 − n(m2 − 2m + n)

m(n − m)

)
≥ 0 if p > n−2

n m.

Moreover, equalities hold if and only if M is isometric to a Clifford hypersurface

S
n−1

(√
n−m
n

)
× S

1
(√

m
n

)
.

When m = 1 and p = 2, the above theorem is exactly the same as Simons’ result.
When m = 2 and p = 2, Li [11] obtained some pointwise estimates on |A|2, which
gives the above theorem. For p = 2 and 3 < m < n, Wei [19] obtained the above
theorem for closed and rotational hypersurfaces in a unit sphere with Hm ≡ 0. Thus
our theorem unifies the previous results for closed hypersurfaces with Hm ≡ 0 and
with two distinct principal curvatures.

2 Preliminaries

Let M be an n(≥3)-dimensional hypersurface in the unit sphere Sn+1. Denote the Rie-
mannian connection of M by∇. We choose orthonormal frame fields e1, . . . , en, en+1
of the unit sphere such that e1, . . . , en are tangent to M . Let ω1, . . . , ωn, ωn+1 be the
dual coframe. Then ωn+1 = 0 on M . Let h and A be the second fundamental form
and the shape operator of M , respectively. Note that h is a symmetric 2-form and A is
a self-adjoint endomorphism of the tangent space at each p ∈ M such that

〈A(X),Y 〉 = h(X,Y )

for all X,Y ∈ TpM , where TpM denotes the tangent space of M at p ∈ M . The
covariant derivative∇h of h is a differential 3-form,∇h = ∑n

i, j,k=1 hi jkω
i ⊗ω j ⊗ωk ,

where hi jk is the coefficient function of ∇h such that

hi jk ≡ hi j;k = (∇ek h
)
(ei , e j )

= ∇ek h(ei , e j ) − h(∇ek ei , e j ) − h(ei ,∇ek e j ).

From the Codazzi equation, it follows

hi jk = hik j .

The m-th order mean curvature Hm of an n-dimensional hypersurface M ⊂ S
n+1

is defined by the elementary symmetric polynomial of degree m in the principal cur-
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Characterizations of a Clifford hypersurface in a unit 441

vatures λ1, λ2, . . . , λn on M as follows:

(
n

m

)
Hm =

∑
1≤i1<···<im≤n

λi1 . . . λim .

In the following, we give an important example of closed hypersurfaces in Sn+1 with
constant m-th order mean curvature and with two distinct principal curvatures which
is called a Clifford hypersurface. If an n-dimensional Clifford hypersurface in S

n+1

has two distinct principal curvatures λ andμ of multiplicities n−k and k, respectively,
then it is given by

S
n−k

(
1√

1 + λ2

)
× S

k

(
1√

1 + μ2

)

with λμ + 1 = 0, that is,

S
n−k

(
1√

1 + λ2

)
× S

k
( |λ|√

1 + λ2

)
,

where λ satisfies the following identity:

(
n

m

)
Hm =

(
n − k

m

)
λm +

(
n − k

m − 1

)(
k

1

)
λm−1μ + · · ·

+
(
n − k

1

)(
k

m − 1

)
λμm−1 +

(
k

m

)
μm

with λμ + 1 = 0.
In particular, if one of the principal curvatures is simple, say k = 1, then

S
n−1

(
1√

1 + λ2

)
× S

1
( |λ|√

1 + λ2

)
,

where λ satisfies the following identity:

(n − m)λm − mλm−2 = nHm .

Moreover, if k = 1 and Hm = 0, then λ = ±
√

m
n−m andμ = ∓

√
n−m
m . Thus a Clifford

hypersurface is given by

S
n−1

(√
n − m

n

)
× S

1
(√

m

n

)
.

As mentioned in the introduction, we have the following fact by using the similar
argument as in [12] if the multiplicities of the principal curvatures are at least 2.
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Lemma 2.1 [20] Let M be an n(≥3)-dimensional closed hypersurface in S
n+1 with

constant m-th order mean curvature Hm and with two distinct principal curvatures
of multiplicities n − k and k for 2 ≤ k ≤ n − 2. Then M is isometric to a Clifford
hypersurface Sn−k(

√
1 − c2) × S

k(c) for some 0 < c < 1.

From now on, let M be a closed hypersurface in a unit sphere with constant m-th
order mean curvature Hm and with two distinct principal curvatures with multiplicities
n − 1, 1. Since M has two distinct principal curvatures and one of them is simple, we
may assume that λ = λ1 = · · · = λn−1 and μ = λn . We choose the orthonormal
frame tangent to M such that hi j = λiδi j , that is,

Aei = λei for i = 1, . . . , n − 1,
Aen = μen .

Since M has two distinct principal curvatures λ and μ,

(
n

m

)
Hm =

(
n − 1

m

)
λm +

(
n − 1

m − 1

)
λm−1μ.

Therefore

Hm = m

n
λm−1

(
n − m

m
λ + μ

)
. (1)

We claim that λm − Hm never vanishes on M . To see this, we consider two cases:
m = 1 and m ≥ 2. Suppose m = 1. If H1 = 0, then λ 
= 0 by our assumption.
Thus λ − H1 
= 0. If H1 
= 0, then λ − H1 = λ−μ

n by the identity (1). Since λ 
= μ,
it never vanishes. Suppose m ≥ 2. If Hm 
= 0, then the identity (1) implies λ 
= 0.
Therefore λm − Hm = m

n λm−1(λ − μ) 
= 0. If Hm = 0 and λ 
= 0, then λm − Hm

never vanishes. If Hm = 0 and λ = 0 at some point, then it follows from the equation
λm−1( n−m

n λ + μ) = 0 that λ ≡ 0 by the continuity of λ and μ. Thus M has constant
sectional curvature 1 by the Gauss equation, which implies that M is totally geodesic.
However this is a contradiction because λ 
= μ. Hence we conclude that λm − Hm

never vanishes on M . We also note that λ never vanishes on M for 1 ≤ m ≤ n.
Now define a function w := |λm − Hm |− 1

n . Wu [20] obtained the following useful
second order ordinary differential equation on M :

d2w

dv2
= −w

(
nHm − (n − m) λm

mλm−2 + 1

)
, (2)

where v is the arclength parameter of the integral curve with respect toμ. In particular,
if H1 ≡ 0, then this equation was originally obtained by Otsuki [12].

3 Laplacian of the function of principal curvatures

Let M be an n(≥3)-dimensional closed hypersurface in Sn+1 with constantm-th order
mean curvature Hm andwith two distinct principal curvatures λ andμ,μ being simple:
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Characterizations of a Clifford hypersurface in a unit 443

λ = λ1 = · · · = λn−1 and μ = λn . Let w = |λm − Hm |− 1
n . For more computations

of w, we need the following lemma.

Lemma 3.1 [12] Let M be an n-dimensional closed hypersurface in a unit sphere. If
the multiplicities of principal curvatures are all constant, then the distribution of the
space of principal vectors corresponding to each principal curvature is completely
integrable. Moreover, if the multiplicity of a principal curvature is greater than 1, then
this principal curvature is constant on each integral submanifold of the corresponding
distribution of the space of principal vectors.

From Lemma 3.1, it follows, for each 1 ≤ i ≤ n − 1,

∇ei λ = eiλ = 0. (3)

Since w = |λm − Hm |− 1
n = (s (λm − Hm))−

1
n for a fixed constant s = ±1, we can

compute the directional derivative of w with respect to ei , i = 1, . . . , n as follows:

∇ei w = ∇ei (|λm − Hm |− 1
n )

= −m

n
swn+1λm−1∇ei λ. (4)

For i = 1, . . . , n − 1, the Eq. (3) implies

∇eiw = 0.

For a function f = f (w) on M , we compute the Laplacian of f on M .

� f = div∇ f =
n∑

i=1

〈∇ei∇ f, ei
〉 =

n∑
i, j=1

〈∇ei

(
(e j f )e j

)
, ei

〉

=
n∑

i, j=1

〈∇ei

(
(e jw) f ′(w)e j

)
, ei

〉

=
n∑

i=1

〈∇ei

(
(enw) f ′(w)en

)
, ei

〉

=
n∑

i=1

〈
ei ((enw) f ′(w))en, ei

〉 + f ′(w)(enw)

n−1∑
i=1

〈∇ei en, ei
〉
.
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Taking the covariant derivative of h, we have

hiin = ∇en h(ei , ei ) − h(∇en ei , ei ) − h(ei ,∇en ei )

= enλ − 2〈A(ei ),∇en ei 〉
= enλ − 2λ〈ei ,∇en ei 〉
= enλ − λ∇en 〈ei , ei 〉
= enλ.

Moreover

hini = ∇ei h(ei , en) − h(∇ei ei , en) − h(ei ,∇ei en)

= −〈∇ei ei , A(en)〉 − 〈A(ei ),∇ei en〉
= −μ〈∇ei ei , en〉 − λ〈ei ,∇ei en〉
= μ〈ei ,∇ei en〉 − λ〈ei ,∇ei en〉
= (μ − λ)〈ei ,∇ei en〉.

Since hiin = hini ,

〈ei ,∇ei en〉 = enλ

μ − λ
.

Note that

μ − λ = n(Hm − λm)

mλm−1 = − nsw−n

mλm−1

by the equation w = (s(λm − Hm))− 1
n . Combining this with (4), we get

enλ

μ − λ
= enw

s2w
= enw

w
.

Therefore

� f = f ′′(w)(enw)2 + f ′(w)enenw + (n − 1) f ′(w)
(enw)2

w
. (5)

Since v is the arc length parameter of the integral curve with respect to μ,

∂

∂v
= en .

Thus by the Eq. (2), w satisfies

enenw = −w

(
nHm − (n − m) λm

mλm−2 + 1

)
. (6)
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Combining the Eqs. (1), (5) and (6), we get

� f = − f ′(w)w

(
nHm − (n − m) λm

mλm−2 + 1

)
+

[
f ′′(w) + (n − 1)

f ′(w)

w

]
(enw)2

= − f ′(w)w (λμ + 1) +
[
f ′′(w) + (n − 1)

f ′(w)

w

]
(enw)2.

From Gauss equation, it follows

� f = − f ′(w)w Ri
nin +

[
f ′′(w) + (n − 1)

f ′(w)

w

]
(enw)2,

where Ri
jklei = R(ek, el)e j is the Riemann curvature tensor of M . Thus we obtain

� f = − 1

n − 1
f ′(w)w Ric(en, en) +

[
f ′′(w) + (n − 1)

f ′(w)

w

]
(enw)2, (7)

where Ric(en, en) denotes the Ricci curvature in the direction of en .

4 Curvature integral inequalities

Theorem 4.1 Let M be an n(≥3)-dimensional closed hypersurface in Sn+1 with con-
stant m-th order mean curvature Hm and with two distinct principal curvatures λ and
μ, μ being simple. Denote by en the unit principal direction vector corresponding to
μ. Then

∫
M
Ric(en, en) ≥ 0,

where Ric denotes the Ricci curvature. Moreover, equality holds if and only if M is

isometric to a Clifford hypersurface Sn−1
(

1√
1+λ2

)
×S

1
( |λ|√

1+λ2

)
, where λ is the root

of the equation (n − m)λm − mλm−2 = nHm .

Proof Define a function f (w) = logw, where w = |λm − Hm |− 1
n . From the Eq. (7),

we see

� f = −Ric(en, en)

n − 1
+ n − 2

w2 (enw)2.

Integrating � f over M gives

0 =
∫
M

−Ric(en, en)

n − 1
+ n − 2

w2 (enw)2.
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Therefore

∫
M
Ric(en, en) = (n − 1)(n − 2)

∫
M

(enw)2

w2 ≥ 0.

Moreover equality holds if and only if enw ≡ 0 on M in the above inequality, which
is equivalent that enλ ≡ 0. Thus both λ and μ are constant, which implies that M

is isometric to a Clifford hypersurface S
n−1

(
1√
1+λ2

)
× S

1
( |λ|√

1+λ2

)
by Cartan [2],

where λ is the root of the equation (n − m)λm − mλm−2 = nHm . ��
In particular, if Hm ≡ 0 for 1 ≤ m < n, then one sees

Ric(en, en) = (n − 1)

(
1 − m(n − m)

n(m2 − 2m + n)
|A|2

)
. (8)

Therefore from Theorem 4.1 and this observation we have the following, which can
be regarded as an extension of [13,15,17].

Corollary 4.2 Let M be an n(≥3)-dimensional closed hypersurface in S
n+1 with

Hm ≡ 0 (1 ≤ m < n) and with two distinct principal curvatures, one of them being
simple. Then

∫
M

|A|2 ≤ n(m2 − 2m + n)

m(n − m)
Vol(M),

where equality holds if and only if M is isometric to a Clifford hypersurface

S
n−1

(√
n−m
n

)
× S

1
(√

m
n

)
.

As another application of Theorem 4.1, we have

Corollary 4.3 Let M be an n(≥3)-dimensional closed hypersurface in S
n+1 with

constant m-th order mean curvature and with two distinct principal curvatures,
one of them being simple. Denote by en the unit principal direction vector cor-
responding to μ. If Ric(en, en) ≤ 0 on M, then M is isometric to a Clifford

hypersurface S
n−1

(
1√
1+λ2

)
× S

1
( |λ|√

1+λ2

)
, where λ is the root of the equation

(n − m)λm − mλm−2 = nHm .

Furthermore, by making use of the Laplacian of a function of principal curvatures,
we obtain a characterization theorem under a pointwise nonnegative Ricci curvature
assumption:

Theorem 4.4 Let M be an n(≥3)-dimensional closed hypersurface in S
n+1 with

constant m-th order mean curvature Hm and with two distinct principal curva-
tures λ and μ, μ being simple. Denote by en the unit principal direction vector
corresponding to μ. If Ric(en, en) ≥ 0 on M, then M is isometric to a Clifford

hypersurface S
n−1

(
1√
1+λ2

)
× S

1
( |λ|√

1+λ2

)
, where λ is the root of the equation

(n − m)λm − mλm−2 = nHm .
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Proof Define a function f (w) = wk for a number k < 2 − n. Then from the identity
(7) we obtain

� f = − 1

n − 1
f ′(w)w Ric(en, en) +

[
f ′′(w) + (n − 1)

f ′(w)

w

]
(enw)2

= − 1

n − 1
kwk Ric(en, en) + k(k + n − 2)wk−2(enw)2.

Integrating � f over M , we have

0 =
∫
M

� f =
∫
M

[
− 1

n − 1
kwk Ric(en, en) + k(k + n − 2)wk−2(enw)2

]
.

Therefore

1

n − 1

∫
M

wk Ric(en, en) = (k + n − 2)
∫
M

wk−2(enw)2. (9)

From the equality (9) and the assumption that Ric(en, en) ≥ 0, it follows that enw ≡ 0
on M . Therefore one can conclude that M is isometric to a Clifford hypersurface

S
n−1

(
1√
1+λ2

)
×S

1
( |λ|√

1+λ2

)
,whereλ is the root of the equation (n−m)λm−mλm−2 =

nHm as in the proof of Theorem 4.1. ��
Weremark that the proof ofTheorem4.4 stillworks for the casewhereRic(en, en) ≤

0, which gives another proof of Corollary 4.3. (In this case, the constant k in the proof
of Theorem 4.4 should be chosen to be bigger than 2 − n.) When Hm ≡ 0, using
Corollary 4.3, Theorem 4.4, and the Eq. (8), we give a simple proof of the previous
results in [3,5,6,12,16,18,20].

Corollary 4.5 [3,5,6,12,16,18,20] Let M be an n(≥3)-dimensional closed hypersur-
face in S

n+1 with Hm ≡ 0 (1 ≤ m < n) and with two distinct principal curvatures,

one of them being simple. Either if |A|2 ≥ n(m2−2m+n)
m(n−m)

or |A|2 ≤ n(m2−2m+n)
m(n−m)

on M,

then M is isometric to the Riemannian product Sn−1
(√

n−m
n

)
× S

1
(√

m
n

)
.

Combining Lemma 2.1, Corollary 4.3, and Theorem 4.4, we obtain the following.

Corollary 4.6 Let M be an n(≥3)-dimensional closed hypersurface in S
n+1 with

constant m-th order mean curvature and with two distinct principal curvatures. If the
Ricci curvature on M is nonnegative, then M is isometric to a Clifford hypersurface.

It would be interesting to ask if the above results are still true without assuming that
M has two distinct principal curvatures.

It is well-known that a minimal hypersurface M in S
n+1 supports the following

integral inequality which is due to Simons [14]:

∫
M

|A|2
(
|A|2 − n

)
≥ 0.
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As mentioned in the introduction, when Hm ≡ 0, we obtain a generalized Simons’
integral inequality for closed hypersurfaces with two distinct principal curvatures as
follows:

Theorem 4.7 Let M be an n(≥3)-dimensional closed hypersurface in S
n+1 with

Hm ≡ 0 (1 ≤ m < n) and with two distinct principal curvatures, one of them
being simple. Then we have

⎧⎪⎪⎨
⎪⎪⎩

∫
M

|A|p
(

|A|2 − n(m2 − 2m + n)

m(n − m)

)
≤ 0 if p < n−2

n m,

∫
M

|A|p
(

|A|2 − n(m2 − 2m + n)

m(n − m)

)
≥ 0 if p > n−2

n m.

Moreover, equalities hold if and only if M is isometric to a Clifford hypersurface

S
n−1

(√
n−m
n

)
× S

1
(√

m
n

)
.

Proof Since Hm ≡ 0, the Eq. (1) gives

μ = −n − m

m
λ.

Thus as in the proof of Theorem 4.4, we have

∫
M

wk Ric(en, en) ≥ 0 if k > 2 − n, (10)
∫
M

wk Ric(en, en) ≤ 0 if k < 2 − n, (11)

where w = |λ|−m
n . Let p = − km

n . Then

⎧⎪⎨
⎪⎩

∫
M

|λ|p ≥ n − m

m

∫
M

|λ|p+2 if p < n−2
n m,∫

M
|λ|p ≤ n − m

m

∫
M

|λ|p+2 if p > n−2
n m.

Therefore using

|A|2 = (n − 1)λ2 + μ2 = n(m2 − 2m + n)

m2 λ2,

we finally obtain

⎧⎪⎪⎨
⎪⎪⎩

∫
M

|A|p
(

|A|2 − n(m2 − 2m + n)

m(n − m)

)
≤ 0 if p < n−2

n m,

∫
M

|A|p
(

|A|2 − n(m2 − 2m + n)

m(n − m)

)
≥ 0 if p > n−2

n m.
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Furthermore, equalities hold in the inequalities (10) and (11) if and only if enw ≡
0. Thus equalities in Theorem 4.7 hold if and only if M is isometric to a Clifford

hypersurface Sn−1
(√

n−m
n

)
× S

1
(√

m
n

)
. ��

Using Theorem 4.7, one can obtain the lower bound of the total absolute Gauss-
Kronecker curvature

∫
M |GK | in terms of the Ln−2 norm of the second fundamental

form on M as follows:

Corollary 4.8 Let M be an n(≥3)-dimensional closed hypersurface in S
n+1 with

Hm ≡ 0 and with two distinct principal curvatures, one of them being simple. Then

∫
M

|GK | ≥
(

m2

n(m2 − 2m + n)

) n−2
2

∫
M

|A|n−2,

where GK is the Gauss-Kronecker curvature of M. Moreover, equalities hold if and

only if M is isometric to a Clifford hypersurface Sn−1
(√

n−m
n

)
× S

1
(√

m
n

)
.

(In other words,
∫
M |GK | ≥ ∫

M |λ|n−2 for the principal curvature λ with multi-
plicity n − 1.)

Proof Since the Gauss-Kronecker curvature of M is given by

GK = λn−1μ = −n − m

m
λn,

taking p = n − 2 > n−2
n m in Theorem 4.7 shows

∫
M

|GK | = n − m

m

∫
M

|λ|n ≥
∫
M

|λ|n−2.

As before, equalities hold if and only if M is isometric to a Clifford hypersurface

S
n−1

(√
n−m
n

)
× S

1
(√

m
n

)
. ��

It would be interesting if one can obtain the same curvature integral inequalities as
in Theorem 4.7 and Corollary 4.8 without assuming that M has two distinct principal
curvatures.
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