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Abstract In this paper, the monotonicity property for two functions involving the
logarithmic of the q-gamma function is proven for all q > 0. As a consequence, sharp
inequalities for the q-gamma function are established. Our results are shown to be as
a generalization of results which were obtained by Anderson and Qiu (Proc AmMath
Soc 125:3355–3362, 1997).
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1 Introduction

Euler’s gamma function is defined for positive real numbers x by

�(x) =
∫ ∞

0
t x−1e−t dt, x > 0

which is one of the most important special functions and has many extensive appli-
cations in many branches, for example, statistics, physics, engineering, and other
mathematical sciences. Anderson and Qiu [1] used the increasing monotonicity of the
function
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f (x) = log�(x + 1)

x log x
, x > 1 (1.1)

to establish a sharp inequality

x (1−γ )x−1 < �(x) < xx−1, x > 1 (1.2)

where γ = 0.577215 . . . is the Euler–Mascheroni constant, which has attracted the
attention of many researches, because of its simple form, and of its usefulness in
practical applications in pure mathematics or other branches of science such as prob-
abilities, engineering, or statistical physics. They conjectured that f is concave on the
interval [1,∞). The concavity of f on [1,∞) was established by Elbert and Laforgia
[2]. A short and simple proof of the increasing of the function f which extended the
increasing on (0,∞), has been presented by Alzer [3]. It is worth mentioning that in
1989, Anderson et al. [4] conjectured that the function

G(x) = log�( x2 + 1)

x log x
, x ≥ 2 (1.3)

is strictly increasing on [2,∞). This conjecture was proved by Anderson and Qiu [1].
Many of the classical facts about the ordinary gamma function have been extended

to the q-gamma function (see [5–8] and the references given therein). The aim of this
paper is to extend the inequality (1.2) to the q-gamma function for all positive real
numbers x and q by means of the study of the monotonicity property of the function

Fq(x) = log�q(x + 1) − x(x−1)
2 H(q − 1) log q

x log[x]q − x(x − 1)H(q − 1) log q
, x > 0, q > 0 (1.4)

where [x]q = (1− qx )/(1− q), H(·) denotes the Heaviside step function and �q(x)
is the q-gamma function defined as

�q(x) = (1 − q)1−x
∞∏
n=0

1 − qn+1

1 − qn+x
, 0 < q < 1, (1.5)

and

�q(x) = (q − 1)1−xq
x(x−1)

2

∞∏
n=0

1 − q−(n+1)

1 − q−(n+x)
, q > 1. (1.6)

From the previous definitions, for a positive x and q ≥ 1, we get

�q(x) = q
(x−1)(x−2)

2 �q−1(x). (1.7)

Also, we extend the function G(x) to Fq(x), defined in (1.4), which contains the q-
gamma function, for all q ∈ (0,∞) and x ∈ (0, 1) ∪ [2,∞). This means that the

123



Monotonic functions related to the q-gamma function 283

function G(x) is also increasing on the interval (0, 1). Furthermore, we use these
results to establish new inequalities for the q-gamma function.

An important fact for gamma function in applied mathematics as well as in prob-
ability is the Stirling’s formula that gives a pretty accurate idea about the size of
gamma function. With the Euler–Maclaurin formula, Moak [7] obtained the following
q-analogue of Stirling’s formula (see also [9])

log�q(x) ∼
(
x − 1

2

)
log[x]q + Li2(1 − qx )

log q
+ 1

2
H(q − 1) log q + Cq̂

+
∞∑
k=1

B2k

(2k)!
(

log q̂

q̂ x − 1

)2k−1

q̂ x P2k−3(q̂
x ), x → ∞ (1.8)

where Bk is the Bernoulli numbers,

q̂ =
{
q if 0 < q ≤ 1

q−1 if q ≥ 1,

Li2(z) is the dilogarithm function defined for complex argument z as [10]

Li2(z) = −
∫ z

0

log(1 − t)

t
dt, z /∈ (1,∞), (1.9)

Pk is a polynomial of degree k satisfying

Pk(z) = (z − z2)P ′
k−1(z) + (kz + 1)Pk−1(z), P0 = P−1 = 1, k = 1, 2, · · ·

(1.10)

and

Cq = 1

2
log(2π) + 1

2
log

(
q − 1

log q

)
− 1

24
log q

+ log

( ∞∑
m=−∞

(
rm(6m+1) − r (2m+1)(3m+1)

))
(1.11)

where r = exp(4π2/ log q). It is easy to see that

lim
q→1

Cq = C1 = 1

2
log(2π), lim

q→1

Li2(1 − qx )

log q
= −x and Pk(1) = (k + 1)!

(1.12)
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and so (1.8) when letting q → 1, tends to the ordinary Stirling’s formula [10]

log�(x) ∼
(
x − 1

2

)
log x − x + 1

2
log(2π) +

∞∑
k=1

B2k

2k(2k − 1)

1

x2k−1 , x → ∞.

(1.13)

2 Useful lemmas

In order to prove ourmain results we need to study themonotonicity properties of some
functions which are connected with the q-digamma function ψq(x) and its derivative
which is defined as the logarithmic derivative of the q-gamma function

ψq(x) = d

dx
(log�q(x)) = �′

q(x)

�q(x)
(2.1)

The q-digamma function ψq(x) appeared in the work of Krattenthaler and Srivastava
[11] when they studied the summations for basic hypergeometric series. Some of its
properties are presented and proven in their work. Also, in their work, they proved
that ψq(x) tends to the digamma function ψ(x) when letting q → 1. For more details
on the q-digamma function (see [12] and the references therein). From (1.5), we get
for 0 < q < 1 and for all real variable x > 0

ψq(x) = − log(1 − q) + log q
∞∑
k=1

qxk

1 − qk
, (2.2)

and from (1.6) we obtain for q > 1 and x > 0

ψq(x) = − log(q − 1) + log q

[
x − 1

2
−

∞∑
k=1

q−xk

1 − q−k

]
. (2.3)

It is worth mentioning that many papers recently have introduced inequalities related
to the q-gamma, q-digamma and q-polygamma functions, see [9,13–21] and the ref-
erences therein.

Lemma 2.1 Let x and q be real numbers such that 0 < q < 1. Then the function
log�q(x + 1) ≥ 0 for all x ≥ 1 and log�q(x + 1) ≤ 0 for all 0 ≤ x ≤ 1.

Proof Replacing x by x+1 in (2.2) followed by integrating from0 to x , the logarithmic
of the q-gamma function can be represented as

log�q(x + 1) = −x log(1 − q) +
∞∑
k=1

q(x+1)k − qk

k(1 − qk)
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which can be also rewritten as

log�q(x + 1) =
∞∑
k=1

qk

k(1 − qk)
α(y), y = qk,

where α(y) = x(1 − y) + yx − 1 which has the derivative α′(y) = −x(1 − yx−1).
It is clear that α′(y) ≤ 0 if x ≥ 1 and α′(y) ≥ 0 if x ≤ 1 which reveals that α(y) is
decreasing on (0, 1) if x ≥ 1 and increasing on (0, 1) if x ≤ 1. Since α(1) = 0 for all
x ≥ 0, then α(y) ≥ 0 if x ≥ 1 and α(y) ≤ 0 if x ≤ 1 which give the desired results.

Lemma 2.2 Let q be a positive real number such that 0 < q < 1. Then the function

fq(x) = ψ ′′
q (x + 1) − log q

1 − qx
ψ ′
q(x + 1) (2.4)

is strictly positive for all x ∈ R
+.

Proof The relation (2.2) and the Cauchy product rule gives

log q

1 − qx
ψ ′(x + 1) = log3 q

∞∑
k=1

qxk
k∑

r=1

rqr

1 − qr

which yields that

fq(x) = − log3 q
∞∑
k=1

qxk�(k)

where

�(k) =
k∑

r=1

rqr

1 − qr
− k2qk

1 − qk
.

Forward shift operator gives

�(k + 1) − �(k) = (k + 1)qk+1

1 − qk+1 − (k + 1)2qk+1

1 − qk+1 + k2qk

1 − qk

which can be simplified as

�(k + 1) − �(k) = kqk(k(1 − q) − q(1 − qk))

(1 − qk)(1 − qk+1)
.

Since 1− qk = (1− q)(1+ q + q2 + · · · + qk−1) ≤ k(1− q) for all k ∈ N, then we
get �(k + 1) ≥ �(k) for all k ∈ N which gives that �(k) ≥ �(1) = 0 for all k ∈ N and
so the function fq(x) ≥ 0 for all x > 0.
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Lemma 2.3 Let q be a positive real number such that 0 < q < 1. Then the function

hq(x) = xψq(x + 1) − log�q(x + 1) (2.5)

is non-negative and increasing on [0,∞).

Proof Differentiation gives

h′
q(x) = xψ ′

q(x + 1) = x
∞∑
k=1

kq(x+1)k log2 q

1 − qk
≥ 0 x ≥ 0.

Hence, the monotonicity of hq follows. Obviously, hq(0) = 0.

Lemma 2.4 Let q be a positive real number such that 0 < q < 1. Then the function

gq(x) = x2ψ ′
q(x + 1) − 2hq(x) − x log q

1 − qx
hq(x) (2.6)

is strictly positive for all x ∈ (0,∞), where hq(x) is defined as in Lemma 2.3.

Proof Differentiation gives

g′
q(x) = x2ψ ′′

q (x + 1) − x2 log q

1 − qx
ψ ′
q(x + 1) − (1 − qx + xqx log q) log q

(1 − qx )2
hq(x).

Let λ(y) = y log y + 1 − y where y = qx . A short calculation shows that

λ(y) = y
∞∑
n=2

log(1/y)

n! ≥ 0, 0 < y < 1. (2.7)

Since hq(x) ≥ 0 according to Lemma 2.3, then we get g′
q(x) ≥ x2 fq(x) where fq(x)

defined as in Lemma 2.2. This concludes that g′
q(x) > 0 for all x > 0 and so that the

function gq(x) is increasing on (0,∞) for all 0 < q < 1. It is clear that from (2.6)
and Lemma 2.3 that limx→0 gq(x) = 0 which concludes that gq(x) > 0 for all x > 0
and 0 < q < 1.

Lemma 2.5 Let q be a positive real number such that 0 < q < 1. Then the function

Hq(x) = log[x]q + xqx log q

1 − qx
log�q(x + 1)

hq(x)
(2.8)

is strictly positive on (0,∞), where hq(x) is defined as in Lemma 2.3.
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Proof Differentiation gives

H ′
q(x) = −qx log q

1 − qx
+ xqx log q

1 − qx
ψq(x + 1)hq(x) − h′

q(x) log�q(x + 1)

h2q(x)

+ qx log q(1 − qx + x log q)

(1 − qx )2
log�q(x + 1)

hq(x)

= − qx log q

(1 − qx )h2q(x)

(
h2q(x)−xψq(x + 1)hq(x)+x2ψ ′

q(x+1) log�q(x+1)

− hq(x) log�q(x + 1)(1 − qx + x log q

1 − qx

)

= −qx log q log�q(x + 1)

(1 − qx )h2q(x)
g(x)

where g(x) defined as in Lemma 2.4. According to the results obtained in Lemmas
2.1 and 2.4, we see that H ′

q(x) ≥ 0 if x ≥ 1 and H ′
q(x) ≤ 0 if x ≤ 1 which yields

that Hq(x) is increasing on [1,∞) and decreasing on (0, 1]. It is obvious from (2.8)
that Hq(1) = 0 which gives that Hq(x) > 0 for all x > 0.

Lemma 2.6 Let x and q be positive real numbers. Then the function

Sq(x) = x log[x]q − x(x − 1)H(q − 1) log q

x log[2x]q − x(2x − 1)H(q − 1) log q
(2.9)

is strictly increasing on (0, 1/2) ∪ (1/2,∞) and Sq(x) ≥ 0 if x ∈ (0, 1/2) ∪ [1,∞)

and Sq(x) ≤ 0 if x ∈ (1/2, 1].
Proof When 0 < q < 1, differentiation gives

S′
q(x) = − qx log q

(1 + qx ) log2[x]q
β(x) (2.10)

where

β(x) = log[x]q + 1 + qx

1 − qx
log(1 + qx )

which has the derivative

β ′(x) = 2qx log q

(1 − qx )2
log(1 + qx ) < 0, x > 0.

Since limx→∞ β(x) = − log(1− q) > 0 and β ′(x) < 0, then β(x) > 0 for all x > 0
which yields that S′

q(x) > 0 for all x ∈ (0, 1) ∪ (1,∞) and so the function Sq(x) is
increasing on (0, 1/2)∪(1/2,∞). It is easy to see that Sq(1) = 0 and limx→0 Sq(x) =
1 which give the sign of the function. When q ≥ 1, we get Sq(x) = Sq−1(x). This
ends the proof.
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3 The main results

In this section, the main results will be provided. At first, we recall that the author in
[12] defined the q-analogue of the Euler–Mascheroni constant as

γq = 1 − q

log q
ψq(1), 0 < q < 1, (3.1)

and proved the identity

ψq(x + 1) = ψq(x) − qx log q

1 − qx
, x > 0. (3.2)

We are now in a position to prove the following:

Theorem 3.1 Let x and q be positive real numbers. Then the function Fq(x) defined
as in (1.4) is strictly increasing on (0, 1) ∪ (1,∞) and has the limits:

1. limx→0 Fq(x) = 0
2. limx→1 Fq(x) = 1 − q̂−1γq̂
3. limx→∞ Fq(x) = 1.

Proof When 0 < q < 1, differentiating (1.4) gives

(x log[x]q)2F ′
q(x) = x log[x]qψq(x + 1) − log[x]q log�q(x + 1)

+ xqx log q

1 − qx
log�q(x + 1)

= log[x]qhq(x) + xqx log q

1 − qx
log�q(x + 1)

= hq(x)Hq(x)

where hq and Hq are defined as in Lemmas 2.3 and 2.5, respectively. Hence, the
monotonicity of Fq follows immediately from Lemmas 2.3 and 2.5. When q ≥ 1,
inserting (1.7) into (1.4) yields Fq(x) = Fq−1(x) which concludes that Fq(x) is
increasing on (0, 1) ∪ (1,∞) for all q > 0.

In order to evaluate the limits, using l’Hôpital’s rule to get

lim
x→0

Fq(x) = lim
x→1

ψq(x + 1) − 2x−1
2 H(q − 1) log q

log[x]q − xqx log q
1−qx − (2x − 1)H(q − 1) log q

= 0.

Also, when 0 < q < 1, we get

lim
x→1

Fq(x) = lim
x→1

ψq(x + 1)

log[x]q − xqx log q
1−qx

= ψq(2)

− q log q
1−q

.
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From the relations (3.1) and (3.2), we get

lim
x→1

Fq(x) = 1 − q−1γq , 0 < q < 1.

Since Fq(x) = Fq−1(x) when q ≥ 1, then we get

lim
x→1

Fq(x) = 1 − qγq−1 , q ≥ 1.

The previous two limits lead to the proof of the second statement. Also, by Moak
formula (1.8), we have

lim
x→∞ Fq(x) = lim

x→∞

⎡
⎣ (x + 1

2 ) log[x]q̂ + Li2(1−q̂ x )
log q̂ + Cq̂

x log[x]q̂ + O

(
q̂ x log q̂

x(1 − q̂ x )

)⎤
⎦ = 1,

q > 0.

This ends the proof.

Corollary 3.2 Let x and q be positive real numbers. Then the q-gamma function
satisfies the inequality

q
x(1−x)

2 (2α−1)H(q−1)[x]αx−1
q ≤ �q(x) ≤ q

x(1−x)
2 H(q−1)[x]βx−1

q , x ∈ [1,∞)

(3.3)

with the best possible constants α = 1− q̂−1γq̂ and β = 1, where γq is the q-analogue
of the Euler–Mascheroni constant (3.1), and the inequality

q
x(1−x)

2 H(q−1)[x]αx−1
q ≤ �q(x) ≤ q

x(x−1)
2 H(q−1)[x]βx−1

q , x ∈ (0, 1] (3.4)

with the best possible constants α = 1 and β = 0.

Proof The proof of this corollary comes immediately from Theorem 3.1.

Corollary 3.3 Let y > x > 1 and q be positive real numbers. Then the q-gamma
function satisfies the inequalities

log�q(y + 1) − y(y−1)
2 H(q − 1) log q

log�q(x + 1) − x(x−1)
2 H(q − 1) log q

>

(
y log[y]q − y(y − 1)H(q − 1) log q

x log[x]q − x(x − 1)H(q − 1) log q

)α

(3.5)

for all α ≤ 1 with the best possible constant α = 1.
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Proof Taking the logarithm of two sides to obtain α < P(x, y; q) where

P(x, y; q)

=
log

(
log

(
q

y(1−y)
2 H(q−1)�q(y + 1)

))
− log

(
log

(
q

x(1−x)
2 H(q−1)�q(x + 1)

))

log
(
log

(
qy(1−y)H(q−1)[y]yq

)) − log
(
log

(
qx(1−x)H(q−1)[x]xq

)) .

When 0 < q < 1, using l’Hośpital rule, one gets

lim
y→∞ P(x, y; q) = lim

y→∞
log

(
log

(
�q(y + 1)

)) − log
(
log

(
�q(x + 1)

))
log

(
y log[y]q

) − log
(
x log[x]xq

)

= lim
y→∞

y log[y]qψq(y + 1)

log�q(y + 1)(log[y]q − yq y log q
1−qy )

= lim
y→∞

yψq(y + 1)

log�q(y + 1)
lim
y→∞

(
1 − yq y log q

(1 − qy) log[y]q
)−1

= lim
y→∞

ψq(y + 1) + yψ ′
q(y + 1)

ψq(y + 1)
× 1 = 1.

Here, we use yq y → 0 as y → ∞ and limy→∞ yψ ′
q(y + 1) = 0 which comes

immediately from (2.2). When q ≥ 1, it is clear that P(x, y; q) = P(x, y; q−1).

Theorem 3.4 Let x and q be positive real numbers. Then the function

Gq(x) = log�q(1 + x
2 ) − x(x−2)

8 H(q − 1) log q

x log[x]q − x(x − 1)H(q − 1) log q
(3.6)

is strictly increasing on (0, 1) ∪ [2,∞) and has the values Gq(2) = 0; limx→0

Gq(x) = 0 and limx→∞ Gq(x) = 1
2 .

Proof The function Gq(x) after replacing x by 2x can be read as

Gq(2x) = 1

2

log�q(x + 1)− x(x−1)
2 H(q−1) log q

x log[x]q−x(x−1)H(q−1) log q

x log[x]q−x(x−1)H(q−1) log q

x log[2x]q−x(2x−1)H(q−1) log q

= 1

2
Fq(x)Sq(x)

where Fq(x) and Sq(x) defined as in (1.4) and (2.9), respectively. Differentiation gives

4G ′
q(2x) = F ′

q(x)Sq(x) + Fq(x)S
′
q(x)

It is clear from Theorem 3.1 and Lemma 2.6 that G ′
q(2x) > 0 for all x ∈ (0, 1/2) ∪

[1,∞)which lead to the function Gq(x) is increasing on (0, 1)∪[2,∞) for all q > 0.
To obtain limx→∞ Gq(x) = 1

2 , use the l’Hośpital rule and the relations (2.2) and (2.3).
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Corollary 3.5 Let x and q be positive real numbers. Then the q-gamma function
satisfies the double inequality

q
x(x−2)

8 H(q−1)[x]−1
q (1 + q

x
2 ) ≤ �q

( x
2

)
< q

x(2−3x)
8 H(q−1)[x]

x
2 −1
q (1 + q

x
2 ) (3.7)

for all x ∈ [2,∞) and satisfies the one-sided inequality

�q

( x
2

)
< q

x(x−2)
8 H(q−1)[x/2]−1

q (3.8)

for all x ∈ (0, 1).

Remark 3.6 The function Gq(x) defined as in (3.6) approaches the function G(x)
defined as in (1.3) when letting q → 1 and so the function G(x) is increasing on the
interval (0, 1)which is considered an extension of the results obtained for this function
by [1].

Conjecture 3.7 The function Gq(x) defined as in (3.6) is strictly increasing on the
interval (1, 2] for all q > 0.

Conjecture 3.8 The function Fq(x) defined as in (1.4) is concave on the interval
(0, 1) ∪ (1,∞) for all q > 0.
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