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Abstract Spectral analysis and spectral synthesis study translation invariant linear
function spaces on Abelian groups. Basic function classes for this study are the expo-
nential monomials. These function classes have been investigated on discrete Abelian
groups successfully using the annihilator method. In this paper we extend this tech-
nique to non-discrete locally compact Abelian groups.
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1 Introduction

Spectral analysis and spectral synthesis deal with the description of different varieties.
One of the fundamental theorems on this field is due to Laurent Schwartz [1]. Recently
several new results on spectral analysis and spectral synthesis have been found on
discrete Abelian groups (see [2,3]). In [4] the author formulated problems and proved
results concerning spectral synthesis on locally compact Abelian groups. In [5] we
made an attempt to formulate and study the basic problems of spectral analysis and
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spectral synthesis in the non-commutative non-discrete setting. In a former paper [6]
we introduced a method of studying spectral synthesis problems using annihilators
of varieties on discrete Abelian groups (see also [7]). Here we extend this method to
non-discrete locally compact Abelian groups.

In this paper C denotes the set of complex numbers. For a locally compact Abelian
group G we denote by C(G) the locally convex topological vector space of all contin-
uous complex valued functions defined on G, equipped with the pointwise operations
and with the topology of uniform convergence on compact sets. For each function f
in C(G) we define f

̂

by f

̂

(x) = f (−x), whenever x is in G. For a subset H in C(G)

we denote by H

̂

the set of all functions f

̂

with f in H . By a ring we always mean a
commutative ring with unit.

It is known that the dual of C(G) can be identified with the space Mc(G) of
all compactly supported complex Borel measures on G which is equipped with the
pointwise operations and with the weak*-topology. The pairing between C(G) and
Mc(G) is given by the formula

〈μ, f 〉 =
∫

f dμ.

The following theorem, describing the dual of Mc(G) is fundamental. The proof
can be found in [8], 17.6, p. 155 (see also [7], Theorem 3.43, p. 48).

Theorem 1 Let G be a locally compact Abelian group. For every weak*-continuous
linear functional F : Mc(G) → C there exists a continuous function f : G → C

such that F(μ) = μ( f ) for each μ inMc(G).

In fact, the function f in this theorem is uniquely determined by F , as it is clear
from the following result.

Theorem 2 Let G be a locally compact Abelian group. The finitely supported complex
measures form a weak*-closed subspace in Mc(G).

Proof Let X be the weak*-closure of the linear space of all finitely supported complex
measures in Mc(G). Assuming that X is a proper subspace, by the Hahn–Banach
Theorem, there exists a nonzero weak*-continuous linear functional F : Mc → C

vanishing on X . In particular, F(δy) = 0 for each y in G. However, by the previous
theorem, there exists a continuous function f : G → C such that f (y) = δy( f ) =
F(δy) = 0 for each y in G, which is a contradiction, and our theorem is proved. ��

For each μ in Mc(G) we define μ

̂

by the equation μ

̂

( f ) = μ( f

̂

) whenever f is in
C(G). For every subset K in Mc(G) the symbol K

̂

denotes the set of all measures
of the form μ

̂

with μ in K . The orthogonal complement of the subset H in C(G) is
the set of all measures μ in Mc(G) satisfying μ( f ) = 0 for each f in H , and it is
denoted by H⊥.The dual concept is the orthogonal complement of a set K inMc(G)

of all functions f in C(G) satisfying μ( f ) = 0 for every μ in K , and it is denoted by
K⊥. Obviously, H⊥, resp. K⊥ is a closed subspace inMc(G), resp. in C(G).
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Convolution on Mc(G) is defined by

∫

f d(μ ∗ ν) =
∫

f (x + y) dμ(x) dν(y)

for each μ, ν in Mc(G) and x in G. Convolution converts the linear space Mc(G)

into a commutative topological algebra with unit δ0, 0 being the zero in G.
We also define convolution of measures inMc(G)with arbitrary functions in C(G)

by the similar formula

f ∗ μ(x) =
∫

f (x − y) dμ(y)

for each μ in Mc(G), f in C(G) and x in G. The linear operators f 	→ μ ∗ f on
C(G) are called convolution operators. It is easy to see that equipped with the action
f 	→ f ∗ μ the space C(G) is a topological module overMc(G). For each subset K
inMc(G) and H in C(G) we use the notation

K H = { f ∗ μ : μ ∈ K , f ∈ H}.

For each subset H in C(G) the annihilator of H inMc(G) is the set

Ann H = {μ : f ∗ μ = 0 for each f ∈ H}.

We also define the dual concept: for every subset K in Mc(G) the annihilator of K
in C(G) is the set

Ann K = { f : f ∗ μ = 0 for each μ ∈ K }.

Translation with the element y in G is the operator mapping the function f in C(G)

onto its translate τy f defined by τy f (x) = f (x + y) for each x in G. Clearly, τy is
a convolution operator, namely, it is the convolution with the measure δ−y : we have
τy f = f ∗ δ−y . A subset of C(G) is called translation invariant, if it contains all
translates of its elements. A closed linear subspace of C(G) is called a variety on G,
if it is translation invariant. Obviously, varieties are exactly the closed submodules in
C(G). As it is easy to see, V

̂

is a variety whenever V is a variety. For each function
f the smallest variety containing f is called the variety generated by f , or simply
the variety of f , and it is denoted by τ( f ), which is obviously the intersection of all
varieties containing f .

Theorem 3 For each variety V in C(G) its annihilator Ann V is a closed ideal in
Mc(G), and Ann V = (V

̂

)⊥. Similarly, for each ideal I in Mc(G) its annihilator
Ann I is a variety in C(G), and Ann I = (I

̂

)⊥.

123



360 L. Székelyhidi

Proof Clearly, Ann V is a closed subspace in Mc(G). For each μ in Ann V , ν in
Mc(G) and f in V we have

(ν ∗ μ) ∗ f (x) =
∫

f (x − y) d(ν ∗ μ)(y)

=
∫ ∫

f (x − u − v) dμ(v)dν(u) =
∫

( f ∗ μ)(x − u) dν(u) = 0,

as f ∗ μ = 0. This means ν ∗ μ is in Ann V , and Ann V is a closed ideal inMc(G).
On the other hand, we have

μ( f

̂

) = f ∗ μ(0) = 0,

hence μ is in (V

̂

)⊥. Conversely, if ν is in (V

̂

)⊥, then for each f in V we have

f ∗ ν(x) =
∫

f (x − y) dν(y) = ν(τ−x f

̂

) = 0,

as τ−x f

̂

is in V

̂

. It follows that μ is in Ann V .
For the dual statement it is clear that Ann I is a closed subspace in C(G). Moreover,

if f is in Ann I , y is in G and μ is in I , then δ−y ∗ μ is in I , hence we have

τy f ∗ μ = ( f ∗ δ−y) ∗ μ = f ∗ (δ−y ∗ μ) = 0,

and we infer that τy f is in Ann I , hence Ann I is a variety. On the other hand, we
have

μ

̂

( f ) =
∫

f (y) dμ

̂

(y) =
∫

f (−y) dμ(y) = f ∗ μ(0) = 0,

as f annihilates μ. This means that Ann I ⊆ (I

̂

)⊥. Conversely, if g is in C(G) with
the property that μ

̂

(g) = 0 for each μ in I , then μ ∗ g
̂

(0) = 0 for each μ in I . As I
is an ideal, this implies (δ−x ∗ μ)(g

̂

) = 0 for each x in G, hence

0 =
∫ ∫

g
̂

(t + y) dδ−x (t) dμ(y) =
∫

g(x − y) dμ(y) = g ∗ μ(x),

that is g is in Ann I , which proves Ann I = (I

̂

)⊥, and the proof is complete. ��
Theorem 4 For each variety V ⊆ W in C(G) we haveAnn V ⊇ AnnW and for each
ideal I ⊆ J inMc(G)we haveAnn I ⊇ Ann J . In addition, we haveAnn (Ann V ) =
V and Ann (Ann I ) ⊇ I . In particular, V = W implies Ann V = AnnW.

Proof Let V ⊆ W be varieties in C(G) and let I ⊆ J be ideals inMc(G). For every
μ in AnnW and for each f in V we have that f is inW , hence f ∗μ = 0. This proves
that μ is in Ann V , and Ann V ⊇ AnnW . Similarly, if f is in Ann J and μ is in I ,
thenμ is in J , hence f ∗μ = 0, which proves that f is in Ann I , and Ann I ⊇ Ann J .
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Assume that f is in V andμ is inAnn V , then, by definition, f ∗μ = 0, hence f is in
Ann (Ann V ), which proves Ann (Ann V ) ⊇ V . Similarly, we have Ann (Ann I ) ⊇ I .

Suppose now that Ann (Ann V ) � V . Consequently, there is a function f in
Ann (Ann V ) such that f is not in V . By the Hahn–Banach Theorem, there is a λ

inMc(G) such that λ

̂

( f ) = 0, and λ

̂

vanishes on V . This means

(ϕ ∗ λ)(0) =
∫

ϕ(−y) dλ(y) = λ(ϕ

̂

) = λ

̂

(ϕ) = 0,

whenever ϕ is in V . As V is a variety, this implies, by the previous theorem, that λ is
in Ann V , in particular, f ∗ λ = 0, a contradiction. This proves Ann (Ann V ) = V ,
which also implies Ann V = AnnW , whenever V = W . ��

We note that for ideals in Mc(G) the equality Ann (Ann I ) = I does not hold in
general. For this, by Theorem 3, it is enough to show that I⊥⊥ = I does not hold, in
general. The following example can be found in [3].

Consider G = R with the usual topology, and let I denote the ideal generated by
the measures μn = δ0 − δ1/n for n = 1, 2, . . . . If f is in I⊥, then f is periodic mod
1/n for every n, and thus, by continuity, f must be constant. Therefore δ0 − δα is
in I⊥⊥ for each α in R. However, δ0 − δα is not in I if α is irrational. Indeed, for
every positive integer N there is a continuous function f such that f is periodic mod
1/n for each n ≤ N in N but f is not periodic mod α. This implies immediately that
δ0 − δα does not belong to the ideal generated by μn for n in N. However, if δ0 − δα

is I , then δ0 − δα belongs to an ideal generated by finitely many of the measures μn ,
which is not the case.

Nevertheless, the following theorem holds true (see [3]).

Theorem 5 Let G be a discrete Abelian group. ThenAnn (Ann I ) = I holds for every
ideal I inMc(G).

We need the following lemma.

Lemma 1 Let G be a locally compact group, and let I be an ideal in Mc(G). Then
Ann

(

Ann (Ann I )
) = Ann I .

Proof Let V = Ann I , then V is a variety on G, hence, by Theorem 4, we have
Ann (Ann V ) = V . It follows Ann I = V = Ann (Ann V ) = Ann

(

Ann (Ann I )
)

. ��
Now we can prove the following theorem characterizing those ideals in Mc(G)

which coincide with their second annihilator.

Theorem 6 Let G be a locally compact group, and let I be an ideal inMc(G). Then
we have Ann (Ann I ) = I if and only if I is closed. Also, we have I⊥⊥ = I if and
only if I is closed.

Proof By Theorem 3, the annihilator of each variety is closed, in particular, J =
Ann (Ann I ), as the annihilator of the variety Ann I , is closed, which proves the
necessity of our condition.
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Conversely, suppose that I is closed, and I is a proper subset of J . By Lemma 1,
we have Ann J = Ann I . Let μ be in J such that μ is not in I . As the space Mc(G)

with the weak*-topology is locally convex, hence, by the Hahn–Banach Theorem,
there is a linear functional ξ in Mc(G)∗, such that ξ

̂

vanishes on I and ξ

̂

(μ) = 0. It
is known (see [8], 17.6, p. 155), that every weak*-continuous linear functional on a
dual space arises from an element of the original space, that is, there is an f in C(G)

with ξ(ν) = ν( f ) for each ν in Mc(G). We infer μ( f

̂

) = ξ

̂

(μ) = 0, and μ is in J ,
hence f is not in (J

̂

)⊥ = Ann J . On the other hand, ν

̂

( f ) = ν( f

̂

) = ξ

̂

(ν) = 0 for
each ν in I , as ξ

̂

vanishes on I , which implies that f is in (I

̂

)⊥ = Ann I = Ann J , a
contradiction.

The second statement is a consequence of Theorem 3. Our theorem is proved. ��
Corollary 1 Let G be a locally compact Abelian group. Then the mappings V ↔
Ann V and V ↔ V⊥ set up one-to-one inclusion-reversing correspondences between
the varieties in C(G) and the closed ideals inMc(G).

By this corollary, closed ideals have special importance. In particular, the following
theorem describes a class of closed ideals.

Theorem 7 Let G be a locally compact Abelian group. If V is a finite dimensional
variety in C(G), then every ideal including Ann V , or V⊥ is closed inMc(G).

Proof By Theorem 3, it is enough to proof the statement for I ⊇ V⊥. Obviously,
Mc(G)/V⊥ can be identifiedwith the dual V ∗ of V , which is a finite dimensional vec-
tor space, hence every subspace of it is closed. In particular, every ideal inMc(G)/V⊥
is closed. The natural homomorphism F of Mc(G) onto Mc(G)/V⊥ is continuous
and every ideal including V⊥ inMc(G) is the inverse image of an ideal inMc(G)/V⊥
by F , hence it is closed. ��
Theorem 8 Let G be a locally compact group.

1. For each family (Vγ )γ∈
 of varieties in C(G) we have

Ann

⎛

⎝

∑

γ∈


Vγ

⎞

⎠ =
⋂

γ∈


Ann Vγ ,

⎛

⎝

∑

γ∈


Vγ

⎞

⎠

⊥
=

⋂

γ∈


V⊥
γ .

2. For each family (Iγ )γ∈
 of ideals inMc(G) we have

Ann

⎛

⎝

∑

γ∈


Iγ

⎞

⎠ =
⋂

γ∈


Ann Iγ ,

⎛

⎝

∑

γ∈


Iγ

⎞

⎠

⊥
=

⋂

γ∈


I⊥
γ .

We note that here
∑

γ∈
 Vγ denotes the topological sum of the family of varieties
(Vγ )γ∈
 , that is, the closure of the union of the sums of finite subfamilies. However,
∑

γ∈
 Iγ denotes the algebraic sum of the family of ideals (Iγ )γ∈
 , that is, the ideal
generated by the sums of finite subfamilies.
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Proof If μ is in
⋂

γ∈
 Ann Vγ , then μ annihilates each of the varieties Vγ , hence it
annihilates every finite sum of these varieties, and, by continuity, μ annihilates the
closure of the sums of finite subfamilies. Hence μ annihilates

∑

γ∈
 Vγ .
Conversely, if μ annihilates

∑

γ∈
 Vγ , then μ annihilates every subvariety of it,
hence it belongs to each Ann Vγ . This proves the first half of the first statement. The
second half is the consequence of Theorem 3.

Toprove the second statementwe take f in (
∑

γ∈
 Iγ )⊥. Then f is in the orthogonal
complement of the sum of any finite subfamily of (Iγ )γ∈
 , in particular, it is in the
orthogonal complement of each of these ideals. Hence it belongs to I⊥

γ for every γ .
For the reverse inclusion we take an f which is in the orthogonal complement of

each ideal Iγ . Then clearly, every measure in the ideal generated by finite sums of
these ideals vanishes on f , hence f is in (

∑

γ∈
 Iγ )⊥. This proves the second half of
the second statement. The first half is the consequence of Theorem 3. ��

2 Exponentials

Abasic function class is formed by the joint eigenfunctions of all translation operators,
that is, by those nonzero continuous functions ϕ : G → C satisfying

τyϕ = m(y) · ϕ (1)

with some m : G → C, that is

ϕ(x ∗ y) = m(y)ϕ(x) (2)

for all x, y in G. It follows ϕ(y) = ϕ(0) · m(y) which implies that ϕ(0) = 0 and, by
(2),

m(x + y) = m(x)m(y) (3)

for each x, y in G. Nonzero continuous functions m : G → C satisfying (3) for
each x, y in G are called exponentials. Clearly, every exponential generates a one
dimensional variety, and conversely, every one dimensional variety is generated by an
exponential. Sometimes exponentials are called generalized characters.

Using translation one introduces modified differences in the following manner: for
each continuous function f in C(G) and y in G we let

� f ;y = δ−y − f (y)δ0.

Hence� f ;y is an element ofMc(G). Products ofmodified differences will be denoted
in the following way: for each f in C(G), for every natural number n and for arbitrary
y1, y2, . . . , yn+1 in G we let

� f ;y1,y2,...,yn+1 = �n+1
i=1

(

δ−yi − f (yi )δ0
)

,

where� denotes convolution. In the case f ≡ 1 we use the simplified notation�y for
�1;y and we call it difference. Accordingly, we write �y1,y2,...,yn+1 for �1;y1,y2,...,yn+1

123



364 L. Székelyhidi

For a given f in C(G) the closed ideal generated by all modified differences of the
form � f ;y with y in G is denoted by M f . We have the following theorem.

Theorem 9 Let G be a locally compact Abelian group and f : G → C a continuous
function. The ideal M f is proper if and only if f is an exponential. In this case
M f = Ann τ( f ) is maximal, and Mc(G)/M f is topologically isomorphic to the
complex field.

Proof As M f is closed, by Theorem 6, we have Ann (AnnM f ) = M f and M⊥⊥
f =

M f .
Suppose that f is an exponential. Then f = 0, and

� f ;y ∗ f (x) = f (x + y) − f (y) f (x) = 0

for each x, y in G, hence f is in AnnM f . As τ( f ) consists of all constant multiples
of f , we infer that τ( f ) ⊆ AnnM f . Moreover, if ϕ is in AnnM f , then we have

0 = � f ;y ∗ ϕ(x) = ϕ(x + y) − f (y)ϕ(x)

for each x, y in G. It follows ϕ = ϕ(0) · f , hence ϕ is in τ( f ). We conclude that
τ( f ) = AnnM f , and M f = Ann τ( f ).

We define the mapping  f : Mc(G) → C by

 f (μ) = μ( f

̂

) =
∫

f (−y) dμ(y)

for each μ in Mc(G). Then  f is a linear mapping,  f (δ0) = 1, and for each μ, ν

inMc(G) we have

 f (μ ∗ ν) =
∫

f (−x − y)dμ(x) dν(y)

=
∫

f (−x) dμ(x)
∫

f (−y) dν(y) =  f (μ) ·  f (ν),

hence  f is an algebra homomorphism. Obviously,  f mapsMc(G) onto C, hence
it is a multiplicative linear functional. We infer that Ker f is a maximal ideal and
Mc(G)/Ker f is isomorphic to the complex field C. For each μ in Ker f we have
μ( f

̂

) = 0, hence for each complex number c we have

c f ∗ μ(x) = c
∫

f (x − y) dμ(y) = c f (x)μ( f

̂

) = 0,

consequently μ is in Ann τ( f ) = M f . It follows Ker f ⊆ M f , which implies that
M f is a maximal ideal. We also have that Ker f is closed, hence  f is continuous.
As  f is also open, we have that Mc(G)/M f is topologically isomorphic to the
complex field.
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Finally, if M f is proper, then AnnM f is nonzero. Let ϕ = 0 be a function in
AnnM f , then we have

0 = � f ;y ∗ ϕ(x) = ϕ(x + y) − f (y)ϕ(x),

and in the same way like above we conclude that f is an exponential. The theorem is
proved. ��

Given a ring R we call a maximal ideal M in R an exponential maximal ideal, if
the residue ring R/M is isomorphic to the complex field. If R is a topological ring,
then we require the isomorphism to be topological. From the above proof it is clear
that if G is a locally compact Abelian group, then each exponential maximal ideal in
Mc(G) is of the form Mm = Ann τ(m) with some exponential m.

3 Fourier–Laplace transformation

Given the locally compact Abelian group G let ˜G denote the set of all exponentials
on G. Obviously, ˜G is an Abelian group with respect to pointwise multiplication. We
equip ˜G with the compact-open topologywhichmakes ˜G a topological Abelian group.
For every μ inMc(G) we define the function μ̂ : ˜G → C by

μ̂(m) = μ(m
̂

) =
∫

m(−y) dμ(y)

whenever m is in G

̂

. Obviously, μ̂(m) = m ∗ μ(0). Also we have μ̂(m) = m(μ),
where m is defined in Theorem 9 with m = f . The function μ̂ is called the Fourier–
Laplace transform of μ and the mapping μ 	→ μ̂ is called the Fourier–Laplace
transformation.

Theorem 10 Let G be a locally compact Abelian group. Then for each measure μ in
Mc(G) its Fourier–Laplace transform μ̂ is a continuous function on ˜G.

Proof Let (mi )i∈I be a generalized sequence in ˜G converging to the exponential m in
˜G. Then μ

̂

i → μ

̂

uniformly on the compact set suppμ, hence we have μ̂i (m) → μ̂,
which proves that μ̂ is continuous. ��
Theorem 11 Let G be a locally compact Abelian group. The Fourier–Laplace trans-
formation μ → μ̂ is a continuous injective algebra homomorphism of Mc(G) into
C(˜G), the latter equipped with the pointwise linear operations and multiplication, and
with the topology of pointwise convergence.

Proof We use the notation

F(μ) = μ̂

for each μ inMc(G). Obviously, F : Mc(G) → C(˜G) is a linear mapping. Suppose
that (μα)α∈A is a generalized sequence in Mc(G) converging to μ in the weak*-
topology. Then for each m in ˜G we have μα(m

̂

) → μ(m
̂

), that is μ̂α(m) → μ̂(m),
which gives the continuity of F . Finally, for μ, ν inMc(G) and m in ˜G we have
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F(μ ∗ ν)(m) = (μ ∗ ν)(m
̂

)

=
∫

m(−x − y) dμ(x) dν(y)

=
∫

m(−x) dμ(x)
∫

m(−y) dν(y) = μ(m
̂

) · ν(m
̂

)

= F(μ)(m) · F(ν)(m),

hence F is an algebra homomorphism.
The injectivity of the Fourier–Laplace transformation follows from the injectivity

of the Fourier transform (see e.g. [9, Section 1.5]). ��
The range of the Fourier–Laplace transformation in C(˜G), that is the set of all

Fourier–Laplace transforms will be denoted by A(G). This is a subalgebra of C(˜G),
isomorphic to Mc(G), sometimes called the Fourier algebra of G.

4 Exponential monomials

Another important function class is the one formed by the solutions of the equation

�m;y1,y2,...,yn+1 ∗ f = 0, (4)

wherem is an exponential, n is a natural number, f : G → C is a continuous function
and the equation is supposed to hold for every y1, y2, . . . , yn+1 in G. The function f
is called a generalized exponential monomial. In the case n = 0 we have that f is a
constant multiple of the exponential m. We have the following result.

Theorem 12 Let G be a locally compact Abelian group and m : G → C an
exponential. The continuous function f : G → C satisfies Eq. (4) if and only if
Mn+1

m ⊆ Ann τ( f ).

Proof Obvious, as the modified differences �m;y1,y2,...,yn+1 generate an ideal which
is dense in Mn+1

m . ��
Lemma 2 Let G be a locally compact Abelian group and f : G → C a nonzero
continuous function. Then there exists at most one exponential m such that Mn+1

m ⊆
Ann τ( f ) holds for some natural number n.

Proof As f is nonzero, Ann τ( f ) is a proper ideal. There is a maximal ideal M in
Mc(G) such that Ann τ( f ) ⊆ M . Suppose that Mn+1

m ⊆ Ann τ( f ) holds for some
exponential m and natural number n. Then Mn+1

m ⊆ M . As M is maximal, it is also
prime, hence we have Mm ⊆ M . By Theorem 9, Mm is also maximal, which implies
Mm = M . It follows that Mm and M are unique with the given properties. ��

By the previous lemma, for a given nonzero generalized exponential monomial f
there is a unique exponential m such that Eq. (4) holds. We say that f is associated to
the exponential m, and the smallest natural number n in (4) is called the degree of f .
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Theorem 13 Let G be a locally compact Abelian group. The continuous function
f : G → C is a generalized exponential monomial if and only if Mc(G)/Ann τ( f )
is a local ring with a nilpotent exponential maximal ideal.

Proof Let F : Mc(G) → Mc(G)/Ann τ( f ) denote the natural homomorphism. If
f = 0 is a generalized exponential monomial, then, by Theorem 12, we have

F(Mm)n+1 = F(Mn+1
m ) ⊆ F(Ann τ( f )) = 0,

hence the ideal F(Mm) is nilpotent, and it is obviouslymaximal.Clearly, it is the unique
maximal ideal in the residue ring R = Mc(G)/Ann τ( f ), by Lemma 2. Finally, we
have

R/F(Mm) ∼= Mc(G)/Mm,

hence F(Mm) is an exponential maximal ideal. The converse statement follows in the
same way. ��

We shall call a generalized exponential monomial simply an exponential monomial,
if its variety is finite dimensional. We shall need the following lemma.

Lemma 3 Let G be a locally compact Abelian group, f : G → C a continuous
function, m an exponential, and k a natural number. Then for each ϕ in Mk

mτ( f ) the
Mc(G)-module generated by ϕ + Mk+1

m in Mk
mτ( f )/Mk+1

m τ( f ) is one dimensional.

Proof Let  : Mc(G) → C be the multiplicative functional with the property
Ker = Ann τ(m). For each y in G we have

δ−y ∗ (

ϕ + Mk+1
m τ( f )

) = δ−y ∗ ϕ + Mk+1
m τ( f )

= (δ−y − m(y)δ0)ϕ + m(y)ϕ + Mk+1
m τ( f )

= (δ−y)ϕ + Mk+1
m τ( f ),

as δ−y − m(y)δ0 is in Mm , hence (δ−y − m(y)δ0)ϕ is in Mk+1
m τ( f ). As each μ in

Mc(G) is a weak*-limit of linear combinations of measures δ−y , by continuity and
linearity, we have

μ ∗ (ϕ + Mk+1
m τ( f )) = (μ) · ϕ + Mk+1

m τ( f ) = (μ)
(

ϕ + Mk+1
m τ( f )

)

.

which proves our statement. ��
Theorem 14 Let G be a locally compact Abelian group. The continuous function
f : G → C is an exponential monomial if and only if Mc(G)/Ann τ( f ) is a local
Artin ring with exponential maximal ideal.

Proof Suppose that f = 0 is an exponential monomial. Then there exists a unique
exponentialm such that the only maximal ideal containing Ann τ( f ) is Mm . It follows
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that Mc(G)/Ann τ( f ) is a local ring with the exponential maximal ideal F(Mm),
where F : Mc(G) → Mc(G)/Ann τ( f ) is the natural homomorphism.

By Theorem 7, every ideal in Mc(G)/Ann τ( f ) is closed. It follows that every
strictly descending chain of ideals inMc(G)/Ann τ( f ) arises from a strictly descend-
ing chain of closed ideals including Ann τ( f ) in Mc(G), and the annihilators of the
ideals in this chain form a strictly ascending chain of subvarieties in τ( f ). By finite
dimensionality such a chain must terminate, which implies thatMc(G)/Ann τ( f ) is
an Artin ring.

Now we assume that f = 0, and R = Mc(G)/Ann τ( f ) is a local Artin ring with
exponential maximal ideal F(M), where F : Mc(G) → Mc(G)/Ann τ( f ) is the
natural homomorphism, and M is a maximal ideal inMc(G). By the isomorphism

R/F(M) ∼= Mc(G)/M ∼= C

we have that M = Mm is an exponential maximal ideal with some exponential m.
It is well-known that the maximal ideal in a local Artin ring is nilpotent (see e.g.
[10], Theorem 7.15, p. 426). Hence, by Theorem 13, we have that f is a generalized
exponential monomial associated with the exponential m. It is enough to show that
τ( f ) is finite dimensional. Let n be the degree of f , which implies thatMn

mτ( f ) = {0}.
Let ϕ = 0 be in Mn

mτ( f ), then we have for each x, y in G

0 = (δ−y − m(y)δ0) ∗ ϕ(x) = ϕ(x + y) − m(y)ϕ(x).

Putting x = 0 we have ϕ = ϕ(0) · m, which means that Mmτ( f ) is one dimensional.
We consider the chain of Mc(G)-modules

τ( f ), τ ( f )/Mmτ( f ), . . . , Mn
mτ( f )/Mn+1 = Mn

mτ( f ), {0}.

Suppose that τ( f ) is infinite dimensional. Then there exists a natural number k with
0 ≤ k ≤ n − 1 such that Mk

mτ( f ) is infinite dimensional and Mk+1
m τ( f ) is finite

dimensional. It follows that Mk
m/Mk+1

m τ( f ) is infinite dimensional. Then there exists
a sequence ϕ1, ϕ2, . . . , ϕl , . . . in Mk

mτ( f ) such that the coset ϕl+1 +Mk+1
m τ( f ) is not

included in the linear span of the elements ϕ j + Mk+1
m τ( f ) for j = 1, 2, . . . , l and

l = 1, 2, . . .. However, by Lemma 3, the linear span of the elements ϕ j + Mk+1
m τ( f )

for j = 1, 2, . . . , l coincides with the submodule generated by these elements in
Mk

mτ( f )/Mk+1
m τ( f ). Consequently, ϕl+1 is not included in the subvariety generated

by the functions ϕ j with 1 ≤ j ≤ l in τ( f ), which means that these subvarieties form
a strictly ascending chain, and their annihilators generate a strictly descending chain
of ideals inMc(G)/Ann τ( f ). This contradicts the Artin property. ��

5 Spectral analysis

Let G be a locally compact Abelian group and V a variety in C(G). We say that
spectral analysis holds for the variety V if every nonzero subvariety of V contains an
exponential. We say that spectral analysis holds on G, if spectral analysis holds for
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C(G), that is, every nonzero variety on G contains an exponential. Clearly, if spectral
analysis holds for a variety, then it holds for every subvariety of it, too.

Lemma 4 Let G be a locally compact Abelian group. If a nonzero generalized expo-
nential monomial associated to the exponential m belongs to a variety, then m belongs
to the same variety, too.

Proof Let f = 0 be a generalized exponential monomial associated to the exponential
m. Then Ann τ( f ) is a proper ideal, hence there is a maximal ideal M containing
Ann τ( f ). On the other hand, we have Mn+1

m ⊆ Ann τ( f ) for some natural number
n. It follows Mn+1

m ⊆ M . As M is maximal, it is also prime, and we infer Mm ⊆ M ,
which implies, by maximality, that Mm = M , and Ann τ( f ) ⊆ Mm . Finally, we have

AnnMm ⊆ AnnAnn τ( f ) = τ( f ),

and obviously m is in AnnMm , which proves our statement. ��
Theorem 15 Let G be a locally compact Abelian group. Spectral analysis holds for
a variety if and only if every nonzero subvariety of it contains a nonzero generalized
exponential monomial. In particular, spectral analysis holds on G if and only if every
nonzero variety on G contains a nonzero generalized exponential monomial.

As the variety of a generalized exponential monomial consists of generalized expo-
nentials, hence spectral analysis holds for the variety of every generalized exponential
monomial.

Theorem 16 Let G be a locally compact Abelian group. Spectral analysis holds for a
nonzero variety V on G if and only if every maximal ideal inMc(G) which contains
Ann V is exponential. In other words, spectral analysis holds for V = {0} if and only if
every maximal ideal in the ringMc(G)/Ann V is exponential. In particular, spectral
analysis holds on G if and only if every maximal ideal inMc(G) is exponential.

Proof Indeed, the given condition is clearly necessary. Conversely, if every maximal
ideal in Mc(G) which contains Ann V is exponential, and W ⊆ V is a nonzero
subvariety, then AnnW ⊇ Ann V , hence every maximal ideal which contains AnnW
also contains Ann V . The other statements are obvious. ��

6 Spectral synthesis

Let G be a locally compact Abelian group and V a variety in C(G). We say that the
variety V is synthesizable, if the exponential monomials in V span a dense subspace.
We say that spectral synthesis holds for V , if every subvariety of V is synthesizable.
We say that spectral synthesis holds on G, if spectral synthesis holds for every variety
on G. Clearly, if spectral synthesis holds for a variety, then spectral synthesis and
spectral analysis holds for every subvariety of it.

Given a variety V in C(G) let I(V ) denote the set of all closed ideals I inMc(G)

such that Ann V ⊆ I and Mc(G)/I is a local Artin ring.
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Theorem 17 Let G be a locally compact Abelian group. The variety V in C(G) is
synthesizable if and only if

Ann V =
⋂

I(V ). (5)

Proof Suppose that V is synthesizable. Then

V =
∑

ϕ∈V
τ(ϕ),

where the summation is extended for all exponentialmonomialsϕ in V . ByTheorem8,
it follows

Ann V =
⋂

ϕ∈V
Ann τ(ϕ) =

⋂

Ann V⊆Ann τ(ϕ)

Ann τ(ϕ).

By Theorem 14, the set of the annihilators Ann τ(ϕ) where ϕ is an exponential mono-
mial in V is identical with the set I(V ), which proves the theorem. ��
Theorem 18 Let G be a locally compact Abelian group and f : G → C a generalized
exponential monomial, which is not an exponential monomial. Then τ( f ) is non-
synthesizable.

Proof We show that if

Ann τ( f ) =
⋂

F ,

where F is a family of closed ideals, then there is an I in F with I = Ann τ( f ).
Suppose that f = 0 is a generalized exponential monomial of degree n ≥ 1

associated to the exponential m. Then Ann I is a subvariety of τ( f ), hence it consists
of generalized exponential monomials of degree at most n, which are associated to
m, too. We also have that Mmτ(ϕ) consists of generalized exponential monomials of
degree at most n − 1, which are associated to m. For each y in G we have

τy f = δ−y ∗ f = (δ−y − m(y)δ0) ∗ f + m(y) f,

hence τy f is in the linear space X = Mmτ( f )+C f , which is closed in C(G). Indeed,
if (ϕα + cα f )α∈A is a generalized sequence in X , with ϕα in Mmτ( f ) and cα in
C, which converges to ψ in C(G), then for each μ in Mn

m the generalized sequence
(μ ∗ ϕα + cα μ ∗ f )α∈A converges to μ ∗ ψ . The function μ ∗ f is in Mn

mτ( f ), which
is different from {0}, as the degree of f is n. This means that we can choose μ such
that μ ∗ f = 0. On the other hand, as ϕα is in Mmτ( f ), we have that μ ∗ ϕα is in
Mn+1

m τ( f ) = {0}, that is μ ∗ ϕα = 0. It follows that (cα)α∈A converges to some c in
C, which implies that (ϕα)α∈A converges to a function in Mmτ( f ), and ψ is in X .

As X is closed, we have τ( f ) ⊆ Mmτ( f ) + C f , in fact τ( f ) = Mmτ( f ) + C f .
On the other hand, Mmτ( f ) ∩ C f = {0}, hence τ( f ) is the direct sum of the closed
subspaces Mmτ( f ) and C f .
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Now suppose that

Ann τ( f ) =
⋂

F ,

where F is a family of closed ideals, then

τ( f ) =
∑

I∈F
Ann I.

As f is of degree n, there must be an I in F such that Ann I includes a generalized
monomial of degree n. By the direct decomposition of τ( f ) we have

Ann I = (Ann I ∩ Mmτ( f )) + (Ann I ∩ C f ).

If Ann I ∩C f = {0}, then f is in Ann I and Ann I = τ( f ), and I = Ann τ( f ). How-
ever, Ann I ∩ C f = {0} is impossible, because in this case Ann I ⊆ Mmτ( f ), which
consist of generalized exponential monomials of degree at most n−1, a contradiction.
This proves that there is an I in F such that Ann τ( f ) = I . Assume now that τ( f ) is
synthesizable. By Theorem 17, we have a representation of τ( f ) as the intersection of
the ideals in the family F = I(τ ( f )). We have seen above that in this case Ann τ( f )
must be in F , but, by Theorem 14, this is impossible, as Mc(G)/Ann τ( f ) is a not
local Artin ring with exponential maximal ideal. ��
Corollary 2 Let G be a locally compact Abelian group. If a variety in C(G) contains
a generalized exponential monomial, which is not an exponential monomial, then
spectral synthesis fails to hold for the variety.
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