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Abstract In this paper, we introduce the concept of operator geometrically con-
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1 Introduction and preliminaries

LetA be a sub-algebra of B(H) stand for the commutative C∗-algebra of all bounded
linear operators on a complex Hilbert space H with inner product 〈·, ·〉. An operator
A ∈ A is positive and write A ≥ 0 if 〈Ax, x〉 ≥ 0 for all x ∈ H . Let A+ stand for all
strictly positive operators in A.

Let A be a self-adjoint operator inA. TheGelfandmap establishes a ∗-isometrically
isomorphism Φ between the set C(Sp(A)) of all continuous functions defined on the
spectrum of A, denoted Sp(A), and the C∗-algebra C∗(A) generated by A and the
identity operator 1H on H as follows:

For any f, g ∈ C(Sp(A))) and any α, β ∈ C we have:

– Φ(α f + βg) = αΦ( f ) + βΦ(g);
– Φ( f g) = Φ( f )Φ(g) and Φ( f̄ ) = Φ( f )∗;
– ‖Φ( f )‖ = ‖ f ‖ := supt∈Sp(A) | f (t)|;
– Φ( f0) = 1H and Φ( f1) = A, where f0(t) = 1 and f1(t) = t , for t ∈ Sp(A).

with this notation we define

f (A) = Φ( f ) for all f ∈ C(Sp(A))

and we call it the continuous functional calculus for a self-adjoint operator A.
If A is a self-adjoint operator and f is a real valued continuous function on Sp(A),

then f (t) ≥ 0 for any t ∈ Sp(A) implies that f (A) ≥ 0, i.e. f (A) is a positive
operator on H . Moreover, if both f and g are real valued functions on Sp(A) then the
following important property holds:

f (t) ≥ g(t) for any t ∈ Sp(A) implies that f (A) ≥ g(A), (1)

in the operator order of B(H), see [17].

Let I be an interval in R. Then f : I → R is said to be convex function if

f (λa + (1 − λ)b) ≤ λ f (a) + (1 − λ) f (b)

for a, b ∈ I and λ ∈ [0, 1].
The following inequality holds for any convex function f defined on R

(b − a) f

(
a + b

2

)
≤

∫ b

a
f (x)dx ≤ (b − a)

f (a) + f (b)

2
, a, b ∈ R. (2)

It was firstly discovered by Hermite in 1881 in the journal Mathesis (see [9]). But
this result was nowhere mentioned in the mathematical literature and was not widely
known as Hermite’s result [13].

Beckenbach, a leading expert on the history and the theory of convex functions,
wrote that this inequality was proven by Hadamard in 1893 [1]. In 1974, Mitrinovič
found Hermites note in Mathesis [9]. Since (2) was known as Hadamards inequality,
the inequality is now commonly referred as the Hermite–Hadamard inequality [13].
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Hermite–Hadamard type inequalities for operator… 189

Definition 1 [11] A continuous function f : I ⊂ R
+ → R

+ is said to be geometri-
cally convex function (or multiplicatively convex function) if

f (aλb1−λ) ≤ f (a)λ f (b)1−λ

for a, b ∈ I and λ ∈ [0, 1].
The author of [7] established the Hermite–Hadamard type inequalities for geometri-
cally convex functions as follows:

Theorem 1 Let f : I ⊆ R
+ → R

+ be a geometrically convex function and a, b ∈ I
with a < b. If f ∈ L1[a, b], then

f (
√
ab) ≤ 1

ln b − ln a

∫ b

a

1

t

√
f (t) f

(
ab

t

)
dt

≤ 1

ln b − ln a

∫ b

a

f (t)

t
dt

≤ f (b) − f (a)

ln f (b) − ln f (a)

≤ f (a) + f (b)

2
.

By changing variables t = aλb1−λ we have

1

ln b − ln a

∫ b

a

f (t)

t
dt =

∫ 1

0
f (aλb1−λ)dλ.

Remark 1 It is well-known that for positive numbers a and b

min{a, b} ≤ G(a, b)=√
ab ≤ L(a, b)= b − a

ln b−ln a
≤ A(a, b)= a + b

2
≤ max{a, b}.

The author of [8] mentioned the following inequality, but here we provide a short
proof which gives a refinement for above theorem.

Theorem 2 Let f be a geometrically convex function defined on I a sub-interval of
R

+. Then, we have

f (
√
ab) ≤ 1

ln b − ln a

∫ b

a

1

t

√
f (t) f

(
ab

t

)
dt ≤ √

f (a) f (b)

for a, b ∈ I .
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190 A. Taghavi et al.

Proof Since f is geometrically convex function, we can write

f (
√
ab) = f

(√
(aλb1−λ)(a1−λbλ)

)

≤
√

f (aλb1−λ) f (a1−λbλ)

≤
√

f (a)λ f (b)1−λ f (a)1−λ f (b)λ

= √
f (a) f (b).

for all λ ∈ [0, 1].
So, we have

f (
√
ab) ≤

√
f (aλb1−λ) f (a1−λbλ) ≤ √

f (a) f (b). (3)

Integrate (3) over [0, 1], we have

f (
√
ab) ≤ 1

ln b − ln a

∫ b

a

1

t

√
f (t) f

(
ab

t

)
dt ≤ √

f (a) f (b).


�
Lemma 1 [11, Page 156] Suppose that I is a subinterval of R+ and f : I → (0,∞)

is a geometrically convex function. Then

F = log ◦ f ◦ exp : log(I ) → R

is a convex function. Conversely, if J is an interval for which exp(J ) is a subinterval
of R+ and F : J → R is a convex function, then

f = exp ◦F ◦ log : exp(J ) → R
+

is geometrically convex function.

Theorem 3 Let f be a geometrically convex function defined on [a, b] such that
0 < a < b. Then, we have

f (
√
ab) ≤

√(
f (a

3
4 b

1
4 ) f (a

1
4 b

3
4 )

)

≤ exp

(
1

log b − log a

∫ b

a

log f (t)

t
dt

)

≤
√

f (
√
ab). 4

√
f (a). 4

√
f (b)

≤ √
f (a) f (b)

for a, b ∈ I .
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Hermite–Hadamard type inequalities for operator… 191

Proof Let f : [a, b] → R be a geometrically convex function. So, by Lemma 1 we
have

F(x) = log ◦ f ◦ exp(x) : [log a, log b] → R

is convex.
Then, by [12, Remark 1.9.3]

F

(
log a + log b

2

)
≤ 1

2

(
F

(
3 log a + log b

4

)
+ F

(
log a + 3 log b

4

))

≤ 1

log b − log a

∫ log b

log a
F(x)dx

≤ 1

2

(
F

(
log a + log b

2

)
+ F(log a) + F(log b)

2

)

≤ F(log a) + F(log b)

2
.

By definition of F , we obtain

log ◦ f ◦ exp(log
√
ab) ≤ 1

2

(
log ◦ f ◦ exp

(
log a

3
4 b

1
4

)
+ log ◦ f ◦ exp

(
log a

3
4 b

1
4

))

≤ 1

log b − log a

∫ log b

log a
log ◦ f ◦ exp(x)dx

≤ 1

2

(
log ◦ f ◦ exp

(
log a

1
2 b

1
2

)

+ log ◦ f ◦ exp(log a) + log ◦ f ◦ exp(log b)

2

)

≤ log ◦ f ◦ exp(log a) + log ◦ f ◦ exp(log b)

2
.

It follows that

log f (
√
ab) ≤ 1

2

(
log f (a

3
4 b

1
4 ) + log f (a

3
4 b

1
4 )

)

≤ 1

log b − log a

∫ log b

log a
log ◦ f ◦ exp(x)dx

≤ 1

2

(
log f

(
a

1
2 b

1
2

)
+ log f (a) + log f (b)

2

)

≤ log f (a) + log f (b)

2
.
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192 A. Taghavi et al.

Since exp(x) is increasing, we have

f (
√
ab) ≤

√(
f (a

3
4 b

1
4 ) f (a

1
4 b

3
4 )

)

≤ exp

(
1

log b − log a

∫ log b

log a
log f (exp(x))dx

)

≤
√

f (
√
ab). 4

√
f (a). 4

√
f (b)

≤ √
f (a) f (b).

Using change of variable t = exp(x) to obtain the desired result. 
�
The author of [11, p. 158] showed that every polynomial P(x) with non-negative

coefficients is a geometrically convex function on [0,∞). More generally, every real
analytic function f (x) = ∑∞

n=0 cnx
n with non-negative coefficients is geometrically

convex function on (0, R)where R denotes the radius of convergence. This gives some
different examples of geometrically convex function. It is easy to show that exp(x) is
geometrically convex function.

In this paper, we introduce the concept of operator geometrically convex functions
and prove the Hermite–Hadamard type inequalities for these class of functions. These
results lead us to obtain some inequalities for trace functional of operators.

2 Inequalities for operator geometrically convex functions

In this section,weproveHermite–Hadamard type inequality for operator geometrically
convex function.

In [4] Dragomir investigated the operator version of the Hermite–Hadamard
inequality for operator convex functions. Let f : I → R be an operator convex
function on the interval I then, for any self-adjoint operators A and B with spectra in
I , the following inequalities holds

f

(
A + B

2

)
≤ 2

∫ 3
4

1
4

f (t A + (1 − t)B)dt (4)

≤ 1

2

[
f

(
3A + B

4

)
+ f

(
A + 3B

4

)]
(5)

≤
∫ 1

0
f ((1 − t)A + t B) dt

≤ 1

2

[
f

(
A + B

2

)
+ f (A) + f (B)

2

]
(6)

≤ f (A) + f (B)

2
, (7)

for the first inequality in above, see [15].
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Hermite–Hadamard type inequalities for operator… 193

To give operator geometrically convex function definition, we need following lem-
mas.

Lemma 2 [10, Lemma 3] Let A and B be two operators in A+, and f a continuous
function on Sp(A). Then, AB = BA implies that f (A)B = B f (A).

Since f (t) = tλ is continuous function for λ ∈ [0, 1] and A is a commutative C∗-
algebra, we have AλB = BAλ. Moreover, by applying above lemma for f (t) = t1−λ

again, we have AλB1−λ = B1−λAλ, for operators A and B in A+. It means Aλ and
B1−λ commute together whenever A and B commute.

Lemma 3 Let A and B be two operators in A+. Then

{AλB1−λ : 0 ≤ λ ≤ 1}

is convex.

Proof We know that {λA + (1 − λ)B : 0 ≤ λ ≤ 1} is convex for arbitrary operator
A and B. So, {λ log A + (1 − λ) log B : 0 ≤ λ ≤ 1} is convex. Since A and B are
commutative and knowing that e f is convex when f is convex, we have

e(λ log A+(1−λ) log B) = eλ log Ae(1−λ) log B

= AλB1−λ.

So, AλB1−λ is convex for 0 ≤ λ ≤ 1. 
�
Lemma 4 [17, Theorem5.3]Let A and B be in aBanachalgebra such that AB = BA.
Then

Sp(AB) ⊂ Sp(A)Sp(B).

Let A and B be two positive operators in A with spectra in I . Now, Lemma 2 and
functional calculus [17, Theorem 10.3(c)] imply that

Sp(AλB1−λ) ⊂ Sp(Aλ)Sp(B1−λ) = Sp(A)λ Sp(B)1−λ ⊆ I

for 0 ≤ λ ≤ 1.

Definition 2 A continuous function f : I ⊆ R
+ → R

+ is said to be operator
geometrically convex if

f (AλB1−λ) ≤ f (A)λ f (B)1−λ

for A, B ∈ A+ such that Sp(A), Sp(B) ⊆ I .

Now, we are ready to prove Hermite–Hadamard type inequality for operator geomet-
rically convex functions.
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194 A. Taghavi et al.

Theorem 4 Let f be an operator geometrically convex function. Then, we have

log f (
√
AB) ≤

∫ 1

0
log f (At B1−t )dt ≤ log

√
f (A) f (B) (8)

for 0 ≤ t ≤ 1 and A, B ∈ A+ such that Sp(A),Sp(B) ⊆ I .

Proof Since f is operator geometrically convex function, we have f (
√
AB) ≤√

f (A) f (B). Let replace A and B by At B1−t and A1−t Bt respectively, we obtain

f (
√
AB) ≤

√
f (At B1−t ) f (A1−t Bt ). (9)

It is well-known that log t is operator monotone function on (0,∞) (see [16]), i.e.,
log t is operator monotone function if log A ≤ log B when A ≤ B. So, by above
inequality, we have

log f (
√
AB) ≤ log

√
f (At B1−t ) f (A1−t Bt )

= 1

2
log

(
f (At B1−t ) f (A1−t Bt )

)

= 1

2

(
log f (At B1−t ) + log f (A1−t Bt )

)
.

Therefore,

log f (
√
AB) ≤ 1

2

(
log f (At B1−t ) + log f (A1−t Bt )

)
.

Integrate above inequality over [0, 1], we can write the following

∫ 1

0
log f (

√
AB)dt ≤ 1

2

(∫ 1

0
log f (At B1−t )dt +

∫ 1

0
log f (A1−t Bt )dt

)

=
∫ 1

0
log f (At B1−t )dt. (10)

The last above equality follows by knowing that

∫ 1

0
log f (At B1−t )dt =

∫ 1

0
log f (A1−t Bt )dt.

Hence, from (10), we have

log f (
√
AB) ≤

∫ 1

0
log f (At B1−t )dt.

This proved left inequality of (8).
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Hermite–Hadamard type inequalities for operator… 195

On the other hand, we have f (At B1−t ) ≤ f (A)t f (B)1−t . It follows that

log f (At B1−t ) ≤ log f (A)t f (B)1−t

= log f (A)t + log f (B)1−t

= t log f (A) + (1 − t) log f (B).

So,
log f (At B1−t ) ≤ t log f (A) + (1 − t) log f (B). (11)

Now, integrate of (11) on [0, 1], we have
∫ 1

0
log f (At B1−t )dt ≤

∫ 1

0
t log f (A)dt +

∫ 1

0
(1 − t) log f (B)dt

= log f (A)

∫ 1

0
tdt + log f (B)

∫ 1

0
(1 − t)dt

= 1

2
(log f (A) + log f (B))

= log
√

f (A) f (B).

This completes the proof. 
�
We should mention, when f is operator geometrically convex function, then we

have

f (
√
AB) = f (

√
At B1−t A1−t Bt )

≤
√

f (At B1−t ) f (A1−t Bt )

≤
√

f (A)t f (B)1−t f (A)1−t f (B)t

= √
f (A) f (B).

So, we have

f (
√
AB) ≤

√
f (At B1−t ) f (A1−t Bt ) ≤ √

f (A) f (B).

Integrate above inequality over [0, 1], we obtain

f (
√
AB) ≤

∫ 1

0

√
f (At B1−t ) f (A1−t Bt )dt ≤ √

f (A) f (B),

for 0 ≤ t ≤ 1 and A, B ∈ A+ such that Sp(A),Sp(B) ⊆ I .
Let A, B ∈ A and A ≤ B, by continuous functional calculus [17, Theorem10.3(b)],

we can easily obtain exp(A) ≤ exp(B). This means exp(t) is operator monotone on
[0,∞) for A, B ∈ A.
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196 A. Taghavi et al.

On the other hand, like the classical case, the arithmetic-geometric mean inequality
holds for operators as following

A
1
2

(
A− 1

2 BA− 1
2

)ν

A
1
2 ≤ (1 − ν)A + νB, ν ∈ [0, 1] (12)

with respect to operator order for positive non-commutative operator in B(H). When-
ever, A and B commute together, then inequality (12) reduces to

A1−νBν ≤ (1 − ν)A + νB, ν ∈ [0, 1]. (13)

Since exp(t) is an operator monotone function, by above inequality we have

exp
(
A1−νBν

)
≤ exp ((1 − ν)A + νB)

= exp((1 − ν)A) exp(νB)

= exp(A)1−ν exp(B)ν,

for A, B ∈ A+ and ν ∈ [0, 1]. So, in this case exp(t) is an operator geometrically
convex function on [0,∞).

Let replace f in Theorem 4 by exp(t) as an operator geometrically convex function,
we have

log exp(
√
AB) ≤

∫ 1

0
log exp(At B1−t )dt ≤ log

√
exp(A) exp(B)

= 1

2
log (exp(A) exp(B))

= 1

2
(log exp(A) + log exp(B)) .

So, √
AB ≤

∫ 1

0
At B1−t dt ≤ A + B

2
, (14)

for A, B ∈ A+.
Here, we mention some remarks for operator geometrically convex functions.

Remark 2 f (x) = ‖x‖ is geometrically convex function for usual operator norms
since the following hold

f (AαB1−α) = ‖AαB1−α‖ ≤ ‖A‖α‖B‖1−α = f (A)α f (B)1−α.

Above inequality is a special case of McIntosh inequality.
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Hermite–Hadamard type inequalities for operator… 197

Remark 3 If f (t) is an operator geometrically convex function, then so is g(t) = t f (t)

g(AαB1−α) = AαB1−α f (AαB1−α)

≤ AαB1−α f (A)α f (B)1−α

≤ Aα f (A)αB1−α f (B)1−α

= g(A)αg(B)1−α

for α ∈ [0, 1] and A, B ∈ A+.

Remark 4 Operator geometrically convex functions is an algebra with some compli-
cation of operators spectra. To see this we make use of the following inequality

AαB1−α + CαD1−α ≤ (A + C)α + (B + D)1−α (15)

for A, B,C, D ∈ A+.
Let f and g be operator geometrically convex functions.

First, we prove that f + g is an operator geometrically convex function

( f + g)(AαB1−α) = f (AαB1−α) + g(AαB1−α)

≤ f (A)α f (B)1−α + g(A)αg(B)1−α

≤ ( f (A) + g(A))α + ( f (B) + g(B))1−α

= (( f + g)(A))α + (( f + g)(B))1−α

for A, B ∈ A+. In the last inequality above we applied (15).
Second, we show that m f is an operator geometrically convex function for a scalar

m

(m f )(AαB1−α) ≤ m f (A)α f (B)1−α

= (m f (A))α(m f (B))1−α

for A, B ∈ A+.
Third, h = f g is an operator geometrically convex function

h(AαB1−α) = f (AαB1−α)g(AαB1−α)

≤ f (A)α f (B)1−αg(A)αg(B)1−α

= f (A)αg(A)α f (B)1−αg(B)1−α

= h(A)αh(B)1−α

for A, B ∈ A+.

Let {ei }i∈I be an orthonormal basis of H , we say that A ∈ B(H) is trace class if

‖A‖1 :=
∑
i∈I

〈|A|ei , ei 〉 < ∞. (16)
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198 A. Taghavi et al.

The definition of ‖A‖1 does not depend on the choice of the orthonormal basis {ei }i∈I .
We denote by B1(H) the set of trace class operators in B(H).

We define the trace of a trace class operator A ∈ B1(H) to be

Tr(A) :=
∑
i∈I

〈Aei , ei 〉, (17)

where {ei }i∈I an orthonormal basis of H .
Note that this coincides with the usual definition of the trace if H is finite-

dimensional. We observe that the series (17) converges absolutely.
The following result collects some properties of the trace:

Theorem 5 We have

1. If A ∈ B1(H) then A∗ ∈ B1(H) and

Tr(A∗) = Tr(A); (18)

2. If A ∈ B1(H) and T ∈ B(H), then AT, T A ∈ B1(H) and

Tr(AT ) = Tr(T A) and ‖Tr(AT )‖ ≤ ‖A‖1‖T ‖; (19)

3. Tr(·) is a bounded linear functional on B1(H) with ‖Tr ‖ = 1;
4. If A, B ∈ B1(H) then Tr(AB) = Tr(BA).

For the theory of trace functionals and their applications the reader is referred to
[14].

For A, B ≥ 0 we have Tr(AB) ≤ Tr(A)Tr(B). Also, since f (t) = t
1
2 is monotone

we have √
Tr(AB) ≤ √

Tr(A)Tr(B) (20)

for positive operator A and B in B(H).
We know that f (t) = Tr(t) is operator geometrically convex function [6, p. 513],

i.e.

Tr(At B1−t ) ≤ Tr(A)t Tr(B)1−t

for 0 ≤ t ≤ 1 and positive operators A, B ∈ B1(H).
For commutative case, we have

√
Tr(AB) ≤ Tr(

√
AB) ≤ √

Tr(A)Tr(B),

since (Tr(AB))
1
2 ≤ Tr(AB)

1
2 .
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Hermite–Hadamard type inequalities for operator… 199

Moreover, by Theorem 4 we can write

log Tr(
√
AB) ≤

∫ 1

0
log Tr(At B1−t )dt

≤ log
√
Tr(A)Tr(B)

= 1

2
(log Tr(A) + log Tr(B)).

Let replace A and B by A2 and B2 in above inequality, respectively. By applying
commutativity of algebra and knowing that Tr(A)2 ≤ (Tr A)2 for positive operator A,
we have

log Tr(AB) ≤
∫ 1

0
log Tr(A2t B2(1−t))dt ≤ log (Tr(A)Tr(B)) .

3 More results on trace functional class for product of operators

In this section we prove some trace functional class inequalities for operators which
are not necessarily commutative.

We consider the wide class of unitarily invariant norms ||| · |||. Each of these
norms is defined on an ideal in B(H) and it will be implicitly understood that when
we talk of |||T |||, then the operator T belongs to the norm ideal associated with
||| · |||. Each unitarily invariant norm ||| · ||| is characterized by the invariance property
|||UTV ||| = |||T ||| for all operators T in the norm ideal associated with ||| · ||| and
for all unitary operators U and V in B(H). For 1 ≤ p < ∞, the Schatten p-norm of
an operator A ∈ B1(H) defined by ‖A‖p = (Tr |A|p)1/p. These Schatten p-norms
are unitarily invariant.

In [2], Bhatia and Davis proved the following inequality

||||A∗XB|r |||2 ≤ ||||AA∗X |r |||.||||XBB∗|r ||| (21)

for all operators A, B, X and r ≥ 0.
As we know, ‖A‖1 = Tr |A|. From (21) for p = 1, we have

‖|A∗XB|r‖21 ≤ ‖|AA∗X |r‖1.‖|XBB∗|r‖1. (22)

So, by inequality (22), we can write

(Tr |A∗XB|r )2 ≤ Tr(|AA∗X |r )Tr(|XBB∗|r ), (23)

for all operators A, B ∈ B1(H), X ∈ B(H) and r ≥ 0.
Let, X = I in above inequality, we have

(Tr |A∗B|r )2 ≤ Tr(|AA∗|r )Tr(|BB∗|r ).
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Moreover, let r = 1 in inequality (23), we have

|Tr(A∗XB)|2 ≤ (
Tr |A∗XB|)2 ≤ Tr(|AA∗X |)Tr(|XBB∗|).

Put X∗ instead of X and applying the property of trace we have

|Tr(AB∗X)|2 ≤ Tr(|AA∗X∗|)Tr(|X∗BB∗|), (24)

for all A, B ∈ B1(H) and X ∈ B(H).
Let X = I in (24).

Corollary 1 Let A, B ∈ B1(H). Then

|Tr(AB∗)|2 ≤ Tr(AA∗)Tr(BB∗). (25)

In [5, Theorem 5], Dragomir proved the following inequality for X ∈ B(H),
A, B ∈ B1(H) and α ∈ [0, 1]

|Tr(AB∗X)|2 ≤ Tr
(
|A∗|2|X |2α

)
Tr

(
|B∗|2|X∗|2(1−α)

)
.

Here, we give a generalization for above inequality when α ∈ R.

Theorem 6 Let X ∈ B1(H), A, B ∈ B(H) and α ∈ R. Then

|Tr(AB∗|X |)|2 ≤ Tr
(
|A∗|2|X |2α

)
Tr

(
|B∗|2|X |2(1−α)

)
. (26)

Proof Let replace A and B in Corollary 1 with |X |αA and |X |(1−α)B, where α ∈ R.
It follows that

|Tr(AB∗|X |)|2 ≤ Tr
(|X |αAA∗|X |α)

Tr
(
|X |(1−α)BB∗|X |(1−α)

)

= Tr
(
AA∗|X |α|X |α)

Tr
(
BB∗|X |(1−α)|X |(1−α)

)

= Tr
(
|A∗|2|X |2α

)
Tr

(
|B∗|2|X |2(1−α)

)
.

So, we have

|Tr(AB∗|X |)|2 ≤ Tr
(
|A∗|2|X |2α

)
Tr

(
|B∗|2|X |2(1−α)

)
.


�
Let A = B = I in Theorem 6, we have

|Tr(X)|2 ≤ Tr
(
|X |2α

)
Tr

(
|X |2(1−α)

)
,
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for X ∈ B1(H) and α ∈ R. Above inequality is a refinement for [5, Inequality(3.1)].
Also, let X ∈ B1(H) and normal operators A, B ∈ B(H). For α ∈ R, we have

|Tr(AB∗|X |)|2 ≤ Tr
(
|A|2|X |2α

)
Tr

(
|B|2|X |2(1−α)

)
.

In [3, Theorem 2.3], Dannan proved that if Si and Ti (i = 1, 2, . . . , n) are positive
definite matrices, then we have

(
Tr

n∑
i=1

Si Ti

)2

≤ Tr

(
n∑

i=1

S2i

)
Tr

(
n∑

i=1

T 2
i

)
. (27)

Moreover, if Si Ti ≥ 0, (i = 1, 2, . . . , n). Then

Tr

(
n∑

i=1

Si Ti

)2

≤
(
Tr

n∑
i=1

Si Ti

)2

≤ Tr

(
n∑

i=1

S2i

)
Tr

(
n∑

i=1

T 2
i

)
.

So,

(
Tr

n∑
i=1

Si Ti

)2

≤ Tr

(
n∑

i=1

S2i

)
Tr

(
n∑

i=1

T 2
i

)
.

Here, we prove inequality (27) for arbitrary operators.

Theorem 7 Let Si and Ti (i = 1, 2, . . . , n) be arbitrary operators in B1(H). Then,

∣∣∣∣∣Tr
(

n∑
i=1

Si T
∗
i

)∣∣∣∣∣
2

≤ Tr

(
n∑

i=1

Si S
∗
i

)
Tr

(
n∑

i=1

Ti T
∗
i

)
. (28)
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Proof Let A =

⎛
⎜⎜⎜⎝
S1 S2 . . . Sn
0 0 . . . 0
...

...
. . .

...

0 0 0 0

⎞
⎟⎟⎟⎠ and B =

⎛
⎜⎜⎜⎝
T1 T2 . . . Tn
0 0 . . . 0
...

...
. . .

...

0 0 0 0

⎞
⎟⎟⎟⎠. So, we have

AB∗ =

⎛
⎜⎜⎜⎝

∑n
i=1 Si T

∗
i 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 0 0

⎞
⎟⎟⎟⎠ ,

AA∗ =

⎛
⎜⎜⎜⎝

∑n
i=1 Si S

∗
i 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 0 0

⎞
⎟⎟⎟⎠ ,

BB∗ =

⎛
⎜⎜⎜⎝

∑n
i=1 Ti T

∗
i 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 0 0

⎞
⎟⎟⎟⎠ .

Put A and B in inequality (25), by property of trace, we obtain the desired result. 
�
Corollary 2 Let Si and Ti (i = 1, 2, . . . , n) be positive operators in B1(H). Then,
we have

(
Tr

n∑
i=1

Si Ti

)2

≤ Tr

(
n∑

i=1

S2i

)
Tr

(
n∑

i=1

T 2
i

)
.

Proof By Theorem 7 for positive operators Si and Ti , we obtain

∣∣∣∣∣Tr
(

n∑
i=1

Si Ti

)∣∣∣∣∣
2

≤ Tr

(
n∑

i=1

S2i

)
Tr

(
n∑

i=1

T 2
i

)
.

Since Si and Ti are positive operators, we have Tr(Si Ti ) ≥ 0. It follows that
Tr(

∑n
i=1 Si Ti ) ≥ 0 because Tr

(∑n
i=1 Si Ti

) = ∑n
i=1 Tr(Si Ti ). So,

(
Tr

n∑
i=1

Si Ti

)2

≤ Tr

(
n∑

i=1

S2i

)
Tr

(
n∑

i=1

T 2
i

)
.
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13. Pečarić, J.E., Proschan, F., Tong, Y.L.: Convex Functions, Partial Orderings, and Statistical Applica-

tions. Academic Press Inc, San Diego (1992)
14. Simon, B.: Trace Ideals and Their Applications. Cambridge University Press, Cambridge (1979)
15. Taghavi, A., Darvish, V., Nazari, H.M., Dragomir, S.S.: Some inequalities associatedwith theHermite–

Hadamard inequalities for operator h-convex functions. RGMIA Research Report Collection, vol. 18
(2015) (article 22)

16. Zhan, X.: Matrix Inequalities. Springer, Berlin (2002)
17. Zhu, K.: An Introduction to Operator Algebras. CRC Press, Boca Raton (1993)

123


	Hermite--Hadamard type inequalities for operator geometrically convex functions
	Abstract
	1 Introduction and preliminaries 
	2 Inequalities for operator geometrically convex functions
	3 More results on trace functional class for product of operators
	Acknowledgments
	References




