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Abstract We study strongly Asplund generated (SAG) and strongly conditionally
weakly compactly generated (SCWCG) Banach spaces. These spaces are defined like
the strongly weakly compactly generated (SWCG) Banach spaces of Schlüchtermann
and Wheeler, but replacing weakly compact sets by Asplund sets and conditionally
weakly compact sets, respectively.We show that every SAG space is SCWCG and that
a Banach space is SWCG if and only if it is SAG/SCWCG and weakly sequentially
complete. We also prove that the notions of SAG and SCWCG space coincide for
Banach lattices. Some related results on Lebesgue–Bochner spaces are also given. We
prove that if the norm of the Banach space X is weakly uniformly rotund (WUR)
and μ is any probability measure, then L1(μ, X) admits an equivalent norm which is
WUR when restricted to any Asplund subspace of L1(μ, X).
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1 Introduction

In this paper we study strongly Asplund generated (SAG) and strongly conditionally
weakly compactly generated Banach spaces. These classes of spaces were introduced
by Kunze and Schlüchtermann [22], inspired by the strongly weakly compactly gener-
ated Banach spaces of Schlüchtermann and Wheeler [27]. To recall the definition we
need some terminology. Given a Banach space Z , a set A ⊆ Z is said to be condition-
ally weakly compact if every sequence in A admits a weakly Cauchy subsequence. A
set A ⊆ Z is said to be Asplund if there exist an Asplund Banach space Y and an oper-
ator T : Y → Z such that A ⊆ T (BY ). We denote byWC(Z),A(Z) and CWC(Z) the
families of all weakly compact, Asplund and conditionally weakly compact subsets
of Z , respectively. In general, we have WC(Z) ⊆ A(Z) ⊆ CWC(Z).

Definition 1.1 Let Z be a Banach space,H a family of subsets of Z and G ⊆ Z . We
say thatH is dominated by G (or that G dominatesH) if for every H ∈ H and every
ε > 0, there is n ∈ N such that H ⊆ nG + εBZ .

Definition 1.2 A Banach space Z is called:

(i) strongly weakly compactly generated (SWCG) if WC(Z) is dominated by some
G ∈ WC(Z);

(ii) strongly Asplund generated (SAG) if A(Z) is dominated by some G ∈ A(Z);
(iii) strongly conditionallyweakly compactly generated (SCWCG) ifCWC(Z) is dom-

inated by some G ∈ CWC(Z).

The class of SWCG spaces has been studied thoroughly in [15,21,25,27,28] (see
also [20, Section 6.4]). In this paper we shall focus on SAG and SCWCG spaces. The
basic properties of such spaces were discussed in [22]. Clearly, every Asplund space
is SAG and every Banach space not containing �1 is SCWCG.

In Sect. 2 we discuss the connection between these classes of Banach spaces. In
general, the implications “SWCG �⇒ SAG �⇒ SCWCG” hold (Theorems 2.1, 2.2).
On the other hand, a Banach space is SWCG if and only if it is both SCWCG and
weakly sequentially complete (Theorem 2.2). The stability of “being a subspace of
a SAG/SCWCG space” under countable �p-sums (1 < p < ∞) and c0-sums is
discussed in Theorem 2.6. We finish the section by proving that the notions of SAG
and SCWCG space coincide for Banach lattices (Corollary 2.11).

In Sect. 3we study these properties inLebesgue–Bochner function spaces L p(μ, X)

(where 1 ≤ p < ∞, μ is a probability measure and X a Banach space). The space
L p(μ, X) is SAG (resp. SCWCG) if X is Asplund (resp. X � �1), see Example 3.5.
The converse holds true for 1 < p < ∞ whenever μ is non-trivial (Proposition 3.1).
We finish the paper by proving that if the norm of X is weakly uniformly rotund
(WUR), then L1(μ, X) admits an equivalent norm which is WUR when restricted to
any Asplund subspace of L1(μ, X) (Theorem 3.9). We should stress here that, for
1 < p < ∞, the canonical norm of L p(μ, X) is WUR if the norm of X is WUR,
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Strongly Asplund generated and strongly conditionally… 105

thanks to a result of [29] and the fact that every Banach space admitting a WUR
equivalent norm is Asplund (see [19]).

We use standard Banach space terminology as can be found in [1,12]. Our Banach
spaces are real. The closed unit ball of a Banach space Z is denoted by BZ . The norm
of Z is denoted by ‖ · ‖Z or simply ‖ · ‖. By an operator we mean a linear continuous
map between Banach spaces. By a subspace of a Banach space we mean a closed
linear subspace. Given two Banach spaces Z and Y , we write Z � Y if Z contains
no subspace isomorphic to Y , and we write Z ⊇ Y if Y is isomorphic to a subspace
of Z (in this case, we just say that Y is a subspace of Z ). For complete information on
Asplund sets we refer the reader to [5, Chapter 5] and [10, Chapter 1].

2 SAG and SCWCG spaces

We begin this section by showing the general relationships between SWCG, SAG and
SCWCG Banach spaces.

Theorem 2.1 Let Z be a SAG Banach space. Then:

(i) Z is SCWCG.
(ii) A(Z) = CWC(Z).
(iii) Every subspace of Z not containing �1 is Asplund.

Theorem 2.2 Let Z be a Banach space. The following statements are equivalent:

(i) Z is SWCG;
(ii) Z is SAG and weakly sequentially complete;
(iii) Z is SCWCG and weakly sequentially complete.

In view of Theorem 2.1, any Banach space not containing �1 which is not Asplund
(like the James tree space) is SCWCG but not SAG.

On the other hand, c0 is an Asplund (hence SAG) space which is not weakly
sequentially complete, and so it fails to be SWCG. Spaces like �1 and L1[0, 1] are
SWCG (hence SAG) but not Asplund.

For the proofs of Theorems 2.1 and 2.2 we will need the following lemma, which
is based on the argument given in [27, Theorem 2.5] to prove that every SWCG space
is weakly sequentially complete.

Lemma 2.3 Let Z be a Banach space and G ⊆ Z a balanced set. The following
statements are equivalent:

(i) WC(Z) is dominated by G;
(ii) CWC(Z) is dominated by G.

Proof (ii) ⇒ (i) is obvious (and does not require that G is balanced). (i) ⇒ (ii) Our
proof is by contradiction. Suppose there exist H ∈ CWC(Z) and ε > 0 such that
H � nG + εBZ for all n ∈ N. Let (zn) be a sequence in H such that zn /∈ nG + εBZ

for all n ∈ N. Since G is balanced, we have:
(�) for every m ∈ N the set {n ∈ N : zn ∈ mG + εBZ } is finite.
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106 S. Lajara, J. Rodríguez

Since H is conditionally weakly compact and (�) holds for any subsequence of (zn),
by passing to a further subsequence we can assume that (zn) is weakly Cauchy.

For each n ∈ N and i ∈ {1, 2} we define

mi (n) := min
{
m ∈ N : zn ∈ mG + ε

i
BZ

}
.

Clearly, zn ∈ mG + ε
i BZ if and only if m ≥ mi (n) (because G is balanced). Let

ψ : N → N be any function such that limn→∞ n
ψ(n)

= 0 and n ≤ ψ(n) for all n ∈ N.
We claim that there is a subsequence (znk ) such that

ψ(m2(nk)) < m1(nk+1) for all k ∈ N. (2.1)

Indeed, set n1 = 1 and suppose that nk ∈ N has already been chosen. Then (�) ensures
the existence of nk+1 ∈ N with nk+1 > nk such that

znk+1 /∈ ψ(m2(nk))G + εBZ ,

hence ψ(m2(nk)) < m1(nk+1). This proves the claim. On the other hand, since

m2(nk) ≤ ψ(m2(nk))
(2.1)
< m1(nk+1) ≤ m2(nk+1) for all k ∈ N,

the sequence (m2(nk)) is strictly increasing and we have

lim
k→∞

m2(nk)

ψ(m2(nk))
= 0. (2.2)

Define hk := znk+1 − znk for all k ∈ N, so that (hk) is a weakly null sequence in Z .
SinceWC(Z) is dominated by G, there is m0 ∈ N such that for every k ∈ N we have
hk ∈ m0G + ε

2 BZ . Take any k ∈ N. Then znk ∈ m2(nk)G + ε
2 BZ , hence

znk+1 = hk + znk ∈ (m0 + m2(nk))G + εBZ

and we get

ψ(m2(nk))
(2.1)
< m1(nk+1) ≤ m0 + m2(nk).

As k ∈ N is arbitrary, this contradicts (2.2). The proof is finished. �

The following stability property of Asplund sets (see e.g. [10, Lemma 1.4.3]) will

be used several times in the paper.

Fact 2.4 Let Z be a Banach space and A ⊆ Z. If for every ε > 0 there is B ∈ A(Z)

such that A ⊆ B + εBZ , then A ∈ A(Z).

We are now ready to prove Theorems 2.1 and 2.2.
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Strongly Asplund generated and strongly conditionally… 107

Proof of Theorem 2.1 LetG ∈ A(Z)which dominatesA(Z). We can assumewithout
loss of generality that G is balanced. SinceA(Z) ⊇ WC(Z), Lemma 2.3 ensures that
G also dominates CWC(Z). Since G is conditionally weakly compact, Z is SCWCG.
Bearing in mind that G is Asplund and dominates CWC(Z), from Fact 2.4 it fol-
lows that every conditionally weakly compact subset of Z is Asplund. Finally, (iii) is
immediate from (ii) applied to the closed unit ball of the subspace (a Banach space is
Asplund if and only if its closed unit ball is an Asplund set). �

Proof of Theorem 2.2 (i) ⇒ (ii) Let G ∈ WC(Z) which dominates WC(Z). By the
Krein–Smulyan theorem (see e.g. [9, p. 51, Theorem 11]), we can assume that G
is absolutely convex and, in particular, balanced. Then G dominates CWC(Z) (by
Lemma 2.3). Since CWC(Z) ⊇ A(Z) and G is Asplund, we deduce that Z is SAG.
Bearing in mind that the weakly compact set G dominates CWC(Z), Grothendieck’s
test (see e.g. [12, Lemma 13.32]) ensures that every conditionally weakly compact
subset of Z is relatively weakly compact, that is, Z is weakly sequentially complete.

(ii) ⇒ (iii) follows from Theorem 2.1.
(iii)⇒ (i) This is immediate since conditional weak compactness and relative weak

compactness coincide in any weakly sequentially complete Banach space. �

Remark 2.5 In general, subspaces of SWCG/SAG/SCWCG spaces need not be
SWCG/SAG/SCWCG. Indeed, in [25, Section 3] there is an example of a subspace
Z ⊆ L1[0, 1] which is not SWCG. Since L1[0, 1] is weakly sequentially complete, Z
cannot be SAG or SCWCG.

The following result extends [22, Theorem 4.5]. Its proof uses some ideas from
[27, Theorem 3.2] and [26].

Theorem 2.6 Let (Xn) be a sequence of Banach spaces and let Y be either
(
⊕

n∈N Xn)�p for 1 < p < ∞ or (
⊕

n∈N Xn)c0 . If Y is a subspace of a SAG (resp.
SCWCG) space, then Xn is Asplund (resp. Xn � �1) for all but finitely many n ∈ N.

Proof We divide the proof into several steps.
Step 1 It suffices to prove the SCWCG case. Indeed, if Y is a subspace of a SAG

Banach space Z , then so is each Xn , hence Xn � �1 if and only if Xn is Asplund (by
Theorem 2.1). Bearing in mind that Z is SCWCG (Theorem 2.1), it is clear that the
SAG case follows from the SCWCG case.

Step 2 We shall prove that if Xn ⊇ �1 for all n ∈ N, then Y is not a subspace of a
SCWCG space. By James’ �1 distortion theorem (see e.g. [1, Theorem 10.3.1]), for
each n ∈ N there is a normalized sequence (xnk ) in Xn such that

∥∥∥∥∥
∑
k∈N

akx
n
k

∥∥∥∥∥
Xn

≥ 1

2

∑
k∈N

|ak | for all (ak) ∈ �1. (2.3)

Let � ⊆ N
N be the set of all strictly increasing functions from N to N. Fix ϕ ∈ �.

For each j ∈ N, let fϕ, j ∈ Y be defined as

πn( fϕ, j ) :=
{
x j
ϕ( j) if n = j,

0 if n �= j,
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108 S. Lajara, J. Rodríguez

whereπn : Y → Xn denotes the nth-coordinate projection for all n ∈ N. The sequence
( fϕ, j ) is weakly null in Y , because it is bounded and for every n ∈ N we have
πn( fϕ, j ) = 0 whenever j > n. Therefore, the set Kϕ := { fϕ, j : j ∈ N} ∪ {0} is
weakly compact in Y .

Step 3 By contradiction, suppose that there exists an isomorphic embedding
T : Y → Z , where Z is a SCWCG Banach space. Fix G ∈ CWC(Z) which domi-
nates CWC(Z) and fix 0 < ε < c := 1

2‖T−1|T (Y )‖−1. For each ϕ ∈ � we choose
m(ϕ) ∈ N with the property that T (Kϕ) ⊆ m(ϕ)G + εBZ . Then � = ⋃

m∈N Bm ,
where Bm := {ϕ ∈ � : m(ϕ) = m} for every m ∈ N. It is easy to check that the
equality � = ⋃

m∈N Bm implies that there is m ∈ N such that {ϕ(m) : ϕ ∈ Bm} is
infinite. Notice that

⋃
ϕ∈Bm

T (Kϕ) ⊆ mG + εBZ . (2.4)

Enumerate {ϕ(m) : ϕ ∈ Bm} = {ϕ1(m) < ϕ2(m) < . . . } for some sequence (ϕk)

in Bm . Define gk := fϕk ,m ∈ Kϕk ⊆ Y for all k ∈ N. Observe that

∥∥∥∥∥
∑
k∈N

bkgk

∥∥∥∥∥
Y

=
∥∥∥∥∥
∑
k∈N

bkx
m
ϕk (m)

∥∥∥∥∥
Xm

(2.3)≥ 1

2

∑
k∈N

|bk | for all (bk) ∈ �1,

hence
∥∥∥∥∥
∑
k∈N

bkT (gk)

∥∥∥∥∥
Z

≥ c
∑
k∈N

|bk | for all (bk) ∈ �1. (2.5)

Step 4 By (2.4), for each k ∈ N there is hk ∈ mG such that ‖T (gk) − hk‖Z ≤ ε.
For every (bk) ∈ �1 we have

∥∥∥∥∥
∑
k∈N

bkhk

∥∥∥∥∥
Z

=
∥∥∥∥∥
∑
k∈N

bkT (gk) −
∑
k∈N

bk
(
T (gk) − hk

)
∥∥∥∥∥
Z

≥
∥∥∥∥∥
∑
k∈N

bkT (gk)

∥∥∥∥∥
Z

−
∑
k∈N

|bk |
∥∥T (gk) − hk

∥∥
Z

≥
∥∥∥∥∥
∑
k∈N

bkT (gk)

∥∥∥∥∥
Z

− ε
∑
k∈N

|bk |
(2.5)≥ (c − ε)

∑
k∈N

|bk |.

Thus, (hk) is an �1-sequence contained in mG ∈ CWC(Z), a contradiction which
finishes the proof. �


Since C[0, 1] contains any separable Banach space (see e.g. [1, Theorem 1.4.3]),
the previous theorem applied to the space �2(�1) yields:

Corollary 2.7 C[0, 1] is not a subspace of a SCWCG space.
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Strongly Asplund generated and strongly conditionally… 109

Given a compactHausdorff topological space K , theBanach spaceC(K ) isAsplund
if and only if K is scattered (see e.g. [12, Theorem 14.25]). On the other hand, if
K is not scattered, then C[0, 1] is a subspace of C(K ) (see e.g. the proof of [12,
Theorem 14.26(v)]). These facts and Corollary 2.7 allow us to deduce:

Corollary 2.8 Let K be a compact Hausdorff topological space. Then C(K ) is a
subspace of a SCWCG space if and only if C(K ) is Asplund.

The following result was proved in [21, Corollary 2.29]. The particular case not
involving subspaces was first noticed in [28, Theorem 5.10].

Corollary 2.9 (Kampoukos–Mercourakis) Let (Xn) be a sequence of Banach spaces
and let 1 < p < ∞. If (

⊕
n∈N Xn)�p is a subspace of a SWCG space, then Xn is

reflexive for all but finitely many n ∈ N.

Proof By Theorems 2.2 and 2.6, we have Xn � �1 for all but finitely many n ∈ N. On
the other hand, bearing in mind that every SWCG space is weakly sequentially com-
plete (see [27, Theorem 2.5], cf. Theorem 2.2) and that weak sequential completeness
is inherited by subspaces, we get that each Xn is weakly sequentially complete. From
Rosenthal’s �1 theorem (see e.g. [1, Theorem 10.2.1]) it follows at once that Xn is
reflexive for all but finitely many n ∈ N. �


It is known that a Banach lattice is Asplund if (and only if) it does not contain �1 (see
[9, p. 95] and [17, Theorem 7]). We finish this section by proving that the properties
of being SAG and SCWCG are also equivalent in Banach lattices.

Theorem 2.10 If Z is a Banach lattice and Z � C[0, 1], then A(Z) = CWC(Z).

Proof Let H ∈ CWC(Z). Since Z � C[0, 1], the convex solid hull H̃ of H is condi-
tionally weakly compact as well (see [16, Corollary II.4]). Let Y be the interpolation
Banach space obtained from H̃ by applying the Davis–Figiel–Johnson–Pełczyński
method and let T : Y → X be its associated operator (see e.g. [2, Theorem 5.37]).
Since H̃ is conditionally weakly compact, we have Y � �1 (see e.g. [18, Theo-
rem 5.3.6]). Since H̃ is solid, Y is a Banach lattice (see e.g. [2, Theorem 5.41]).
According to the comments preceding the theorem, Y is Asplund and so H ⊆ T (BY )

is an Asplund set. �

Corollary 2.11 A Banach lattice is SCWCG if and only if it is SAG.

Proof Combine Theorem 2.10 and Corollary 2.7. �


3 Lebesgue–Bochner spaces

Throughout this section X is a Banach space, (	,
,μ) a probability space and, for
1 ≤ p < ∞, we consider the Banach space L p(μ, X) of all (equivalence classes) of
strongly measurable functions f : 	 → X such that

‖ f ‖L p(μ,X) =
(∫

	

‖ f (ω)‖p dμ(ω)

) 1
p

< ∞.
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110 S. Lajara, J. Rodríguez

A set C ⊆ L1(μ, X) is called uniformly integrable if it is bounded and for every
ε > 0 there is δ > 0 such that ‖ f 1A‖L1(μ,X) ≤ ε for every A ∈ 
 with μ(A) ≤ δ

and every f ∈ C . (Here 1A denotes the characteristic function of A.) It is known that
every conditionally weakly compact subset of L1(μ, X) is uniformly integrable (see
e.g. [9, p. 104, Theorem 4]). Conversely, a result of Bourgain, Maurey and Pisier (see
e.g. [7, Theorem 2.2.1]) states that every uniformly integrable subset of L1(μ, X) is
conditionally weakly compact if and only if X � �1.

For 1 < p < ∞, the space L p(μ, X) is Asplund (resp. L p(μ, X) � �1) if and
only if X is Asplund (resp. X � �1), see e.g. [9, IV.1] (resp. [7, Theorem 2.2.2]).
We say that μ is non-trivial if L1(μ) is infinite dimensional or, equivalently, there is
an infinite sequence of pairwise disjoint elements of 
 with positive measure. In this
case, �p(X) is a subspace of L p(μ, X). Thus, from Theorem 2.6 we get:

Proposition 3.1 Suppose μ is non-trivial and let 1 < p < ∞. The following state-
ments are equivalent:

(i) L p(μ, X) is a subspace of a SAG (resp. SCWCG) space;
(ii) L p(μ, X) is Asplund (resp. L p(μ, X) � �1);
(iii) X is Asplund (resp. X � �1).

Note that X is a complemented subspace of L1(μ, X), hence X is SWCG, SAG
or SCWCG whenever L1(μ, X) is. Schlüchtermann and Wheeler [27] asked whether
L1(μ, X) is SWCG whenever X is SWCG. Some partial answers have been given in
[24,26,27], but the general question still remains open in full generality. In the same
way, we might ask:

Question 3.2 Is L1(μ, X) SAG if X is SAG?

Question 3.3 Is L1(μ, X) SCWCG if X is SCWCG?

Remark 3.4 If the answer to either Question 3.2 or 3.3 were affirmative, then the
problem of Schlüchtermann andWheeler would have positive solution as well. Indeed,
this follows from Theorem 2.2 and Talagrand’s striking result that L1(μ, X) is weakly
sequentially complete if X is (see [30, Theorem 11]).

Part (i) of the following example should be compared with Theorem 2.1.

Example 3.5 (i) If X is Asplund, then:
(a) L1(μ, X) is SAG.
(b) Every uniformly integrable subset of L1(μ, X) is an Asplund set.
(c) A subspaceY ⊆ L1(μ, X) is Asplund if and only if BY is uniformly integrable.

(ii) If X � �1, then L1(μ, X) is SCWCG.

Proof (i) Let i : L2(μ, X) → L1(μ, X) be the identity operator. It is easy to check that
the family of all uniformly integrable subsets of L1(μ, X) is dominated by i(BL2(μ,X))

(just adapt the proof of [20, Proposition 6.41] to the vector-valued case). In partic-
ular, A(L1(μ, X)) is dominated by i(BL2(μ,X)). Since L2(μ, X) is Asplund, the set
i(BL2(μ,X)) is Asplund and therefore L1(μ, X) is SAG. Statement (b) follows from
Fact 2.4 and (c) is immediate from (b) applied to BY . The proof of part (ii) is similar
to that of (i)(a). �
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Strongly Asplund generated and strongly conditionally… 111

We next consider some special subfamilies ofA(L1(μ, X)) and CWC(L1(μ, X)).

Definition 3.6 H ⊆ L1(μ, X) is said to be a δA-set (resp. δC-set) if it is uniformly
integrable and for every δ > 0 there exists Wδ ∈ A(X) (resp. Wδ ∈ CWC(X)) such
that: for every f ∈ H there is A ∈ 
 such that μ(	\A) ≤ δ and f (A) ⊆ Wδ .

Of course, the typical example of δA-set (resp. δC-set) is

L(C) := { f ∈ L1(μ, X) : f (	) ⊆ C},

where C ∈ A(X) (resp. C ∈ CWC(X)). The δC-sets were studied in [3,4]. It was
shown in [4, Proposition 13] (cf. [7, Theorem 2.2.1]) that every δC-set of L1(μ, X) is
conditionally weakly compact.

Proposition 3.7 Every δA-set of L1(μ, X) is Asplund.

Proof We divide the proof into several cases.
Case 1. L(C) is Asplund whenever C ⊆ X is countable and Asplund. To prove this,

let Y be an Asplund Banach space and T : Y → X an operator such that C ⊆ T (BY ).
Then L2(μ,Y ) is Asplund and we can consider the operator

T̃ : L2(μ, Y ) → L1(μ, X), T̃ ( f ) := T ◦ f.

We claim that L(C) ⊆ T̃ (BL2(μ,Y )). Indeed, the fact that C is countable ensures
that for every g ∈ L(C) there is a countably-valued strongly measurable function
f : 	 → BY such that T ◦ f = g, hence f ∈ BL2(μ,Y ) and T̃ ( f ) = g.
Case 2. L(C) is Asplund whenever C ⊆ X is Asplund. It suffices to prove that every

countable subset of L(C) isAsplund (see e.g. [10, Theorem1.4.5]). Fix a sequence (gn)
in L(C) and take any ε > 0. For each n ∈ N we choose a countably-valued function
g̃n ∈ L(C) such that ‖gn(ω) − g̃n(ω)‖ ≤ ε for μ-a.e. ω ∈ 	. There is a countable set
C0 ⊆ C such that g̃n ∈ L(C0) for all n ∈ N, hence {gn : n ∈ N} ⊆ L(C0)+εBL1(μ,X).
Since C0 is Asplund, so is L(C0) (by Case 1). As ε > 0 is arbitrary, from Fact 2.4 it
follows that {gn : n ∈ N} is Asplund.

General case.Let H ⊆ L1(μ, X) be any δA-set and fix ε > 0. Since H is uniformly
integrable, there is δ > 0 such that

sup
f ∈H

‖ f 1B‖L1(μ,X) ≤ ε

for every B ∈ 
 with μ(B) ≤ δ. Let Wδ ∈ A(X) be as in Definition 3.6 and set
C := Wδ ∪ {0} ∈ A(X). Given any f ∈ H , there is A f ∈ 
 such that μ(	\A f ) ≤ δ

and f (A f ) ⊆ Wδ , hence ‖ f 1	\A f ‖L1(μ,X) ≤ ε and f 1A f ∈ L(C). Therefore,
H ⊆ L(C) + εBL1(μ,X). Another appeal to Fact 2.4 ensures that H is Asplund. The
proof is finished. �


In [3, Section 4] there is an example of a Banach space X and a weakly compact
subset of L1([0, 1], X) which is not a δC-set.

The following result can be obtained similarly as in [26, Theorem 3.7]. The proof
is omitted.
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Proposition 3.8 The following statements are equivalent:

(i) X is SAG (resp. SCWCG);
(ii) the family of all δA-sets (resp. δC-sets) of L1(μ, X) is dominated by some δA-set

(resp. δC-set).
We finish the paper by studying renorming properties of the space L1(μ, X). Some

ideas from [23] were adapted to the vector-valued case in [13,14] to show that some
convexity and smoothness properties of X lift to L1(μ, X) when equipped with the
Orlicz-type equivalent norm ||| · ||| defined below.

From now on, M : R → [0,∞) is a fixed Orlicz function with some addi-
tional properties: M is Lipschitz and twice differentiable, M ′′ is decreasing and
limt→∞ t2M ′′(t) ∈ (0,∞). An example of such a function isM(t) = |t |−log(1+|t |).
We consider the equivalent norm ||| · ||| on L1(μ, X) defined by

||| f ||| := inf

{
ρ > 0 :

∫

	

M

(‖ f (ω)‖
ρ

)
dμ(ω) ≤ 1

}
. (3.1)

Here we focus on a property of the norm (WUR) which is close to the space being
Asplund. The norm ‖ · ‖ of a Banach space Z is said to be WUR if for every two
sequences (zn) and (z′n) in the unit sphere SZ := {z ∈ Z : ‖z‖ = 1} satisfying ‖zn +
z′n‖ → 2, we have zn − z′n → 0 weakly in Z . Every Banach space admitting a WUR
equivalent norm is Asplund (see [19, Theorem 1], cf. [11, Appendix]). Conversely,
every Banach space with separable dual admits a WUR equivalent norm (see e.g. [8,
Ch. II, Corollary 6.9(ii)]).

We shall prove the following:

Theorem 3.9 If (X, ‖ · ‖) is WUR and Y ⊆ L1(μ, X) is an Asplund subspace, then
(Y, ||| · |||) is WUR.

Since the Banach space X of Theorem 3.9 is necessarily Asplund, the subspaces
for which the result applies are exactly those with uniformly integrable closed unit
ball [Example 3.5(i)]. Our proof of Theorem 3.9 follows the ideas of [14]. We isolate
some steps as auxiliary lemmas for the convenience of the reader.

Lemma 3.10 For every f ∈ L1(μ, X) we have

1

c
||| f ||| ≤ ‖ f ‖L1(μ,X) ≤ c′||| f |||

where c is the Lipschitz constant of M and c′ := 2 + 1
M ′(1) .

Proof See [13, p. 250]. �

Definition 3.11 Let f, g ∈ L1(μ, X). We define two non-negative functions ϕ( f,g)

and ψ( f,g) belonging to L1(μ) by

ϕ( f,g)(ω) := M ′′(max{‖ f (ω)‖, ‖g(ω)‖}) · (‖ f (ω)‖ − ‖g(ω)‖)2
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and

ψ( f,g)(ω) := M

(‖ f (ω)‖ + ‖g(ω)‖
2

)
− M

(‖ f (ω) + g(ω)‖
2

)
.

Lemma 3.12 Let ( fn) and (gn) be sequences in L1(μ, X) such that

||| fn||| = |||gn||| = 1 for all n ∈ N and lim
n→∞ ||| fn + gn||| = 2.

Then

lim
n→∞

∫

	

ϕ( fn ,gn) dμ = lim
n→∞

∫

	

ψ( fn ,gn) dμ = 0.

Proof See the proof of Theorem 1 in [14]. �

The symbol σ ′ := σ(L1(μ, X), L∞(μ, X∗)) denotes the topology on L1(μ, X) of

pointwise convergence on L∞(μ, X∗), the duality being given by

〈 f, g〉 =
∫

	

〈 f (ω), g(ω)〉 dμ(ω), f ∈ L1(μ, X), g ∈ L∞(μ, X∗).

Note that L∞(μ, X∗) embeds isometrically into L1(μ, X)∗ and σ ′ is weaker than the
weak topology of L1(μ, X). It is known that L1(μ, X)∗ = L∞(μ, X∗) whenever X
is Asplund, see e.g. [9, p. 98, Theorem 1].

Proof of Theorem 3.9 It suffices to check that if ( fn) and (gn) are sequences in Y such
that

||| fn||| = |||gn||| = 1 for all n ∈ N and lim
n→∞ ||| fn + gn||| = 2,

then for every ε > 0 there exist a subsequence (nk) of N and a weakly null sequence
(hk) in L1(μ, X) such that ‖( fnk − gnk ) − hk‖L1(μ,X) ≤ ε for all k ∈ N.

Since any bounded subset of Y is uniformly integrable, there is δ > 0 such that

sup
n∈N

∫

A
‖ fn(ω) − gn(ω)‖ dμ(ω) ≤ ε for every A ∈ 
 with μ(A) ≤ δ. (3.2)

Define An := {ω ∈ 	 : ‖ fn(ω)‖ + ‖gn(ω)‖ > 2c′
δ

} ∈ 
,

f̃n := fn1	\An and g̃n := gn1	\An

for all n ∈ N. Note that ( f̃n) and (g̃n) are uniformly bounded. Bearing in mind that
the inequalities

0 ≤ ϕ
( f̃n ,g̃n)

≤ ϕ( fn ,gn) and 0 ≤ ψ
( f̃n ,g̃n)

≤ ψ( fn ,gn)
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hold μ-a.e. for every n ∈ N, an appeal to Lemma 3.12 yields

lim
n→∞

∥∥ϕ
( f̃n ,g̃n)

∥∥
L1(μ)

= lim
n→∞

∥∥ψ
( f̃n ,g̃n)

∥∥
L1(μ)

= 0.

Therefore, there is a subsequence (nk) of N such that

lim
k→∞ ϕ

( f̃nk ,g̃nk )
= lim

k→∞ ψ
( f̃nk ,g̃nk )

= 0 μ-a.e. (3.3)

Given any k ∈ N, we define hk := f̃nk − g̃nk . By Chebyshev’s inequality and
Lemma 3.10, we have

μ(Ank ) ≤ δ

2c′

∫

	

(‖ fnk (ω)‖ + ‖gnk (ω)‖) dμ(ω)

= δ

2c′ (‖ fnk‖L1(μ,X) + ‖gnk‖L1(μ,X)) ≤ δ,

hence (3.2) yields

‖( fnk − gnk ) − hk‖L1(μ,X) = ‖( fnk − gnk )1Ank
‖L1(μ,X) ≤ ε.

Therefore, to finish the proof it remains to check that (hk) is weakly null in L1(μ, X).

Claim The sequence (hk(ω)) is weakly null in X for μ-a.e. ω ∈ 	. Indeed, since ‖ · ‖
is WUR, the claim will be established with the help of [8, Ch. II, Proposition 6.2(i)]
by checking the following statements (a) and (b):

(a) ‖ f̃nk (ω)‖ − ‖g̃nk (ω)‖ → 0 μ-a.e. as k → ∞. Indeed, since M ′′ is decreasing,
for every k ∈ N and every ω ∈ 	 we have

0 ≤ M ′′
(
2c′

δ

)
· (‖ f̃nk (ω)‖ − ‖g̃nk (ω)‖)2 ≤ ϕ

( f̃nk ,g̃nk )
(ω).

The previous inequalities, the fact that M ′′ does not vanish on (0,∞) and (3.3)
yield ‖ f̃nk (ω)‖ − ‖g̃nk (ω)‖ → 0 μ-a.e. as k → ∞.

(b) ‖ f̃nk (ω)+ g̃nk (ω)‖− 2‖ f̃nk (ω)‖ → 0 μ-a.e. as k → ∞. Indeed, by (3.3) and (a)
we have

M

(
‖ f̃nk (ω) + g̃nk (ω)‖

2

)
− M

(‖ f̃nk (ω)‖) → 0 μ-a.e. as k → ∞. (3.4)

Since M is strictly increasing and continuous on [0,∞), it is a homeomorphism
between [0, 2c′

δ
] and [0, M( 2c

′
δ

)]. The uniform continuity of M−1 on [0, M( 2c
′

δ
)]

and (3.4) imply that 1
2‖ f̃nk (ω) + g̃nk (ω)‖ − ‖ f̃nk (ω)‖ → 0 μ-a.e. as k → ∞.

This finishes the proof of the claim.
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Note that the sequence (hk) is uniformly bounded. Given any x∗ ∈ X∗, the previous
claim and Lebesgue’s dominated convergence theorem applied to the sequence of
compositions (x∗ ◦ hk) yield

lim
k→∞ x∗

(∫

A
hk dμ

)
= lim

k→∞

∫

A
(x∗ ◦ hk) dμ = 0 for every A ∈ 
.

Hence the sequence (
∫
A hk dμ) is weakly null in X for every A ∈ 
. This fact

and the uniform integrability of (hk) imply that (hk) is σ ′-convergent to 0 (see [6,
Theorem 4]). Since σ ′ and the weak topology of L1(μ, X) coincide (because X is
Asplund), the sequence (hk) is weakly null and the proof is finished. �

Remark 3.13 In [13, Theorem 3.1] it is proved that if the norm ‖ · ‖ of X is Fréchet
smooth, then L1(μ, X) admits an equivalent norm which is Fréchet smooth when
restricted to any reflexive subspace Y ⊆ L1(μ, X). Such a norm is obtained by
the formula (3.1) applied to an Orlicz function satisfying certain properties like, for
instance, M(t) = |t | − log(1 + |t |). Actually, the proof of [13, Theorem 3.1] only
uses the uniform integrability of BY . On the other hand, any Banach space admitting
a Fréchet smooth equivalent norm is Asplund (see e.g. [8, Ch. II, Corollary 3.3]). It
follows that the aforementioned result in [13] applies exactly to Asplund subspaces
Y ⊆ L1(μ, X). Bearing in mind that M(t) = |t | − log(1 + |t |) also fulfills the
requirements of Theorem 3.9, we deduce that if the norm ‖ · ‖ of X is Fréchet smooth
and WUR, then L1(μ, X) admits an equivalent norm which is Fréchet smooth and
WUR when restricted to any Asplund subspace Y ⊆ L1(μ, X).
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