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Abstract LetG be a locally compact abelian group. In this paper, we study derivations
on the Banach algebra L∞

0 (G)∗. We prove that any derivation on L∞
0 (G)∗ maps it

into its radical and a derivation on L∞
0 (G)∗ is continuous if and only if its restriction

to the right annihilator of L∞
0 (G)∗ is continuous. We also show that the composition

of two derivations on L∞
0 (G)∗ is always a derivation on it and the zero map is the

only centralizing derivation on L∞
0 (G)∗. Finally, we characterize the space of inner

derivations of L∞
0 (G)∗ and show that G is discrete if and only if there exist i, j, k ∈ N

such that [d(m), n] ji = [m, n]k for all m, n ∈ L∞
0 (G)∗; or equivalently, any inner

derivation on L∞
0 (G)∗ is zero.

Keywords Locally compact abelian group · Derivation · Inner derivation ·
k-centralizing

Mathematics Subject Classification 43A15 · 47B47 · 46H40 · 16W25

1 Introduction

LetG be a locally compact abelian group with a fixed left Haar measure and let L1(G)

be the group algebra of G defined as in [4] equipped with the convolution product ∗
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and the norm ‖.‖1. We denote by L∞
0 (G) the subspace of all functions f ∈ L∞(G),

the usual Lebesgue space as defined in [4] equipped with the essential supremum norm
‖.‖∞, that for each ε > 0, there is a compact subset K of G for which

‖ f χG\K ‖∞ < ε,

where χG\K denotes the characteristic function G\K on G. It is well-known from [6]
that the subspace L∞

0 (G) is a topologically introverted subspace of L∞(G), that is,
for each n ∈ L∞

0 (G)∗ and f ∈ L∞
0 (G), the function n f ∈ L∞

0 (G), where

〈n f, φ〉 = 〈n, f φ〉, in which 〈 f φ,ψ〉 = 〈 f, φ ∗ ψ〉

for all φ,ψ ∈ L1(G). Hence L∞
0 (G)∗ is a Banach algebra with the first Arens product

“·” defined by the formula

〈m · n, f 〉 = 〈m, n f 〉

for all m, n ∈ L∞
0 (G)∗ and f ∈ L∞

0 (G). Note that L1(G) may be regarded as a
subspace of L∞

0 (G)∗ and then L1(G) is a closed ideal in L∞
0 (G)∗ with a bounded

approximate identity [6]. Let �0(G) denote the set of all weak∗-cluster points of an
approximate identity in L1(G) bounded by one. It is easy to see that if u ∈ �0(G),
then for every m ∈ L∞

0 (G)∗ and φ ∈ L1(G)

m · u = m and u · φ = φ.

Let π denote the natural continuous operator that associates to any functional in
L∞
0 (G)∗ its restriction toC0(G), the space of all continuous functions on G vanishing

at infinity. Then the restriction map π from L∞
0 (G)∗ into M(G), the measure algebra

of G as defined in [4] endowed with the convolution product ∗ and the total variation
norm, is a homomorphism and

πu := π |u·L∞
0 (G)∗

is an isomorphism for all u ∈ �0(G). Note that, for every f ∈ L∞
0 (G) andφ ∈ L1(G),

we have f φ ∈ C0(G). Hence for every n ∈ L∞
0 (G)∗ and f ∈ L∞

0 (G), we may define
the function π(n) f ∈ L∞(G) by

〈π(n) f, φ〉 = 〈π(n), f φ〉.

Then

π(n) f = n f ∈ L∞
0 (G).

123



Derivations on group algebras of a locally compact abelian group 597

This enable us to define the functional m · π(n) ∈ L∞
0 (G)∗ by

〈m · π(n), f 〉 = 〈m, π(n) f 〉.

It follows that

m · π(n) = m · n

for all m, n ∈ L∞
0 (G)∗; see [6]. Let Annr (L∞

0 (G)∗) denote the right annihilator of
L∞
0 (G)∗; i.e. the set of all r ∈ L∞

0 (G)∗ such that m · r = 0 for all m ∈ L∞
0 (G)∗. one

can easily prove that

Annr (L
∞
0 (G)∗) = ker(π).

Furthermore, an easy application of theHahn-Banach theorem shows thatG is discrete
if and only if

Annr (L
∞
0 (G)∗) = {0}.

Let A be a Banach algebra; a linear mapping d : A → A is called a derivation if

d(ab) = d(a)b + ad(b).

A fundamental question for derivations concerns their image. Singer and Wermer
[12] showed that the range of a continuous derivation on a commutative Banach
algebra is contained in the radical of algebra. They conjectured that this result holds
for discontinuous derivations. Thomas [13] proved this conjecture. Posner [10] gave
a noncommutative version of the Singer-Wermer theorem for prime rings. He proved
that the zero map is the only centralizing derivation on a noncommutative prime ring
(Posner’s second theorem). These results have been extended in various directions by
several authors; see for instance [1,3,5,7,8,11,14].

Can we apply the well-known results concerning derivations of commutative
Banach algebras and derivations of prime rings to L∞

0 (G)∗? This question seems
natural, because L∞

0 (G)∗ is neither a commutative Banach algebra nor a prime ring,
when G is a non-discrete group. In this paper, we investigate the truth of these results
for L∞

0 (G)∗.
This paper is organized as follows: In Sect. 2, we investigate the Singer- Wermer

conjecture and automatic continuity for L∞
0 (G)∗. We prove that the range of a deriva-

tion on the noncommutative Banach algebra L∞
0 (G)∗ is contained in the radical of

L∞
0 (G)∗ and a derivation on L∞

0 (G)∗ is continuous if and only if its restriction to
Annr (L∞

0 (G)∗) is continuous. In Sect. 3, we investigate Posner’s second theorem and
show that the zero map is the only centralizing derivation on L∞

0 (G)∗. In Sect. 4, we
characterize the space of all inner derivations of L∞

0 (G)∗ and prove that G is discrete
if and only if any inner derivation on L∞

0 (G)∗ is zero.
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598 M. J. Mehdipour, Z. Saeedi

2 The Singer-Wermer conjecture for L∞
0 (G)∗

We commence this section with the following result.

Theorem 1 Let G be a locally compact abelian group and d be a derivation on
L∞
0 (G)∗. Then d has its image in the right annihilator of L∞

0 (G)∗.

Proof Let u ∈ �0(G). Define the function D : M(G) → M(G) by

D(μ) = π ◦ d̃ ◦ π−1
u (μ),

where d̃ = d|u·L∞
0 (G)∗ . It is routine to check that D is derivation on the commutative

semisimple Banach algebra M(G). Hence D is zero. It follows that

d̃ ◦ π−1
u (M(G)) ⊆ ker(π) = Annr (L

∞
0 (G)∗).

Since πu maps u · L∞
0 (G)∗ onto M(G), we have

d(u · L∞
0 (G)∗) ⊆ Annr (L

∞
0 (G)∗).

On the one hand,

m · d(r) = d(m · r) − d(m) · r = 0

for all m ∈ L∞
0 (G)∗ and r ∈ Annr (L∞

0 (G)∗). So

d(Annr (L
∞
0 (G)∗)) ⊆ Annr (L

∞
0 (G)∗).

Now,we only need to recall that L∞
0 (G)∗ is the Banach space direct sum of u ·L∞

0 (G)∗
and Annr (L∞

0 (G)∗). ��

Before we give the following consequence of Theorem 1, let us recall that a linear
mapping T on L∞

0 (G)∗ is called spectrally bounded if there is a non-negative number
α such that r(T (m)) ≤ αr(m) for all m ∈ L∞

0 (G)∗, where r(·) stands for the spectral
radius.

Corollary 1 Let G be a locally compact abelian group. Then the following statements
hold.

(i) Every derivation on L∞
0 (G)∗ maps it into its radical.

(ii) Primitive ideals of L∞
0 (G)∗ are invariant under derivations on L∞

0 (G)∗.
(iii) Every derivation on L∞

0 (G)∗ is spectrally bounded.
(iv) The composition of two derivations on L∞

0 (G)∗ is always a derivation on
L∞
0 (G)∗.
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Derivations on group algebras of a locally compact abelian group 599

Proof The statement (i) follows from Theorem 1 together with the fact that the set of
nilpotent elements is contained in the radical of the algebra. The statement (ii) follows
immediately from (i). For (iii), note that if d is a derivation on L∞

0 (G)∗, then

d(m)i = 0

for all m ∈ L∞
0 (G)∗ and i ≥ 2. Finally, the statement (iv) follows from Theorem 1.

��
As an another consequence of Theorem 1, we have the following result.

Corollary 2 Let G be a locally compact abelian group. Then the following statements
hold.

(i) If d is a derivation on L∞
0 (G)∗, then d|L1(G) is zero.

(ii) The zero map is the only weak∗ − weak∗ continuous derivation on L∞
0 (G)∗.

Proof First note that

r · φ = φ · r = 0

for all r ∈ Annr (L∞
0 (G)∗) and φ ∈ L1(G). So if d is a derivation on L∞

0 (G)∗, then

d(φ1 ∗ φ2) = d(φ1) · φ2 + φ1 · d(φ2) = 0

for all φ1, φ2 ∈ L1(G). In view of Cohen’s factorization theorem, d = 0 on L1(G).
So (i) holds. The statement (ii) follows from Goldstein’s theorem (see e.g. [2, chapter
5, Proposition 4.1]) and (i). ��
Theorem 2 Let G be a locally compact abelian group and d be a derivation on
L∞
0 (G)∗. Then the following statements hold.

(i) For every u ∈ �0(G), d|u·L∞
0 (G)∗ is always continuous.

(ii) d is continuous if and only if d|Annr (L∞
0 (G)∗) is continuous.

Proof (i) Let u ∈ �0(G) and (u ·mα)α∈A be a net in L∞
0 (G)∗ such that u ·mα → 0.

It follows from Theorem 1 that

‖d(u · mα)‖ = ‖d(u · u · mα)‖
= ‖d(u) · u · mα‖ ≤ ‖d(u)‖ ‖u · mα‖

for all α ∈ A. Hence d(u · mα) → 0. This shows that d|u·L∞
0 (G)∗ is continuous. (ii)

Let m ∈ L∞
0 (G)∗ and u ∈ �0(G). Then m − u · m is an element of Annr (L∞

0 (G)∗).
If d|Annr (L∞

0 (G)∗) is continuous, then for some α > 0

‖d(m − u · m)‖ ≤ α‖m − u · m‖ ≤ 2 α‖m‖.
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600 M. J. Mehdipour, Z. Saeedi

By (i) there exists β > 0 such that

‖d(u · m)‖ ≤ β ‖u · m‖ ≤ β ‖m‖.

Thus

‖d(m)‖ = ‖d(u · m) + d(m − u · m)‖ ≤ (2α + β)‖m‖.

It follows that d is continuous. ��
Our last result of this section is an immediate consequence of Theorem 2(ii).

Corollary 3 Let G be a discrete abelian locally compact group.Then every derivation
on L∞

0 (G)∗ is continuous.

3 Posner’s second theorem for L∞
0 (G)∗

Let Z(L∞
0 (G)∗) denote the center of L∞

0 (G)∗; that is, the set of allm ∈ L∞
0 (G)∗ such

that m · n = n · m for all n ∈ L∞
0 (G)∗.

Proposition 1 Let G be a locally compact abelian group. Then

Z(L∞
0 (G)∗) = L1(G).

Proof Let u ∈ �0(G). Since L1(G) is an ideal in L∞
0 (G)∗ andπ is identity on L1(G),

we have

φ · m = π(φ · m) = π(φ) ∗ π(m)

= π(m) ∗ π(φ) = π(m · φ) = m · φ

for all φ ∈ L1(G) and m ∈ L∞
0 (G)∗. So L1(G) is contained in Z(L∞

0 (G)∗). For
m ∈ Z(L∞

0 (G)∗), we have

m = m · u = u · m.

This shows that

m ∈ ∩u∈�0(G)u · L∞
0 (G)∗.

Hence Z(L∞
0 (G)∗) is contained in L1(G); see Theorem 2.11 of [6]. ��

For any positive integer k, a mapping T : L∞
0 (G)∗ → L∞

0 (G)∗ is called k-
centralizing if

[T (m),mk] ∈ Z(L∞
0 (G)∗)

for all m ∈ L∞
0 (G)∗; in a special case when [T (m),mk] = 0 for all m ∈ L∞

0 (G)∗, T
is called k-commuting, where [m, n] := m · n − n · m for all m, n ∈ L∞

0 (G)∗.
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Derivations on group algebras of a locally compact abelian group 601

Theorem 3 Let G be a locally compact abelian group, d be a derivation on L∞
0 (G)∗

and k be a positive integer. Then the following assertions are equivalent.

(a) d = 0.
(b) d is k-centralizing.
(c) d is k-commuting.

Proof It is clear that (a) implies (b). If (b) holds, then by Theorem 1 and Proposition
1, we obtain

[d(m),mk] = d(m) · mk

= d(mk+1) ∈ Annr (L
∞
0 (G)∗) ∩ L1(G) = {0}

for allm ∈ L∞
0 (G)∗. Thus (c) holds. Now, let d be k-commuting. Choose u ∈ �0(G).

Then

d(u) = [d(u), u] = [d(u), uk] = 0. (1)

For every r ∈ Annr (L∞
0 (G)∗), we have (r + u) = (r + u)k . Hence

d(r) = [d(r + u), (r + u)] = [d(r + u), (r + u)k] = 0. (2)

From (1) and (2) we infer that

d(m) = d(u · m) + d(m − u · m)

= d(u) · m + d(m − u · m)

= 0

for all m ∈ L∞
0 (G)∗. Thus (c) implies that (a). ��

As an immediate consequence from Theorem 3, we have the following result.

Corollary 4 Let G be a locally compact abelian group. Then the zero map is the only
centralizing derivation on L∞

0 (G)∗.

Let [m, n]1 = [m, n] and [m, n]k = [[m, n]k−1, n] for all m, n ∈ L∞
0 (G)∗ and all

positive integers k > 1.

Corollary 5 Let G be a locally compact abelian group and d be a derivation on
L∞
0 (G)∗. Then the following assertions are equivalent.

(a) d = 0.
(b) d is centralizing.
(c) For every k ∈ N, d is k-centralizing.
(d) There exists k ∈ N such that d is k-centralizing.
(e) There exist positive integers k, l such that l ≥ 2 and [d(m), n]k = [m, n]l for all

m, n ∈ L∞
0 (G)∗

123



602 M. J. Mehdipour, Z. Saeedi

Proof This follows from Theorem 3 with the observation that for every m, n ∈
L∞
0 (G)∗, we have [m, n] ∈ Annr (L∞

0 (G)∗) and so [m, n]l = 0 for all l ≥ 2. ��
We conclude the section with the following result.

Theorem 4 Let G be a locally compact abelian group and d be a derivation on
L∞
0 (G)∗. Then the following assertions are equivalent.

(a) G is discrete.
(b) L∞

0 (G)∗ is commutative.

(c) There exist i, j, k ∈ N such that [d(m), n] ji = [m, n]k for all m, n ∈ L∞
0 (G)∗.

In this case, d = 0.

Proof If G is discrete, then by Proposition 3.1 of [9], we have L∞
0 (G)∗ = L1(G).

Since G is an abelian, L∞
0 (G)∗ is commutative. Thus (a) implies (b). It is clear that

(b) implies (c) and (d). Now, let i, j, k ∈ N and

d(m · ni ) j = [m, n] · nk .

Then for every u ∈ �0(G), we have

d(u) j = d(u · ui ) j = [u, u] · uk = 0.

On the one hand, for every r ∈ Annr (L∞
0 (G)∗), we get

d(u) j = d(u · (u + r)) j = d(u · (u + r)i ) j

= [u, u + r ] · (u + r)k = [u, u + r ] · (u + r) = −r.

Hence

Annr (L
∞
0 (G)∗) = {0},

which implies that G is discrete. To complete the proof, it suffices to notice that the
assertion (c) implies that d(m · ni ) j = [m, n] · nk−1. ��

4 Inner derivations of L∞
0 (G)∗

A derivation d on L∞
0 (G)∗ is said to be inner if there exists n0 ∈ L∞

0 (G)∗ such that
d(m) = [m, n0] for all m ∈ L∞

0 (G)∗.

Proposition 2 Let G be a locally compact abelian group and d be a derivation on
L∞
0 (G)∗. Then the following assertions are equivalent.

(a) d is inner.
(b) There exists n0 ∈ L∞

0 (G)∗ such that for each k ∈ N the mapping m �→ d(m) +
n0 · m is k-commuting.
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(c) There exists n0 ∈ L∞
0 (G)∗ and k ∈ N such that the mapping m �→ d(m)+n0 ·m

is k-commuting.
(d) There exists n0 ∈ L∞

0 (G)∗ and k ∈ N such that the mapping m �→ d(m)+n0 ·m
is k-centralizing.

Proof Let there exist n0 ∈ L∞
0 (G)∗ such that d(m) = [m, n0] for all m ∈ L∞

0 (G)∗.
For k ∈ N and m ∈ L∞

0 (G)∗, we obtain

mk · n0 · m = mk · π(n0 · m) = mk · π(n0) ∗ π(m)

= mk · π(m) ∗ π(n0) = mk+1 · n0.

It follows that

[d(m) + n0 · m,mk] = d(m) · mk + n0 · mk+1 − mk · n0 · m
= d(mk+1) + n0 · mk+1 − mk+1 · n0
= 0.

Hence (a) implies (b). It is obvious that (b)⇒(c)⇒ (d). To complete the proof, let (d)
hold. Define the function D : L∞

0 (G)∗ → L∞
0 (G)∗ by

D(m) = d(m) − [m, n0].

It is clear that D is a derivation on L∞
0 (G)∗. So

[D(m),mk] = D(m) · mk = [d(m) + n0m,mk] ∈ Z(L∞
0 (G)∗).

We now invoke Corollary 4 to conclude that D = 0. So, we obtain (a). ��
In the sequel, let InnD(L∞

0 (G)∗) be the space of all inner derivations on L∞
0 (G)∗.

Theorem 5 Let G be a locally compact abelian group. Then InnD(L∞
0 (G)∗) is con-

tinuously linearly isomorphic to L∞
0 (G)∗/L1(G).

Proof We define the mapping I from L∞
0 (G)∗/L1(G) into InnD(L∞

0 (G)∗) by

I(m + L1(G)) = Im,

where Im(n) = [n,m] for all n ∈ L∞
0 (G)∗. By Proposition 1, the mapping I is well

defined. Obviously, I is a linear map from L∞
0 (G)∗/L1(G) onto InnD(L∞

0 (G)∗). To
see that I is injective, let m ∈ L∞

0 (G)∗ and

I(m + L1(G)) = 0.

Then

Im(n) = n · m − m · n = 0
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for all n ∈ L∞
0 (G)∗. It follows that

m ∈ Z(L∞
0 (G)∗) = L1(G).

Hence m + L1(G) = L1(G). Consequently, I is an isomorphism. Now, let n ∈
L∞
0 (G)∗ and φ ∈ L1(G). Then

‖Im(n)‖ = ‖n · m − m · n‖
≤ ‖n · m − φ · n‖ + ‖φ · n − m · n‖
≤ ‖n‖ ‖m − φ‖ + ‖φ − m‖ ‖n‖
= 2‖n‖ ‖m − φ‖

for all m ∈ L∞
0 (G)∗. This implies that

‖I(m + L1(G))‖ = ‖Im‖ ≤ 2‖m − φ‖

for all m ∈ L∞
0 (G)∗ and φ ∈ L1(G). Hence

‖I(m + L1(G))‖ ≤ 2 inf{‖m − φ‖ : φ ∈ L1(G)}
= 2 inf{‖m + φ‖ : φ ∈ L1(G)} = 2 ‖m + L1(G)‖.

Therefore, I is continuous. ��

We finish the paper with following result.

Theorem 6 Let G be a locally compact abelian group. Then the following assertions
are equivalent.

(a) G is discrete.
(b) Any derivation on L∞

0 (G)∗ is zero.
(c) Any inner derivation on L∞

0 (G)∗ is zero.

Proof If G is discrete, then Annr (L∞
0 (G)∗) = {0}. By Theorem 1,

d(L∞
0 (G)∗) ⊆ Annr (L

∞
0 (G)∗) = {0}.

Hence (a) implies (b). It is plain that (b) implies (c). Finally, if (c) holds, then [m, n] = 0
for all m, n ∈ L∞

0 (G)∗. This implies that

Z(L∞
0 (G)∗) = L∞

0 (G)∗.

So L1(G) = L∞
0 (G)∗. This shows that G is discrete; see Proposition 3.1 of [9]. ��
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