

Derivations on group algebras of a locally compact abelian group

Mohammad Javad Mehdipour1 · Zahra Saeedi¹

Received: 11 February 2015 / Accepted: 30 June 2015 / Published online: 1 August 2015 © Springer-Verlag Wien 2015

Abstract Let *G* be a locally compact abelian group. In this paper, we study derivations on the Banach algebra $L_0^{\infty}(G)^*$. We prove that any derivation on $L_0^{\infty}(G)^*$ maps it into its radical and a derivation on $L_0^{\infty}(G)^*$ is continuous if and only if its restriction to the right annihilator of $L_0^{\infty}(G)^*$ is continuous. We also show that the composition of two derivations on $L_0^{\infty}(G)^*$ is always a derivation on it and the zero map is the only centralizing derivation on $L_0^{\infty}(G)^*$. Finally, we characterize the space of inner derivations of $L_0^{\infty}(G)^*$ and show that *G* is discrete if and only if there exist *i*, *j*, *k* ∈ N such that $[d(m), n]_i^j = [m, n]_k$ for all $m, n \in L_0^{\infty}(G)^*$; or equivalently, any inner derivation on $L_0^{\infty}(G)^*$ is zero.

Keywords Locally compact abelian group · Derivation · Inner derivation · *k*-centralizing

Mathematics Subject Classification 43A15 · 47B47 · 46H40 · 16W25

1 Introduction

Let *G* be a locally compact abelian group with a fixed left Haar measure and let $L^1(G)$ be the group algebra of *G* defined as in [\[4](#page-10-0)] equipped with the convolution product ∗

Communicated by J. S. Wilson.

Zahra Saeedi asetarehsorkh@yahoo.com

 \boxtimes Mohammad Javad Mehdipour mehdipour@sutech.ac.ir

¹ Department of Mathematics, Shiraz University of Technology, 71555-313 Shiraz, Iran

and the norm $\|.\|_1$. We denote by $L_0^{\infty}(G)$ the subspace of all functions $f \in L^{\infty}(G)$, the usual Lebesgue space as defined in [\[4](#page-10-0)] equipped with the essential supremum norm $\|\cdot\|_{\infty}$, that for each $\varepsilon > 0$, there is a compact subset *K* of *G* for which

$$
||f\chi_{G\setminus K}||_{\infty}<\varepsilon,
$$

where $\chi_{G\setminus K}$ denotes the characteristic function $G\setminus K$ on G . It is well-known from [\[6\]](#page-10-1) that the subspace $L_0^{\infty}(G)$ is a topologically introverted subspace of $L^{\infty}(G)$, that is, for each $n \in L_0^{\infty}(G)^*$ and $f \in L_0^{\infty}(G)$, the function $nf \in L_0^{\infty}(G)$, where

$$
\langle nf, \phi \rangle = \langle n, f\phi \rangle, \quad \text{in which} \quad \langle f\phi, \psi \rangle = \langle f, \phi * \psi \rangle
$$

for all ϕ , $\psi \in L^1(G)$. Hence $L_0^{\infty}(G)^*$ is a Banach algebra with the first Arens product "·" defined by the formula

$$
\langle m\cdot n, f\rangle = \langle m, nf\rangle
$$

for all $m, n \in L_0^{\infty}(G)^*$ and $f \in L_0^{\infty}(G)$. Note that $L^1(G)$ may be regarded as a subspace of $L_0^{\infty}(G)^*$ and then $L^1(G)$ is a closed ideal in $L_0^{\infty}(G)^*$ with a bounded approximate identity [\[6\]](#page-10-1). Let $\Lambda_0(G)$ denote the set of all weak^{*}-cluster points of an approximate identity in $L^1(G)$ bounded by one. It is easy to see that if $u \in \Lambda_0(G)$, then for every $m \in L_0^{\infty}(G)^*$ and $\phi \in L^1(G)$

$$
m \cdot u = m \quad \text{and} \quad u \cdot \phi = \phi.
$$

Let π denote the natural continuous operator that associates to any functional in $L_0^{\infty}(G)^*$ its restriction to $C_0(G)$, the space of all continuous functions on *G* vanishing at infinity. Then the restriction map π from $L_0^{\infty}(G)^*$ into $M(G)$, the measure algebra of *G* as defined in [\[4\]](#page-10-0) endowed with the convolution product ∗ and the total variation norm, is a homomorphism and

$$
\pi_u := \pi|_{u \cdot L_0^{\infty}(G)^*}
$$

is an isomorphism for all $u \in \Lambda_0(G)$. Note that, for every $f \in L_0^{\infty}(G)$ and $\phi \in L^1(G)$, we have $f\phi \in C_0(G)$. Hence for every $n \in L_0^{\infty}(G)^*$ and $f \in L_0^{\infty}(G)$, we may define the function $\pi(n) f \in L^{\infty}(G)$ by

$$
\langle \pi(n)f, \phi \rangle = \langle \pi(n), f\phi \rangle.
$$

Then

$$
\pi(n)f = nf \in L_0^{\infty}(G).
$$

 $\circled{2}$ Springer

This enable us to define the functional $m \cdot \pi(n) \in L_0^{\infty}(G)^*$ by

$$
\langle m \cdot \pi(n), f \rangle = \langle m, \pi(n) f \rangle.
$$

It follows that

$$
m \cdot \pi(n) = m \cdot n
$$

for all $m, n \in L_0^{\infty}(G)^*$; see [\[6](#page-10-1)]. Let Ann_{*r*}($L_0^{\infty}(G)^*$) denote the right annihilator of $L_0^{\infty}(G)^*$; i.e. the set of all $r \in L_0^{\infty}(G)^*$ such that $m \cdot r = 0$ for all $m \in L_0^{\infty}(G)^*$. one can easily prove that

$$
Ann_r(L_0^{\infty}(G)^*) = \ker(\pi).
$$

Furthermore, an easy application of the Hahn-Banach theorem shows that *G* is discrete if and only if

$$
Ann_r(L_0^{\infty}(G)^*) = \{0\}.
$$

Let $\mathfrak A$ be a Banach algebra; a linear mapping $d : \mathfrak A \to \mathfrak A$ is called a *derivation* if

$$
d(ab) = d(a)b + ad(b).
$$

A fundamental question for derivations concerns their image. Singer and Wermer [\[12](#page-10-2)] showed that the range of a continuous derivation on a commutative Banach algebra is contained in the radical of algebra. They conjectured that this result holds for discontinuous derivations. Thomas [\[13](#page-10-3)] proved this conjecture. Posner [\[10\]](#page-10-4) gave a noncommutative version of the Singer-Wermer theorem for prime rings. He proved that the zero map is the only centralizing derivation on a noncommutative prime ring (Posner's second theorem). These results have been extended in various directions by several authors; see for instance [\[1](#page-10-5),[3,](#page-10-6)[5](#page-10-7)[,7](#page-10-8)[,8](#page-10-9),[11,](#page-10-10)[14\]](#page-10-11).

Can we apply the well-known results concerning derivations of commutative Banach algebras and derivations of prime rings to $L_0^{\infty}(G)^*$? This question seems natural, because $L_0^{\infty}(G)^*$ is neither a commutative Banach algebra nor a prime ring, when *G* is a non-discrete group. In this paper, we investigate the truth of these results for $L_0^{\infty}(G)^*$.

This paper is organized as follows: In Sect. [2,](#page-3-0) we investigate the Singer- Wermer conjecture and automatic continuity for $L_0^{\infty}(G)^*$. We prove that the range of a derivation on the noncommutative Banach algebra $L_0^{\infty}(G)^*$ is contained in the radical of $L_0^{\infty}(G)^*$ and a derivation on $L_0^{\infty}(G)^*$ is continuous if and only if its restriction to Ann_{*r*}($L_0^{\infty}(G)^*$) is continuous. In Sect. [3,](#page-5-0) we investigate Posner's second theorem and show that the zero map is the only centralizing derivation on $L_0^{\infty}(G)^*$. In Sect. [4,](#page-7-0) we characterize the space of all inner derivations of $L_0^{\infty}(G)^*$ and prove that *G* is discrete if and only if any inner derivation on $L_0^{\infty}(G)^*$ is zero.

2 The Singer-Wermer conjecture for $L_0^{\infty}(G)^*$

We commence this section with the following result.

Theorem 1 *Let G be a locally compact abelian group and d be a derivation on* $L_0^{\infty}(G)^*$. Then d has its image in the right annihilator of $L_0^{\infty}(G)^*$.

Proof Let $u \in \Lambda_0(G)$. Define the function $D : M(G) \to M(G)$ by

$$
D(\mu) = \pi \circ \tilde{d} \circ \pi_u^{-1}(\mu),
$$

where $d = d|_{u \cdot L_0^\infty(G)^*}$. It is routine to check that *D* is derivation on the commutative semisimple Banach algebra *M*(*G*). Hence *D* is zero. It follows that

$$
\tilde{d} \circ \pi_u^{-1}(M(G)) \subseteq \ker(\pi) = \operatorname{Ann}_r(L_0^{\infty}(G)^*).
$$

Since π_u maps $u \cdot L_0^{\infty}(G)^*$ onto $M(G)$, we have

$$
d(u \cdot L_0^{\infty}(G)^*) \subseteq \text{Ann}_r(L_0^{\infty}(G)^*).
$$

On the one hand,

$$
m \cdot d(r) = d(m \cdot r) - d(m) \cdot r = 0
$$

for all $m \in L_0^{\infty}(G)^*$ and $r \in Ann_r(L_0^{\infty}(G)^*)$. So

$$
d(\text{Ann}_r(L_0^{\infty}(G)^*)) \subseteq \text{Ann}_r(L_0^{\infty}(G)^*).
$$

Now, we only need to recall that $L_0^{\infty}(G)^*$ is the Banach space direct sum of $u \cdot L_0^{\infty}(G)^*$ and Ann_{*r*}($L_0^{\infty}(G)^*$). $\int_{0}^{\infty} (G)^{*}$).

Before we give the following consequence of Theorem [1,](#page-3-1) let us recall that a linear mapping *T* on $L_0^{\infty}(G)^*$ is called *spectrally bounded* if there is a non-negative number α such that $r(T(m)) \leq \alpha r(m)$ for all $m \in L_0^{\infty}(G)^*$, where $r(\cdot)$ stands for the spectral radius.

Corollary 1 *Let G be a locally compact abelian group. Then the following statements hold.*

- *(i)* Every derivation on $L_0^{\infty}(G)^*$ maps it into its radical.
- (*ii*) Primitive ideals of $L_0^{\infty}(G)^*$ are invariant under derivations on $L_0^{\infty}(G)^*$.
- (*iii*) Every derivation on $L_0^{\infty}(G)^*$ is spectrally bounded.
- *(iv)* The composition of two derivations on $L_0^{\infty}(G)^*$ is always a derivation on $L_0^{\infty}(G)^*$.

Proof The statement (i) follows from Theorem [1](#page-3-1) together with the fact that the set of nilpotent elements is contained in the radical of the algebra. The statement (ii) follows immediately from (i). For (iii), note that if *d* is a derivation on $L_0^{\infty}(G)^*$, then

$$
d(m)^i=0
$$

for all $m \in L_0^{\infty}(G)^*$ and $i \geq 2$. Finally, the statement (iv) follows from Theorem [1.](#page-3-1) \Box

As an another consequence of Theorem [1,](#page-3-1) we have the following result.

Corollary 2 *Let G be a locally compact abelian group. Then the following statements hold.*

(i) If d is a derivation on $L_0^{\infty}(G)^*$, then $d|_{L^1(G)}$ is zero.

(ii) The zero map is the only weak[∗] – weak[∗] continuous derivation on $L_0^{\infty}(G)^*$.

Proof First note that

$$
r \cdot \phi = \phi \cdot r = 0
$$

for all $r \in Ann_r(L_0^{\infty}(G)^*)$ and $\phi \in L^1(G)$. So if *d* is a derivation on $L_0^{\infty}(G)^*$, then

$$
d(\phi_1 * \phi_2) = d(\phi_1) \cdot \phi_2 + \phi_1 \cdot d(\phi_2) = 0
$$

for all $\phi_1, \phi_2 \in L^1(G)$. In view of Cohen's factorization theorem, $d = 0$ on $L^1(G)$. So (i) holds. The statement (ii) follows from Goldstein's theorem (see e.g. [\[2,](#page-10-12) chapter 5, Proposition 4.1) and (i). \square

Theorem 2 *Let G be a locally compact abelian group and d be a derivation on* $L_0^{\infty}(G)^*$. Then the following statements hold.

- *(i) For every u* ∈ $\Lambda_0(G)$ *, d*|*u*·*L*_{$_0^{\infty}(G)^*$ *is always continuous.*}
- *(ii) d is continuous if and only if* d $|_{Ann_r(L_0^\infty(G)^*)}$ *is continuous.*

Proof (i) Let $u \in \Lambda_0(G)$ and $(u \cdot m_\alpha)_{\alpha \in A}$ be a net in $L_0^\infty(G)^*$ such that $u \cdot m_\alpha \to 0$. It follows from Theorem [1](#page-3-1) that

$$
||d(u \cdot m_{\alpha})|| = ||d(u \cdot u \cdot m_{\alpha})||
$$

=
$$
||d(u) \cdot u \cdot m_{\alpha}|| \le ||d(u)|| ||u \cdot m_{\alpha}||
$$

for all $\alpha \in A$. Hence $d(u \cdot m_{\alpha}) \to 0$. This shows that $d|_{u \cdot L_0^{\infty}(G)^*}$ is continuous. (ii) Let $m \in L_0^{\infty}(G)^*$ and $u \in \Lambda_0(G)$. Then $m - u \cdot m$ is an element of Ann_{*r*}($L_0^{\infty}(G)^*$). If $d|_{\text{Ann}_r(L_0^{\infty}(G)^*)}$ is continuous, then for some $\alpha > 0$

$$
||d(m - u \cdot m)|| \le \alpha ||m - u \cdot m|| \le 2 \alpha ||m||.
$$

By (i) there exists $\beta > 0$ such that

$$
||d(u \cdot m)|| \leq \beta ||u \cdot m|| \leq \beta ||m||.
$$

Thus

$$
||d(m)|| = ||d(u \cdot m) + d(m - u \cdot m)|| \le (2\alpha + \beta) ||m||.
$$

It follows that *d* is continuous. 

Our last result of this section is an immediate consequence of Theorem [2\(](#page-4-0)ii).

Corollary 3 *Let G be a discrete abelian locally compact group.Then every derivation on* $L_0^{\infty}(G)^*$ *is continuous.*

3 Posner's second theorem for $L_0^{\infty}(G)^*$

Let $Z(L_0^{\infty}(G)^*)$ denote the center of $L_0^{\infty}(G)^*$; that is, the set of all $m \in L_0^{\infty}(G)^*$ such that $m \cdot n = n \cdot m$ for all $n \in L_0^{\infty}(G)^*$.

Proposition 1 *Let G be a locally compact abelian group. Then*

$$
Z(L_0^{\infty}(G)^*) = L^1(G).
$$

Proof Let $u \in \Lambda_0(G)$. Since $L^1(G)$ is an ideal in $L_0^{\infty}(G)^*$ and π is identity on $L^1(G)$, we have

$$
\phi \cdot m = \pi(\phi \cdot m) = \pi(\phi) * \pi(m)
$$

$$
= \pi(m) * \pi(\phi) = \pi(m \cdot \phi) = m \cdot \phi
$$

for all $\phi \in L^1(G)$ and $m \in L_0^{\infty}(G)^*$. So $L^1(G)$ is contained in $Z(L_0^{\infty}(G)^*)$. For $m \in \mathsf{Z}(L_0^{\infty}(G)^*)$, we have

$$
m=m\cdot u=u\cdot m.
$$

This shows that

$$
m \in \cap_{u \in \Lambda_0(G)} u \cdot L_0^{\infty}(G)^*.
$$

Hence $Z(L_0^{\infty}(G)^*)$ is contained in $L^1(G)$; see Theorem 2.11 of [\[6\]](#page-10-1).

For any positive integer *k*, a mapping $T: L_0^{\infty}(G)^* \to L_0^{\infty}(G)^*$ is called *k*centralizing if

$$
[T(m), mk] \in Z(L_0^{\infty}(G)^*)
$$

for all $m \in L_0^{\infty}(G)^*$; in a special case when $[T(m), m^k] = 0$ for all $m \in L_0^{\infty}(G)^*$, *T* is called *k*-commuting, where $[m, n] := m \cdot n - n \cdot m$ for all $m, n \in L_0^{\infty}(G)^*$.

Theorem 3 Let G be a locally compact abelian group, d be a derivation on $L_0^{\infty}(G)^*$ *and k be a positive integer. Then the following assertions are equivalent.*

 $(a) d = 0.$ *(b) d is k-centralizing. (c) d is k-commuting.*

Proof It is clear that (a) implies (b). If (b) holds, then by Theorem [1](#page-3-1) and Proposition [1,](#page-5-1) we obtain

$$
[d(m), mk] = d(m) \cdot mk
$$

= $d(m^{k+1}) \in \text{Ann}_r(L_0^{\infty}(G)^*) \cap L^1(G) = \{0\}$

for all $m \in L_0^{\infty}(G)^*$. Thus (c) holds. Now, let *d* be *k*-commuting. Choose $u \in \Lambda_0(G)$. Then

$$
d(u) = [d(u), u] = [d(u), uk] = 0.
$$
 (1)

For every $r \in \text{Ann}_r(L_0^\infty(G)^*)$, we have $(r + u) = (r + u)^k$. Hence

$$
d(r) = [d(r+u), (r+u)] = [d(r+u), (r+u)^{k}] = 0.
$$
 (2)

From (1) and (2) we infer that

$$
d(m) = d(u \cdot m) + d(m - u \cdot m)
$$

$$
= d(u) \cdot m + d(m - u \cdot m)
$$

$$
= 0
$$

for all $m \in L_0^{\infty}(G)^*$. Thus (c) implies that (a).

As an immediate consequence from Theorem [3,](#page-5-2) we have the following result.

Corollary 4 *Let G be a locally compact abelian group. Then the zero map is the only* c *entralizing derivation on* $L_0^{\infty}(G)^*$.

Let $[m, n]_1 = [m, n]$ and $[m, n]_k = [[m, n]_{k-1}, n]$ for all $m, n \in L_0^{\infty}(G)^*$ and all positive integers $k > 1$.

Corollary 5 *Let G be a locally compact abelian group and d be a derivation on L*∞ ⁰ (*G*)∗*. Then the following assertions are equivalent.*

 $(a) d = 0.$

- *(b) d is centralizing.*
- *(c)* For every $k \in \mathbb{N}$, *d is k-centralizing.*
- *(d)* There exists $k \in \mathbb{N}$ such that d is k-centralizing.
- *(e)* There exist positive integers *k*, *l* such that $l \geq 2$ and $[d(m), n]_k = [m, n]^l$ for all $m, n \in L_0^{\infty}(G)^*$

Proof This follows from Theorem [3](#page-5-2) with the observation that for every *m*, *n* ∈ $L^{\infty}(G)^*$, we have $[m, n] \in Ann_r(L^{\infty}(G)^*)$ and so $[m, n]^l = 0$ for all $l > 2$. *L*_O[∞](*G*)[∗], we have $[m, n] \in Ann_r(L_0^\infty(G)^*)$ and so $[m, n]^l = 0$ for all $l \ge 2$. □

We conclude the section with the following result.

Theorem 4 *Let G be a locally compact abelian group and d be a derivation on L*∞ ⁰ (*G*)∗*. Then the following assertions are equivalent.*

- *(a) G is discrete.*
- *(b)* $L_0^{\infty}(G)^*$ *is commutative.*
- *(c) There exist i*, $j, k \in \mathbb{N}$ *such that* $[d(m), n]_i^j = [m, n]_k$ *for all* $m, n \in L_0^{\infty}(G)^*$.

In this case, $d = 0$ *.*

Proof If *G* is discrete, then by Proposition 3.1 of [\[9](#page-10-13)], we have $L_0^{\infty}(G)^* = L^1(G)$. Since *G* is an abelian, $L_0^{\infty}(G)^*$ is commutative. Thus (a) implies (b). It is clear that (b) implies (c) and (d). Now, let *i*, $j, k \in \mathbb{N}$ and

$$
d(m \cdot n^i)^j = [m, n] \cdot n^k.
$$

Then for every $u \in \Lambda_0(G)$, we have

$$
d(u)^j = d(u \cdot u^i)^j = [u, u] \cdot u^k = 0.
$$

On the one hand, for every $r \in Ann_r(L_0^{\infty}(G)^*)$, we get

$$
d(u)^j = d(u \cdot (u+r))^j = d(u \cdot (u+r)^i)^j
$$

= [u, u+r] \cdot (u+r)^k = [u, u+r] \cdot (u+r) = -r.

Hence

$$
Ann_r(L_0^{\infty}(G)^*) = \{0\},\
$$

which implies that G is discrete. To complete the proof, it suffices to notice that the assertion (c) implies that $d(m \cdot n^i)^j = [m, n] \cdot n^{k-1}$.

4 Inner derivations of $L_0^{\infty}(G)^*$

A derivation *d* on $L_0^{\infty}(G)^*$ is said to be *inner* if there exists $n_0 \in L_0^{\infty}(G)^*$ such that $d(m) = [m, n_0]$ for all $m \in L_0^{\infty}(G)^*$.

Proposition 2 *Let G be a locally compact abelian group and d be a derivation on L*∞ ⁰ (*G*)∗*. Then the following assertions are equivalent.*

- *(a) d is inner.*
- *(b) There exists* $n_0 \in L_0^{\infty}(G)^*$ *such that for each* $k \in \mathbb{N}$ *the mapping* $m \mapsto d(m) +$ $n_0 \cdot m$ *is k-commuting.*
- *(c) There exists* $n_0 \in L_0^{\infty}(G)^*$ *and* $k \in \mathbb{N}$ *such that the mapping* $m \mapsto d(m) + n_0 \cdot m$ *is k-commuting.*
- *(d) There exists* $n_0 \in L_0^{\infty}(G)^*$ *and* $k \in \mathbb{N}$ *such that the mapping* $m \mapsto d(m) + n_0 \cdot m$ *is k-centralizing.*

Proof Let there exist $n_0 \in L_0^{\infty}(G)^*$ such that $d(m) = [m, n_0]$ for all $m \in L_0^{\infty}(G)^*$. For $k \in \mathbb{N}$ and $m \in L_0^{\infty}(G)^*$, we obtain

$$
m^{k} \cdot n_{0} \cdot m = m^{k} \cdot \pi (n_{0} \cdot m) = m^{k} \cdot \pi (n_{0}) * \pi (m)
$$

= $m^{k} \cdot \pi (m) * \pi (n_{0}) = m^{k+1} \cdot n_{0}.$

It follows that

$$
[d(m) + n_0 \cdot m, m^k] = d(m) \cdot m^k + n_0 \cdot m^{k+1} - m^k \cdot n_0 \cdot m
$$

= $d(m^{k+1}) + n_0 \cdot m^{k+1} - m^{k+1} \cdot n_0$
= 0.

Hence (a) implies (b). It is obvious that $(b) \Rightarrow (c) \Rightarrow (d)$. To complete the proof, let (d) hold. Define the function $D: L_0^{\infty}(G)^* \to L_0^{\infty}(G)^*$ by

$$
D(m) = d(m) - [m, n_0].
$$

It is clear that *D* is a derivation on $L_0^{\infty}(G)^*$. So

$$
[D(m), mk] = D(m) \cdot mk = [d(m) + n0m, mk] \in Z(L0\infty(G)*).
$$

We now invoke Corollary [4](#page-6-2) to conclude that $D = 0$. So, we obtain (a).

In the sequel, let $\text{InnD}(L_0^{\infty}(G)^*)$ be the space of all inner derivations on $L_0^{\infty}(G)^*$.

Theorem 5 Let G be a locally compact abelian group. Then $\text{InnD}(L_0^\infty(G)^*)$ is con*tinuously linearly isomorphic to* $L_0^{\infty}(G)^*/L^1(G)$ *.*

Proof We define the mapping \Im from $L_0^{\infty}(G)^*/L^1(G)$ into InnD($L_0^{\infty}(G)^*$) by

$$
\mathfrak{I}(m + L^1(G)) = \mathfrak{I}_m,
$$

where $\mathfrak{I}_m(n) = [n, m]$ for all $n \in L_0^{\infty}(G)^*$. By Proposition [1,](#page-5-1) the mapping \mathfrak{I} is well defined. Obviously, \Im is a linear map from $L_0^{\infty}(G)^*/L^1(G)$ onto $InnD(L_0^{\infty}(G)^*)$. To see that \mathfrak{I} is injective, let $m \in L_0^{\infty}(G)^*$ and

$$
\mathfrak{I}(m + L^1(G)) = 0.
$$

Then

$$
\mathfrak{I}_m(n) = n \cdot m - m \cdot n = 0
$$

for all $n \in L_0^{\infty}(G)^*$. It follows that

$$
m \in \mathcal{Z}(L_0^{\infty}(G)^*) = L^1(G).
$$

Hence $m + L^1(G) = L^1(G)$. Consequently, \Im is an isomorphism. Now, let $n \in$ $L_0^{\infty}(G)^*$ and $\phi \in L^1(G)$. Then

$$
\|\mathfrak{I}_m(n)\| = \|n \cdot m - m \cdot n\|
$$

\n
$$
\le \|n \cdot m - \phi \cdot n\| + \|\phi \cdot n - m \cdot n\|
$$

\n
$$
\le \|n\| \|m - \phi\| + \|\phi - m\| \|n\|
$$

\n
$$
= 2\|n\| \|m - \phi\|
$$

for all $m \in L_0^{\infty}(G)^*$. This implies that

$$
\|\mathfrak{I}(m + L^1(G))\| = \|\mathfrak{I}_m\| \le 2\|m - \phi\|
$$

for all $m \in L_0^{\infty}(G)^*$ and $\phi \in L^1(G)$. Hence

$$
\|\mathfrak{I}(m + L^1(G))\| \le 2 \inf \{ \|m - \phi\| : \phi \in L^1(G) \} = 2 \inf \{ \|m + \phi\| : \phi \in L^1(G) \} = 2 \|m + L^1(G)\|.
$$

Therefore, \Im is continuous.

We finish the paper with following result.

Theorem 6 *Let G be a locally compact abelian group. Then the following assertions are equivalent.*

- *(a) G is discrete.*
- *(b)* Any derivation on $L_0^{\infty}(G)^*$ is zero.
- (*c*) Any inner derivation on $L_0^{\infty}(G)^*$ is zero.

Proof If *G* is discrete, then $Ann_r(L_0^{\infty}(G)^*) = \{0\}$. By Theorem [1,](#page-3-1)

$$
d(L_0^{\infty}(G)^*) \subseteq \text{Ann}_r(L_0^{\infty}(G)^*) = \{0\}.
$$

Hence (a) implies (b). It is plain that (b) implies (c). Finally, if (c) holds, then $[m, n] = 0$ for all $m, n \in L_0^{\infty}(G)^*$. This implies that

$$
\mathrm{Z}(L_0^{\infty}(G)^*)=L_0^{\infty}(G)^*.
$$

So $L^1(G) = L_0^{\infty}(G)^*$. This shows that *G* is discrete; see Proposition 3.1 of [\[9](#page-10-13)]. □

References

- 1. Bresar, M., Mathieu, M.: Derivations mapping into the radical III. J. Funct. Anal. **133**, 21–29 (1995)
- 2. Conway, J.B.: A Course in Functional Analysis, 2nd edn. Springer, New York (1985)
- 3. Fosner, M., Persin, N.: On a functional equation related to derivations in prime rings. Monatsh. Math. **167**(2), 189–203 (2012)
- 4. Hewitt, E., Ross, K.: Abstract Harmonic Analysis I. Springer, New York (1970)
- 5. Jun, K.W., Kim, H.M.: Approximate derivations mapping into the radicals of Banach algebras. Taiwan. J. Math. **11**, 277–288 (2007)
- 6. Lau, A.T., Pym, J.: Concerning the second dual of the group algebra of a locally compact group. J. Lond. Math. Soc. **41**, 445–460 (1990)
- 7. Mathieu, M., Murphy, G.J.: Derivations mapping into the radical. Arch. Math. **57**, 469–474 (1991)
- 8. Mathieu, M., Runde, V.: Derivations mapping into the radical II. Bull. Lond. Math. Soc. **24**, 485–487 (1992)
- 9. Mehdipour, M.J., Nasr-Isfahani, R.: Compact left multipliers on Banach algebras related to locally compact group. Bull. Aust. Math. Soc. **79**, 227–238 (2009)
- 10. Posner, E.C.: Derivations in prime rings. Proc. Am. Math. Soc. **8**, 1093–1100 (1957)
- 11. Sinclair, A.M.: Continuous derivations on Banach algebras. Proc. Am. Math. Soc. **20**(1), 166–170 (1969)
- 12. Singer, I.M., Wermer, J.: Derivations on commutative normed algebras. Math. Ann. **129**, 260–264 (1955)
- 13. Thomas, M.: The image of a derivation is contained in the radical. Ann. Math. **128**, 435–460 (1988)
- 14. Vukman, J.: On left Jordan derivations of rings and Banach algebras. Aequ. Math. **75**, 260–266 (2008)