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Abstract For geometric progressions with common ratios greater than 4, the speed
of convergence to the uniform distribution is determined for almost all initial values.
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1 Introduction
A sequence {x;} of real numbers is said to be uniformly distributed mod 1 if
%#{k <N |(w) €lab)}—b—a, (N o0,
forall0 <a < b < 1, where (x) denotes the fractional part x — [x] of a real number

x. Since the convergence is uniform in a and b, the following discrepancy is used to
measure its speed.
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1
Dy{xi} = sup ﬁ#{k <N |{x)€la,b)} = (b —a).

O<a<b<l1

For an arithmetic progression {n}, the order of convergence of Dy {nyx} was studied
by Khintchin [9] and Kesten [8]. For uniformly distributed i.i.d. {Uy}, Chung-Smirnov
theorem asserts the law of the iterated logarithm

—  NDy{Ui} 1
lim ————— = -,
N—>oo /2N loglogN 2

By various studies on lacunary series, it is known that a sequence {n;x} behaves like
uniformly distributed i.i.d. when {n} diverges rapidly. Actually Philipp [10] followed
Takahashi’s method [11] and proved the result below by assuming the Hadamard gap
condition ngy1/ngy > g > 1.

—  ND 1 664
TR UL ( 66 + —) ae
4f N—>oo 2NloglogN — f -1

Dhompongsa [3] proved that the limsup equals to % when {n;} satisfies very strong
gap condition limg_, oo (log(nk+1/nk))/loglogk = oo. Beside of these results, any
concrete value of limsup for exponentially growing sequence was not determined
before the recent results below on divergent geometric progressions {6%x}.

Theorem 1 [4-7] For any 6 ¢ [—1, 1], there exists a constant Xy > 1/2 such that

—  NDy{6*x)
lim ——————== %), ae
N—oo /2N loglog N

If0) ¢ Q forany j € N, then Xy = % and otherwise Xg > % When 0 satisfies
0/ € Q for some j € N, we take p, q, and r as below.

0" = p/q where r=min{j eN |6/ cQ}, peZ geN, ged(p,q)=1.
(D

If p and q are odd, then

1 1
5y = L [lplg+1
2V Iplg —1

5, = L lpl+] 1/(|p|+1)|p|(|p|—2> L o Lo
g 2 ’ TR

Ifq =1, then

lpl =1 (Ipl = D)3 9

according as p is odd, |p| > 4iseven, p =2, 0or p = —=2.If p = £5and q = 2, then
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1

For related works, see [1,2]. In this paper, we prove the next result and determine
Yp when 0 is large.

Theorem 2 Suppose that 0 satisfies (1). If p is odd, q is even and |p/q| > 9/4, or if
piseven, q isodd and |p/q| > 4, then

5y — ((Iplq)’ +1 (Ipl —q— 1)
(Upl)' =1\ 2(lpl —q)

_ 12

2(plp)! 1 (,,,|p|—q—1)
+ s 2
i =1 2= G\ S =0 @

m=1

where v(x) = (x)(1 — (x)) and I = min{n € N | ¢" = +1 mod |p| — ¢q}.

By (2), we can calculate the concrete values of Xy in the following way.

Ly = 1\/ % 2o = 3\/ —18561,
5V 195 49V 119
Sers = i /40965599101 S l /g’ o
11V 130691231 5V 35

When ¢ = 1 and |p| > 4 is even, we have I = 1, and (2) gives the values stated in
Theorem 1. It also gives the value X5/, in Theorem 1.

We here emphasize that the values of Xy are determined for large 6, say, that
satisfying |#| > 4. On the other hand, we can find some smaller p/g for which (2)
fails to hold. & = £2 is one such example.

Before closing this section, we note that the conditions |p/q| > 9/4and |p/q| > 4
are superfluous, and much weaker conditions are sufficient. Set

A(p.q) :=2p° — (4g +2)p* — (4" — 29)p + 34",
Ax(p.q) i= 8q* — O)p* + (=16¢> +4g + 24) p* + (—¢* + 10¢% — 24q — 24)p + ¢°,
A3(p.q) = p> — (4g + Dp* +2pq +24°
Ag(p.q) = (6¢% — ) p® + (—4q> + 8¢ +2q + 16) p° 4+ (=25¢* — 24¢ — 16)p*
+(12¢° — 24¢* +25¢° +8¢% —2¢9) p° + (—44°® + 16¢° — 12¢* + 32¢° — 8¢%) p®
+(4g° — 32¢* — 10¢4°) p — 44*.

When p is odd and g is even, if the conditions A1 (|p|, q) > 0, A2(|pl, q) > 0, and

Ip/ql > 2, ©)

are satisfied, then we have (2). The condition |p/q| > 9/4 implies these conditions.
Although A1(9,4) < 0 and A2(9,4) > 0, we can still prove (2) for p/qg = £9/4.
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734 K. Fukuyama, M. Yamashita

We here note that |p/q| > (2 4+ +/6)/2 + 1/q also implies A;(|p|,¢) > 0 and

Aax(lpl, q) > 0.
When pisodd and g iseven, if (3), A3(|p|, ¢) > 0and A4(|p|, g) > O are satisfied,
then (2) holds. The condition |p/q| > 4 implies these conditions.

2 Preliminary
We prepare some results. Proofs can be found in [4,6,7]. For a, b, a’, b’ € [0, 1), put
V(a,dY=and —ad', V(a,b,d,b)=V(a,d)+V(b,b)—V(a,b)—Vb,ad)

and

00 1 _
opga, by =Via,b,a,b)+2> —=V((pta), (p*b), (¢"a), (¢"b). 4
= (rq)

Here we list general properties that we use.

V(a,b,a',b'y=V(d' b,a,by=-Vb,a,a b)y=-V(abb,d), (5)

0<V(©,b,0,b)=V(b,b)<V(b,b)<1/4, (6)
V(a,b,a,b)—|b—a|—|b—a|2=v(b—a)=v(a—b), @)
02,,0.a) = V(a, a)+2z q) (pra), (g"a)). ®)

When 6 satisfies (1), Xy does not depend on r and is given by

Yo =2Xpg= sup 0p/,a), and

0<a’<a<l
Yo =2Xpig= sup 0p/4(0,a) if p>0. ©)]
0<a<1/2
i -2 -3 -1 —q—1)/2
Put bi = pqu’ Ccl = qz—, Ccy = p2—p, c3 = pZ_p’ Cq4 ‘= b(pqul)/Z = %,
cs5 = %,06 = = 2 and ey : =b(p—q-3)2 = %.Whenp and g are positive

and satisfying p/q > 2, one can verify ¢; < ¢2 < ¢4 < ¢3 and ¢5 < ¢¢ < c4. By
p =q mod p — g, we have

(P*i) = (q"bi) and V(P80 (b)) = v(pb) = v(g*b).  (10)

Thanks to v(—x) = v(x), we have v(g" ™

0p/4(0, c4) equals to the left hand side of (2).
In the next two sections, we prove X/, = 0,/4(0, c4) in the case p is positive
and p/q is large. By assuming this, we here prove ¥/, = X/,. In [6] we proved

c4) = v(xq™cs) = v(g™cy). Hence
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o~ ~

Zopjg < Zpjg- Mwefind0 <b < b <1 witho_,y(b, b) = 0,40, ca) = Zpyq,
we have the equality.

Weputh = (1—ca)p/(p + ¢) and b = b+ca. Itholds that ((—p)"b ) = {¢"b ) and
((=p)"B) = (¢"b) if n is even, and that ((— p)"@) = (¢"b) and ((—p)"b) = (g ”75)
if n is odd. Actually, we have (p + q)b = p — pc4y = —pc4 = —qcg mod 1, which
implies pb = qb —pb = qb mod 1, and (— p)zb = —qu = qzb mod 1, and so
on. By noting (5), (7), and (( ’1b) (qg"b )) (q"ca), we have

—V((g"D), (g"b), ("), (q"b))
—v(q"cs)

V((=p)"b), (=p)"D), (q"D), (q"b))

for odd n, and
V{((=p)"b), (—=p)"b), {q"D), (q"b)) = v(q"ca)

for even n, to have o_ /4 (b, b) = 0p/4(0, ca).

We prepare some inequalities to prove X'/, = 0,/4(0, c4). We denote 7/, (0, a)
simply by o (a).

Put

o v(g"a)
V((p'a). (q"a), Yn@ =2 > ZLO
n:%%—l (pq)

1
— (pq)"

i 1
TN =2 ,
n; 4(pg)"

Si(a) := 2v(t2a)/(pq)2, and Z(a) := V(a, a)+2v(ga)/pq. Thanks to (6) and (10),
we have

v (e @a) < v@ta), v ((0Fa) @dta) = vita),
v (e @ta) < 174,
and

o*(@)<Wja) (1<j<6), and Wi(b)=Wabi)=0>(b;) (0<i<p—q),
Y

where

Wi =X1+7Y, Wy = Xo + Yo, W3 := X1+ T,
Wyi=2+S,+ 17, Ws:=Z2Z+ S, + 12, We :=7Z + Ti.

By ged(q, p — q) = 1, (p*ca) = (gFes) € (b1, ..., bp_g—1} and v(b;) > v(by1), we
have
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736 K. Fukuyama, M. Yamashita

1
(pg)"

0%(ca) = Z(ca) +2 D — (b)) =: U.
n=2

Note that the evaluation of U strongly depends on the parity of p, since (gca) =
gca —(q —2)/2 or (gca) = gca — (¢ — 1)/2 according as ¢q is even or odd.

We denote the derivative % f of f by Df, the right derivative by D% f, and the
left derivative by D~ f.

3 Odd p and even ¢

Assume that ¢ is even, and that p is odd and positive. We divide [0, 1/2) into subin-
tervals [0, ¢1), [c1, ¢2), [c2, ¢3), and [c3, 1/2), and prove oz(a) < 02(C4) on each.

3.1 [c2, c3) part

We assume (3), A1(p, q) > 0,and a € [c2, c3). We have (pa) = pa — (p —3)/2 and
(qa) = gqa — (g — 2)/2. Since (pa) < (ga) holds on [c2, c4), and (pa) > (qa) on
[c4, c3), we can evaluate X as

X1(@) —3a>+ 3 —3/pla+3/2p—1/2 a € [c2, cq),
PUT 3@+ G -2/g — 1/p)a — 1/pg + /g +1/2p — 12 a € [es. c3),
and verify that DX (a) decreases on [c3, ¢3). We also have |Dv(g"a)| < ¢" a.e. a,

and therefore |DY1| < 2/p(p — 1) a.e. By combining these, we have

DWi(a) > D™ X1(c4) —2/p(p— 1)
=QBpqg—2p—q)/p(p—1D(p—-2)>0 ae.on (c2,c4],

and

DWi(a) < D¥Xi(ca) +2/p(p — 1)
=—-Ai(p,¢)/p(p—D(p—2) <0 ae.on [c4,c3).

Hence 02(a) < Wi(a) < Wi(ca) = 02(04) for a € [c2, c3). Here we note that
functions appearing here are bounded and absolutely continuous, and the exceptional
set of null measure for DWj(a) > 0 or DWj(a) < 0 does not harm the argument to
show that ¢4 is the maximal point.

Here we prove A1 (p, q) > 0 by assuming p/q > 9/4. Since 2p*> — (4q +2)p +
(g% — 2q) is increasing in p > (9/4)q, A1(p, q) also. Because of A1((9/4)q, q) =
3¢%*(3g —28)/32 > 0if ¢ > 10, we see that A1(p, ¢) > 0if g > 10and p/g > 9/4.
Thanks to A;(5,2) > 0, A1(11,4) > 0, A1(17,6) > 0 and A{(19,8) > 0, we see
that A1(p,q) > 0if p/q > 9/4.

We prove the case p/q = 9/4. Due to the above proof, we see that 0% (a) < o%(c4)
for a € [cy, c4]. Since we have T) = ﬁ and X is decreasing in a > c4, we have
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2 34 1 222 2 34 33
o0(a) = W3(a) < X1(57) + 3555 < §5 = o~(ca) on [57,c3). On [c4, 57), We

have (16a) < (81a) and see DX is decreasing and |DY>(a)| < ﬁ. Hence we have
DW>(a) < DXa(ca) + 53 < Oand 02 (ca) = Wa(ea) = Wa(a) = 0(a) on [e4, §7)-
Note that Y, < 901W' On [g, %), by (16a) > (81la) we see that X, equals to a
quadratic function having axis at %. Hence oz(a) < Xz(%) + 901% < 02(04).
On 2L, 31), by (16a) < (81a), X is decreasing. Hence 02(a) < X2(2) + 90% <

27 34)

02(cy) fora € [Z, 37

3.2 [¢3, 1/2) part

Leta € [c3, 1/2). We have (pa) = pa — (p — 1)/2 and (ga) = qa — (g —2)/2. We
see (ga) — (pa) = —(p —q)a+ (p —q + 1)/2 > 1/2. Since W3(a) maximizes at
a; := 3p —1)/6p, we have W3(a) < W3(a;). By

U — Wilar) = Ax(p, 9)/(12p*q(p — ¢)*(pg — 1)) > 0,

we have az(a) < Ufora € [c3,1/2). R
We derive A>(p, ¢) > Ofrom p/q > 9/4.Put A>(p, q) = (8¢ —6) p>+(—164>+
49)p — q*. We see

Ax(p, q) = pAr(p, q) + 24p? — 24qp — 24p) + (10¢°p + ¢%) > Ax(p. q).

We see Zz(p,q) is increasing in p if p > 2g. By Xg((9/4)q, q) = q*(28¢> —
171)/8 > 0 (¢ > 4), and by A> (5, 2) > 0, the proof is over.

3.3 [0, c1) part

We consider on [0, ¢1). We assume g > 4, since ¢; = 0 otherwise. Since V (a, a)
increases on [0, c1) and Wy(a) — V (a, a) has period 1/¢q, the first equality of

sup Wuy(a) = sup Wy(a) = sup Wa(a) = Wylc)) < U (12)

a€l0,¢1) a€lc1—1/q,c1) aelc1—1/q%,c1)

holds. On [c] — 1/q, c1), we have (ga) = ga — (g — 4)/2, and we see Z equals to
a quadratic function having axis at a := (2¢ + p — 6)/(4q + 2p). Byar — c1 =
(p —q)/q(2q + p) > 0, we see that it is increasing on [¢; — 1/g, ¢1). Since S, (a)
has period 1/g2, we verified the second equality of (12). On [c] — 1/¢2, ¢1), we have
(q%a) = q*a—q(q —2)/2+ 1. We see that Wy (a) equals to a quadratic function with
axis a3 1= (2¢%> + 2p — 4)q + p> — 6p —2)/(4q> + 4pq + 2p?). By

a3 — c1=(p* — pq — @)/ (4q* +4pg+2p*) > p(p —29)/2q* +2pgq + 1p*) > 0,
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738 K. Fukuyama, M. Yamashita

we have the third equality. The rest is proved by

4p*q*(p — @) (pqg — DU — Wa(c1))
=4qp’ + (—8¢* — Hp* + (1¢° + 8¢)p® + (=6 — 7¢* + 8 — 2)p*
+(69° — 8¢* — 49)p — 247,

by noting

49p° — (8¢ + Mp* +2p3¢* = 4qp° — 947 p* +2p°¢?
=p’¢*(4p/g — D(p/qg —2) = 0,
5¢°p° —6q°p* >0, 8qp® —7¢°p* >0, (8¢ —2)p*> >0,
(5¢° —8g> —4q)p > 0, ¢’p—2q* > 0.

3.4 [c1, c2) part

Considering on [c1, ¢3), we have (ga) = ga —(q —2)/2. Since Z equals to a quadratic
function withaxisas := 2g+p—2)/(4g+2p),andsinceas—cr = (6q+p)/2p(2q+
p) > 0, it is increasing on [c1, ¢2).

First, we consider the case when 2g < p < %qz + ¢ holds. Since §), has period
1/p?, and since

c2—1/p* —c1 = 2p+9)(p —29)/2p°q = 0,
we have the first equality of

sup Ws(a) = sup Ws(a) < Ws(as) < U. (13)

aglcy,c2) aclcr—1/p?.c)

On [c2 — 1/p?, ¢2), we have (p2a) = p*a — p(p —3)/2 + 1, and we see that Ws(a)
equals to a quadratic function with axis as = (2¢> + (p — 2)¢> + 2p> — 6p> —
2p)/(4q> + 2pg* + 4p3), hence we have the third inequality. We have the rest by

4p*q(p — 9)*(pg — V24> + pq® +2p*)(U — Ws(as))
= —4pS + (36¢° + 44 +8q + 16)p° + (=79¢" + 16¢° — 404>
—20g — 16)p* + (44g° — 44¢™ +79¢° — 84> — 2q)p> + (—16¢° + 24¢°
—44q* +52¢° — 8¢7)p* + (16¢° — 40g" — 10¢°)p — 49" > 0.

Actually, when g > 4, we see

—4p° + (364> + 4q> + 8¢ + 16)p> — 79¢* p* + 16¢° p°
(364> — 2% p° — 19¢* p* + 16¢° p*

v

71
7q3p5 —79¢*p* + 16¢° p*

A%
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1
2_(5—2) (713—16)20,
2 \q q

(16> — 40g> — 20g — 16)p* > (16 — 10 — 5/4 — 1/4)¢> p* > 0,
(12¢° — 44gHp> > (12 = 11)g°p* > 0, 16¢°p* — 16¢°p* > 0,
(24¢° + 52¢° — 8¢%) p* > 0,

(719¢° — 8q% —2q)p* — 44q*p* > (19 — 2 — 1/8)¢° p* — 444" p* > 0,
(16¢° — 40g* — 10¢°) p — 4¢* = (16 — 10 — 5/8)¢° p — 4¢* > 0.

When g = 2, and p = 5 or 7, one can verify the above inequality.

Next, we consider the case p > %qz + g. We have already seen that Z and Wg
are increasing on [cq, ¢2). Note that p/q > %q +1>4and (c; — 1/p) —c1 =
(p/q —5/2)/p > 0. We can verity

(U — Welcr — 1/p)@p°q(p — 9)*(pg — 1))
= (8¢% — 2)p* + (34¢> — 4q + 8)p* + (-95¢* — 364> — 8¢ — 8)p*
+ (509> +95¢%)p — 50¢* > 0

by 8p° — (8¢ + 8)p? = 8p> — 12gp? > 0 and

(8¢% — 2)p* + (34¢> — 4q) p* + (=95¢* — 36¢%) p* + 504" p

15 15 3 2
> 76]2174 +33¢3p® — 1049 p? +50¢° p = qu(— (s) +33 (3)

2 q
—104(£)+50) =: qspog(g) >0
q q

since g’(¢) > 0 fort > 2 and g(2) > 0. Hence we see

o?(a) < We(a) < We(c2 —1/p) <U (a €ler,ca = 1/pD).
We consideron [c;—1/p, ¢2). Wehave (pa) = pa—(p—5)/2,{qa) = ga—(q—2)/2,
and can see that (pa) < (ga) on [c2 — 1/p,c7) and (pa) > (ga) on [c7, c2). By
recalling the bound |DY;| < 2/p(p — 1), we can verify that DX is decreasing on
[c2 = 1/p. c2),

DWi(a) > D™ X1(c7) =2/p(p—1)
= (@4p*+(5¢ —6)p —39)/p(p —)(p — 1) > 0,

on[c; — 1/p, ¢7), and

DWy < D Xi(c7) +2/p(p — 1) = (=2p° + 8¢ +2)p
+Bq> = 69)p —5¢H)/p(p—)(p—1) <0
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740 K. Fukuyama, M. Yamashita

on [c7, ¢2). Actually, the first inequality is clear and the second is proved by
—2p 4+ 8q +2)p* +3¢°p < —2p° +9qp* +3¢%p
2
= pq? —2(2) +9(£) +3)<0
q q

by =~ > 7if ¢ > 4. In case ¢ = 2, we have

SIS

—2p° + 8¢ +2)p* + 3¢* —69)p — 5¢*> = —2(p + 1)(p*> — 10p + 10) < 0
for p > 9. Hence we see the second inequality of
0?(a) < Wi(a) < Wi(e))=0%(c7) < Waler) < U < 0?(ca) (a € [ca—1/p,c2)).

Put U := Z(cs) + Sy(ca) < 02 (cq). Because of 0 < ¢?/2(p —q) < 3¢%/2(p —q) <
1,

GPea= (%2 =)+ (1 —q*/2(p —q), and
qPe1=(q%/2 = 1)+ (1 =34¢%/2(p — q)),

we see (q2c4) = 1 — q%/2(p — q) and (g%c7) = 1 — 3¢%/2(p — q). Hence we can
calculate S, (c4) and S, (c7), and can verify the rest by

(U — Walen)2p*q*(p — )*(pg — 1))
= (12¢* —4¢° — Dp* + (8¢° + 4¢* — 12¢° + 44> +2q)p — 8¢" — 4¢° — ¢*
> 96]4p2 +7q5p — llq4 > 0.

4 Even p and odd ¢

Assume that g is odd and p is even and positive. We may assume g > 3.

4.1 [cg, 1/2) part

We consider on [cg, 1/2). We have (pa) = pa — (p — 2)/2, and by ¢5 < cg, (qa) =
ga — (g — 1)/2. Since (pa) < (ga) holds on [cg, c4), and (pa) > (ga) on [c4, 1/2),
we see that DX is decreasing on [cg, 1/2). Recalling |[DY1(a)| < 2/p(p — 1), we
have

DWi(a) > D™ X1(ca) —2/p(p — 1) = 2¢* —2q + p* = p)/(p — Da(p —q)>0
on [cg, c4), and
DWi(a) < DY X1(ca) +2/p(p — 1) = —A3(p,q)/(p — Dpq(p —q) <0

on [c4, 1/2). Hence Wi(a) < Wi(cs) = 02(C4) for a € [ce, 1/2).
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We derive Az(p,q) > 0 from p/q > 4. Because of p > 4¢q and p and ¢g are
relatively prime, we see p > 4q or p > 4q + 2. Hence we have A3(p, q) = p*(p —
4q — 1) +2pq +29* > 0.

4.2 [0, c5) part
We consider on [0, ¢5). The condition (3) implies p > 2¢g + 2. Since V(a, a) is

increasing on [0, c5) and Wy4(a) — V (a, a) has period 1/g, we have the first equality
of

sup Wiu(a) = sup Wala) = sup Wala) = Wa(cs) < U. (14)
a€l0,cs) a€lcs—1/q,c5) a€les—1/q%,cs)

On [¢5 — 1/q, ¢5), we have (qa) = ga — (¢ — 3)/2 and we see that Z equals to a
quadratic function having axis at ag := (p + 2q — 4)/(2p + 4q). Because of

ag —cs = (p—29)/(2q(2q + p)) > 0,
it is increasing on [cs — 1/q, ¢5). Since S, has period 1 /q*, we have the second
equality of (14). On [cs — 1/¢?%, ¢s5), we have (¢%a) = q’a — q(q — 1)/2 + 1
and we see that Wi(a) equals to a quadratic function having axis at a7 :=
(2% + 2p — 2)q + p* — 4p — 2)/(4¢* + 4pq + 2p?). Because of
a7 —cs = ((p+D(p—2q — 1) +1)/2q2q* + 2pq + p*)) > 0,

Wa(a) is increasing on [c5 — 1 /qz, ¢s) and the third equality of (14) is proved. The
rest is by

(U = Wa(es)@p*a*(p — 9)*(pg — 1))
= p(p —29) (p(pg — D(p +29) +4g +2) +4(q — 2)p* +22p* — ¢*) > 0.
4.3 [cs, cg) part
On [cs, c6), we have (ga) = ga — (¢ — 1)/2 and we see that Z equals to a quadratic

function having axis at 1/2. Hence it is increasing on [cs, ¢6). Since S, has period
1/p?, we have the first equality of

sup Ws(a) = sup Ws(a) < Ws(ag) < U. (15)

a€les,ce) a€l(ce—1/p?)Ves,ce)
On [(cg — 1/p?) V c5,¢cq), by (p?a) = p*a — p(p — 2)/2 + 1 we see that Ws(a)

is a quadratic function having axis at ag := (2¢> + pg> +2p> — 4p> — 2p)/(4¢> +
2pq> + 4p3). Hence we have the middle of (15). Rest is by

U — Ws(as) = As(p, 9)/4p*q(q — p)*(pqg — (24> + pg* +2p°) > 0.
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Finally, we prove A4(p, ¢) > 0 by assuming

1/3 —-1/3
6—3/2/1019 N s\ N 65 (67321019 N 511 /
9 1458 162 9 1458

> a9 =

Q|

+ - =2206....

O | oo

We decompose as 3A4(p,q) = h1 + - - - + h7. Here

3 2
h = 3q* = 2)(p+2q) P*¢°> 6(3) —16(3) +7(£)—2 >0 it L= a,
q q q q

hy = (24¢* —2q)p° — 50¢° p* — 724" p* + 48¢° p*

Sy (3)3 _0 (5)2 ) (3) +48)>0
3 \¢g 3 \¢g q
since the last cubic function in p/q is increasing for p/gq > 2 and equals to 24 at
r/lq =12,
hy = 48p° — (72q + 48) p* > 48p° — 88¢p* > 0,
hy = 99¢° p3 — 444%p* > 0,
hs = (24¢* — 6q)p° > 0,
he = (96¢° — 24¢°) p* — (96¢™ 4 30¢%)p > 884> p? — 106¢*p > 0,
hy = 12¢*(pg — 1) > 0.
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