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Abstract We study the functional � �→ E(�), where � runs in the set of all compact
domains of fixed volume v in any Riemannian manifold (M, g) and where E(�)

is the mean exit-time of the Brownian motion (also called torsional rigidity) of �.
We first prove that, when (M, g) is strictly isoperimetric at one of its points, the
maximum of this functional is realized by the geodesic ball centered at this point.
When (M, g) is any Riemannian manifold, for every domain � in M , we prove that
E(�) ≤ E(�∗), where �∗ is the corresponding symmetrized domain on a model-space
(M∗, g∗). We also consider the functional � �→ E(�), when � runs in the set of all
compact domains, with smooth boundary in the class of all Riemannian manifolds with
“bounded” geometry. We prove two results in this direction. In the first one (Theorem
1.9) we prove that for every complete, connected Riemannian manifold (M, g) whose
Ricci curvature satisfies Ricg ≥ (n − 1)g and for every compact domain with smooth
boundary � in M one has E(�) ≤ E(�∗), where �∗ is a geodesic ball of the canonical
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sphere (Sn, g0) such that
Vol(�∗, g0)

Vol(Sn, g0)
= Vol(�, g)

Vol(M, g)
. Morever, if there exists some

domain � ⊂ M such that E(�) = E(�∗) then (M, g) is isometric to (Sn, g0) and
� is isometric to �∗. The second result (Theorem 1.10) shows that if (M, g) is any
compact Riemannian manifold and � is any compact domain with smooth boundary

in M such that Vol(�) ≤ 1
2 Vol(M), then E(�) ≤ 1

H(M, g)2 , where H(M, g) is

Cheeger’s isoperimetric constant.

Keywords Brownian motion · Harmonic domain · Harmonic manifold · Isoperi-
metric manifold at a point

Mathematics Subject Classification 60J65 · 58G32

1 Introduction

Let (M, g) be a n-dimensional Riemannian manifold1 (compact or not) and dvg the
associated Riemannian measure. Let � be any compact connected domain in M , with
smooth boundary ∂� (by this, in the case where M is compact, we also intend that
the interior of M\� is a non empty open set). Let us denote by � the Laplacian2 on
M associated to the Riemannian metric g, and let f� be the solution of the following
Dirichlet problem

{
� f = 1 on �

f = 0 on ∂�.
(1)

Let C∞
c (�) be the space of C∞ functions with compact support in the interior of

� and let H2
1,c(�) be its completion with respect to the Solobev norm ‖ f ‖H2

1 (�) =
(‖ f ‖2

L2(�)
+‖∇ f ‖2

L2(�)
)

1
2 . As f� is regular and vanishes on ∂�, then f� ∈ H2

1,c(�).

Moreover, f�(x) > 0 for any x ∈ �̊.
On the space H2

1,c(�) let us consider the functional E� defined by

E�( f ) = 1

Vol(�)

(
2

∫
�

f dvg −
∫

�

|∇ f |2 dvg

)
. (2)

Computing the first variation of E� at the point f�, using Green’s formula and the
strict concavity of E�, we get that f� is the (unique) critical point of E� and that it
is a maximum. This justifies the following definition (see [18] and references therein
for more details).

1 In the sequel, except the hemisphere, all the Riemannian manifolds under consideration will be complete.
2 By convention, the sign of � is given by � f = −Trace(∇d f ) for any f ∈ C∞(M).
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Maximizing mean exit-time of the Brownian motion 553

Definition 1.1 Let � ⊂ M be as above. The mean exit-time from � of the Brownian
motion3 (that we shall denote by mean exit-time from � for the sake of simplicity) is
the value

E(�) = max
f ∈H2

1,c(�)
(E�( f )) = E�( f�) = 1

Vol(�)

∫
�

f�dvg

= 1

Vol(�)

∫
�

|∇ f�|2dvg,

where the two last equalities are deduced from (1) and from Green’s formula.

Remark 1.2 Notice that Ẽ(�) = Vol(�)E(�) is the (so called) “torsional rigidity of
�”, whose name comes from the fact that, when � is a domain of the Euclidean plane,
Ẽ(�) is the torsional rigidity of a beam whose cross-section is �. However we have
preferred to consider the invariant E(�) instead of Ẽ(�) because its physical meaning
“mean exit-time from � of the Brownian motion” remains valid on any Riemannian
manifold of any dimension, and also because it has the same homogeneity as the
Riemannian metric itself, i.e.

E(�, λ2g) = λ2E(�, g), (3)

which will simplify the comparison of the “mean exit-times” from two domains in
two different compact Riemannian manifolds (see further results).

On any Riemannian manifold (M, g), let us consider the functional � �→ E(�),
where � runs in the set of all compact domains with smooth boundary and prescribed
volume v. It is known that its critical points are the harmonic domains, namely those
domains � ⊂ M such that the function ‖∇ f�(x)‖ is constant on the boundary ∂�

(see for instance [18], Proposition 2.1). In a Riemannian manifold (M, g) which is
harmonic at one of its point x0 (see next section and [5] for the definition of harmonic
manifolds), it is well known that every geodesic ball centered at x0 is a harmonic
domain. Conversely, one of the fundamental questions of this field is:

Question 1.3 On a Riemannian manifold (M, g) which is harmonic at some of its
points x0 is every harmonic domain a geodesic ball centered at x0?

Positive answers to this question were given by Serrin [21] when (M, g) is the
Euclidean space and by Kumaresan and Prajapat [15] when (M, g) is the hyperbolic
space or the canonical hemisphere. On the contrary, tubular neighbourhoods in S3, of
some geodesic circle S1 (and, more generally, domains with isoparametric boundary
in S

n) are examples of harmonic domains of S
n which are not geodesic balls.

3 The reason why E(�) is called “mean exit-time from � of the Brownian motion” is the following : for
every x ∈ �, f�(x) is the expectation of the first time exit from � of the Brownian motion starting from

the point x ; thus E(�) = 1

Vol(�)

∫
� f� dvg is the mean value of this expectation with respect to all the

initial points x ∈ �. See for instance [18] for more explanations about the meaning of this definition.
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As the answer to Question 1.3 is negative in a general harmonic manifold (and, a
fortiori, in non harmonic Riemannian manifolds), it makes sense to study the maxima
(instead of the critical points) of the functional � �→ E(�) among all domains of
prescribed volume v (obviously such maxima are harmonic domains). This study is
one of the aims of the present paper.

The following result gives a positive answer to the analogous of Question 1.3 in the
case where (M, g) belongs to the class of Riemannian manifolds which are strictly
isoperimetric at one of their points (see Definition 2.3 in Sect. 2 below); this class of
manifolds contains the euclidean and hyperbolic spaces and the hemisphere as before
(see [7] and [18] for previous proofs of Proposition 1.4 in these three cases), and also
the whole sphere and a lot of spaces of revolution (see Example 2.4).

Proposition 1.4 Let (M, g) be a Riemannian manifold which is isoperimetric at some
point x0 ∈ M, for every v ∈]0, Vol(M, g)[, the functional � �→ E(�) (where � runs
in the set of all compact domains in M, with smooth boundary and prescribed volume
v) attains its maximum when � is the geodesic ball �∗ of volume v centered at x0 [i.e.,
E(�) ≤ E(�∗)]. Moreover, if (M, g) is strictly isoperimetric at x0 then this maximum
is unique, i.e., the equality E(�) = E(�∗) is realized if and only if � is isometric to
�∗.

Proposition 1.4 is a particular case of the following general lemma, which allows to
compare the mean exit-times from domains in two different manifolds. The reader is
referred to Sect. 3 below for the definitions (Definition 3.1) of the symmetrized domain
�∗ of a given domain � and of a pointed isoperimetric model space (M∗, g∗, x∗)
associated to a Riemannian manifold (M, g) (denoted by PIMS in the sequel).

Lemma 1.5 Let (M, g) be a Riemannian manifold and let (M∗, g∗, x∗) be a PIMS
for (M, g). Let � be any compact domain with smooth boundary in M and let �∗ be
its symmetrized domain. Then

E(�) ≤ E(�∗).

Moreover, if (M∗, g∗, x∗) is a strict PIMS for (M, g), then the equality E(�) = E(�∗)
is realized if and only if � is isometric to �∗.

To prove this lemma, the main tool is a version of Schwarz’s symmetrization valid
for manifolds, which is described in Sect. 3. Lemma 1.5 is the first step in order to
answer the following extension of Question 1.3:

Questions 1.6 4 Let us consider a class M of Riemannian manifolds whose geometry
is “bounded” (the meaning of this notion will be made precise in each result). Does
there exist some Riemannian manifold (M∗, g∗) ∈ M and some point x∗ ∈ M∗
such that the functional � �→ E(�) (where � runs in the set of all compact domains,

4 A positive answer to this question would provide sharp universal upper bounds C(v) for the mean exit-time
E(�) which are independent on the geometry of (M, g), except for some a priori bounds (on curvature or
Cheeger’s isoperimetric constant for example), and on the geometry of the domain � ⊂ M (provided that
this domain has prescribed volume v).
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with smooth boundary and prescribed volume v, in all the Riemannian manifolds
(M, g) ∈ M) attains its maximum when � is the geodesic ball �∗ of volume v in
(M∗, g∗), centered at x∗? When another domain � ⊂ (M, g) realizes this maximum,
is � isometric to �∗? Is (M, g) isometric to (M∗, g∗)? When there exists some domain
� ⊂ M such that E(�) is not far from this maximal value, is the ambient manifold
M diffeomorphic to M∗?

The second step in order to answer this question is to find a “universal” PIMS which
is valid for all the Riemannian manifolds (M, g) ∈ M.

For example, in the noncompact case, one has the following conjecture, known as
Cartan–Hadamard’s conjecture (or Aubin’s conjecture) in the literature. We recall that
a Cartan–Hadamard manifold is a complete simply connected Riemannian manifold
with non positive sectional curvature.

Conjecture 1.7 The Euclidean n-dimensional space En , pointed at any point x∗ ∈
En , is a strict PIMS for every Cartan-Hadamard manifold of the same dimension.

This conjecture is known to be true when the dimension n is equal to 2 (it is a
classical fact, using the Gauss–Bonnet formula, proved for the first time by A. Weil
in [23]), in dimension 4 (it was proved by Croke [8], using Santalo’s formula) and
in dimension 3 (it is a more recent proof by Kleiner [14]). In higher dimensions,
Conjecture 1.7 is still open. Using these results we immediately get the following
corollary of Lemma 1.5 which provides a first answer to Questions 1.6 when M is
the class of Cartan–Hadamard manifolds of dimension at most 4:

Corollary 1.8 Let (M, g) be a Cartan–Hadamard manifold of dimension n ≤ 4. For
every compact domain � ⊂ M with smooth boundary, one has

E(�) ≤ E(�∗),

where �∗ is the Euclidean n-ball with the same volume as �. Moreover, the equality
E(�) = E(�∗) is realized if and only if � is isometric to an Euclidean ball.

Notice that, if Conjecture 1.7 were true in every dimension n then Corollary 1.8
would be automatically true in any dimension.

In the compact case, the main tools are the celebrated Gromov’s isoperimetric
inequality (Theorem 4.1) and its generalization due to P. Bérard, G. Besson and S.
Gallot (Theorem 4.6). Using these results and a Theorem of G. Perelman (Theorem
4.9) we obtain the following result, which gives a positive answer to Questions 1.6
when the class M under consideration is the class of Riemannian manifolds whose
Ricci curvature is bounded from below by the Ricci curvature of the canonical sphere
(see Remarks 4.5).

Theorem 1.9 For every complete, connected Riemannian manifold (M, g) whose
Ricci curvature satisfies Ricg ≥ (n − 1)g, for every compact domain with smooth
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boundary � in M, let �∗ be a geodesic ball of the canonical sphere (Sn, g0) such that
Vol(�∗, g0)

Vol(Sn, g0)
= Vol(�, g)

Vol(M, g)
, then E(�) ≤ E(�∗). Morever,

(i) If there exists some domain � ⊂ M such that E(�) = E(�∗) then (M, g) is
isometric to (Sn, g0) and � is isometric to �∗.

(ii) If there exists some domain � ⊂ M such that

E(�) > (1 − δ(n, κ))
2
n E(�∗) with δ(n, κ) =

∫ ε(n,κ)
2

0 (sin t)n−1dt∫ π
2

0 (sin t)n−1dt

[where −κ2 is a lower bound for the sectional curvature of (M, g) and where
ε(n, κ) is the Perelman constant described in Theorem 4.9] then M is diffeomor-
phic to S

n.

In the case where the Ricci curvature is bounded below by a nonpositive constant
we generalize the inequality of Theorem 1.9 (see Corollary 4.8).

In the general compact case (where Ricci curvature is no longer assumed to be
bounded from below), the information on (M, g) that we need is its Cheeger’s isoperi-
metric constant H(M, g), which is defined by

H(M, g) = inf
�

(
Voln−1(∂�)

min [Vol(�), Vol(M\�))

]
,

where � runs in the set of all domains with smooth boundary in M .
For any H > 0, let us denote by MH the set of all Riemannian manifolds (M, g)

whose Cheeger’s isoperimetric constant is bounded from below by H , i.e., the set
of the (M, g)’s which verify the following isoperimetric inequality for every domain
with smooth boundary � ⊂ M :

Voln−1(∂�) ≥ H · min (Vol(�), Vol(M\�)) . (4)

In [2] (sections IV.B.13 and IV.B.22) and in [10] (sections 5.B and Appendix A.4),
P. Bérard and S. Gallot introduce the “double of the hyperbolic cusp” (M∗, g∗

ε ), con-
structed by endowing the manifold M∗ := R × S

n−1 with the Riemannian metric

g∗
ε defined, at any point (t, v) ∈ M∗, by g∗

ε := (dt)2 ⊕ ε2e−2 H
n−1 |t |g0, where g0 is

the canonical metric of S
n−1. They remark that (M∗, g∗

ε ) is a (generalized5) PIMS,
which is valid for all the manifolds (M, g) ∈ MH , because the symmetric domains
�∗

r := [r,+∞[×S
n−1 ⊂ M∗ (i.e., the “balls” centered at the pole at infinity) realize

5 In [2] and [10], the authors view (M∗, g∗
ε ) as a “ manifold of revolution modeled on the isoperimetric

inequality (4)”, i.e., as a notion of PIMS which is generalized in the sense that it is allowed to be non
compact with finite volume, to admit poles at infinity and to be pointed at one of these poles, the “balls”
centered at this pole being the symmetric domains [r, +∞[×S

n−1, moreover they allow the metric g∗
ε to

be piecewise C1. They prove that the symmetrization method also works in this case.
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the equality6 in the isoperimetric inequality7 (4). This symmetrization by (M∗, g∗
ε )

will be our implicit guide in order to prove the following result.

Theorem 1.10 Let (M, g) be any compact Riemannian manifold and let � be any
compact domain with smooth boundary in M such that V ol(�) ≤ 1

2 Vol(M). Then

E(�) ≤ 1

H(M, g)2 .

In Sect. 4.1, we shall see that, as the non compactness of the domains �∗
r would

technically complicate the arguments, the proof of Theorem 1.10 does not make an
explicit use of the symmetrization of (M, g) by (M∗, g∗

ε ), but is written more simply
as a direct consequence of the isoperimetric inequality (4).

However the symmetrization of (M, g) by (M∗, g∗
ε ) turns to be important because

a direct computation proves that,8 for every r > 0, E(�∗
r ) = 1

H2 and thus the Theorem
1.10 may be rewritten as follows: the functional � �→ E(�) (where � runs in the set of
all domains, with smooth boundary and prescribed volume v ≤ 1

2 Vol(M, g), in all the
Riemannian manifolds (M, g) ∈ MH ) attains its maximum when (M, g) = (M∗, g∗

ε )

and when � = �∗
r . This seems to answer quite easily the first of Questions 1.6 for

the class MH of Riemannian manifolds, but there are two objections to this assertion:
the first one (only technical and thus quite easily solvable as it is done in [2, Sections
IV.B.22-28] and in [10, Théorème 5.4 and Appendix A.4]) is that the domains �∗

r
are not compact, we should thus have to extend the functional � �→ E(�) to non
compact domains � with finite volume, the second (and deeper) objection is that
(M∗, g∗

ε ) /∈ MH because (as noticed in [10]) there exists non symmetric domains
�′ ⊂ M∗, such that Vol(�′, g∗

ε ) = Vol(�∗
r , g∗

ε ) and Voln−1(∂�′) < Voln−1(∂�∗
r ).

The authors were not able to overcome this second objection even if they believe
that the first of Questions 1.6 has a positive answer for the class MH of Riemannian
manifolds (and thus the sharpness of Theorem 1.10 would follow).

The paper is organized as follows. In Sect. 2 we recall the definition of manifolds
which are harmonic and isoperimetric at one point and provide examples of non
standard isoperimetric Riemannian manifolds. In Sect. 3 we give the definition of
PIMS for a given manifold (M, g) and we prove Proposition 1.4 and Lemma 1.5. The
main tool in the proof of this lemma is the Theorem of symmetrization (Theorem 3.3)
which gives precise relationships between the integrals which appear in the definition
of E(�) when calculated on � and on its symmetrized domain �∗. In Sect. 4 we
investigate how to compare mean exit-times from domains in two different compact

6 In fact, a direct computation gives: ∀r ∈ R
Voln−1(∂�∗

r , g∗
ε )

min
[
Vol(�∗

r ), Vol(M∗\�∗
r )

] = H .

7 This equality property in (4) corresponds to our definition of a PIMS (see Sect. 3) because, for any

(M, g) ∈ MH and for every domain � ⊂ M , one has
Voln−1(∂�, g)

Vol(M, g)
≥ Voln−1(∂�∗

r , g∗
ε )

Vol(M∗, g∗
ε )

when the

relative volumes of �∗
r and � are equal, i.e., when

Vol(�∗
r , g∗

ε )

Vol(M∗, g∗
ε )

= Vol(�, g)

Vol(M, g)
.

8 Just verify that the function f�∗
r
(t, v) = t − r

H
(defined on M∗ = R × S

n−1) lies in H2
1,c(�

∗
r , g∗

ε ) and

satisfies � f�∗
r

= 1, which implies, by Green’s formula, that f�∗
r

is a critical point (and thus a maximum)

of the concave functional E�∗
r

. We thus get E(�∗
r ) = E�∗

r
( f�∗

r
) = 1

H2 .
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manifolds. This will allow us to prove Theorems 1.9 and 1.10. The paper ends with
an appendix (Sect. 5) with the proof of Theorem 3.3.

2 Harmonic and isoperimetric manifolds at one point

We briefly recall the definition of harmonic manifolds (the reader is referred to [5]
and references therein for details). In any (complete) Riemannian manifold (M, g),
for any point x0 ∈ M , let Sx0 be the unit sphere of the Euclidean space

(
Tx0 M, gx0

)
.

For any v ∈ Sx0 , we denote by Cut(v) the maximum of the T ’s such that the geodesic
cv : [0, T ] → M (with initial speed ċv(0) = v) is minimizing.

Definition 2.1 (M, g), is said to be harmonic at x0 if v �→ Cut(v) is a (possibly
infinite) constant on Sx0 and if any geodesic sphere centered at x0 of radius r < Cut(v)

is a smooth hypersurface with constant9 mean curvature.

Definition 2.2 A Riemannian manifold (M, g) is said to be harmonic iff it is harmonic
at each of its points.

For example, spaces of revolution are harmonic at their pole(s), but they are gener-
ally not harmonic in the sense of the Definition 2.2 (see Example 2.4 and Theorem 2.5
below).

Definition 2.3 Let (M, g) be a Riemannian manifold and x0 a point of M . The man-
ifold (M, g) is said to be isoperimetric at x0 if it is harmonic at x0 and if, for any
compact domain � ⊂ M with smooth boundary, the geodesic ball �∗ centered at x0
with the same volume as � satisfies Voln−1(∂�∗) ≤ Voln−1(∂�); the same mani-
fold is said to be strictly isoperimetric at x0 if, moreover, the equality occurs iff � is
isometric to �∗.

The Euclidean space, the hyperbolic space and the sphere are strictly isoperimetric at
every point (see [6, Sections 10 and 8.6] for proofs and their history). These are the only
known examples (up to homotheties) of Riemannian manifolds which are isoperimetric
at every point. If we only require the Riemannian manifolds to be isoperimetric at (at
least) one point, we get much more examples.

Example 2.4 The first example is given by a 2-dimensional cylinder
[0,+∞[×S

1 (resp. [0, L]×S
1) with 1 hemisphere glued to the boundary {0}×S

1 (resp.
with 2 hemispheres respectively glued to the boundaries {0}×S

1 and {L}×S
1). Other

examples are given by the paraboloid of revolution z = x2 + y2 or the hyperboloid of
equation x2 + y2 − z2 = −1, z > 0 in R

3 (isoperimetric at their pole).

More generally, a large class of nonstandard examples is given by the following
result.

Theorem 2.5 ([19, Theorem 1.2]) Consider the plane R
2 equipped with a complete

and rotationally invariant Riemannian metric g such that the Gauss curvature is
positive and a strictly decreasing function of the distance from the origin. Then (R2, g)

is isoperimetric at the origin.

9 Evidently, this constant depends on the radius r .
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However, it is not true that every space of revolution is isoperimetric at its pole:
a counter-example is given by the hypersurface of revolution S in R

3 of equation
x2 + y2 + (|z| + cos R)2 = 1, whose poles are x0 = (0, 0, 1 − cos R) and x1 = −x0.
The plane y = 0 separates S in two symmetric domains, which have the same area as
the geodesic ball B(x0, R) and whose boundary is shorter than ∂ B(x0, R).

3 The Theorem of symmetrization and the proofs of Proposition 1.4
and Lemma 1.5

Let (M, g) and (M∗, g∗) be two Riemannian manifolds such that Vol(M, g) and
Vol(M∗, g∗) are both infinite or both finite. Let us define the constant α(M, M∗) by

α(M, M∗) =

⎧⎪⎪⎨
⎪⎪⎩

1 if Vol(M, g) and Vol(M∗, g∗) are both infinite,

Vol(M, g)

Vol(M∗, g∗)
if Vol(M, g) and Vol(M∗, g∗) are both finite.

Definition 3.1 Let x∗ be a fixed point of M∗.

(a) For any compact domain � ⊂ M with smooth boundary, one defines its sym-
metrized domain �∗ (around x∗) as the geodesic ball BM∗(x∗, R0) of (M∗, g∗),
such that Vol(BM∗(x∗, R0)) = α(M, M∗)−1Vol(�).10

(b) (M∗, g∗, x∗) is said to be a pointed isoperimetric model space (PIMS) for
(M, g) if, for any compact domain � ⊂ M , with smooth boundary, the
symmetrized domain �∗ satisfies the isoperimetric inequality Voln−1(∂�) ≥
α(M, M∗)Voln−1(∂�∗); the same manifold is said to be a strict PIMS if, more-
over, the equality occurs iff � is isometric to (�∗, g∗).

Remark 3.2 When the two manifolds have different finite volumes, the assumption
Vol(�∗) = α(M, M∗)−1Vol(�) means that the relative volumes Vol(�)/Vol(M, g)

and Vol(�∗)/Vol(M∗, g∗) are equal. We are compelled to make this relative assump-
tion because, under the usual assumption Vol(�∗) = Vol(�), it is hopeless to expect
some bound from below for Voln−1(∂�) in terms of Voln−1(∂�∗).11

Let (M, g) be a Riemannian manifold and (M∗, g∗, x∗) be a PIMS for (M, g). Let
� ⊂ M be any compact domain with smooth boundary. Let �∗ = BM∗(x∗, R0) be its
symmetrized domain in the sense of Definition 3.1. Let f be any smooth nonnegative
function on � which vanishes on ∂�. We denote by �t (or equivalently by { f > t})
the set of points x ∈ � such that f (x) > t and set A(t) := Volg(�t ). For every
t ∈ [0, sup f [, one associates to �t its symmetrized domain �∗

t which is the geodesic

10 By the continuity and the monotonicity of r �→ Vol
(
BM∗ (x∗, r)

)
, this equation always admit a solution

R0.
11 When Vol(M, g) �= Vol(M∗, g∗) one generally would not have Voln−1(∂�) ≥ Voln−1(∂�∗) if the
symmetrization assumption was Vol(�∗) = Vol(�∗): in fact, this symmetrization would imply that, when
Vol(M, g) > Vol(M∗, g∗) and Vol(M∗, g∗) < Vol(�) < Vol(M, g), the symmetrized domain �∗ does
not exist; in the case where Vol(M, g) < Vol(M∗, g∗) this symmetrization would imply that the domain
� = M\BM (x, ε) verifies Voln−1(∂�) ≤ C.εn−1 << Voln−1(∂�∗).
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ball BM∗ (x∗, R(t))of (M∗, g∗)whose volume is equal toα(M, M∗)−1 A(t). As�sup f

is empty, we set R(sup f ) = 0.
Since the function t �→ A(t) is strictly decreasing, the function t �→ R(t) is

strictly decreasing too, and thus it is well defined and injective; however R is gen-
erally not continuous and the measure of the set [0, R0]\Image(R) is generally not
zero. This is one of the main problems when studying the regularity of the follow-
ing “symmetrization” f ∗ of f . Let us first define the 1−dimensional symmetrization
f̄ : [0, R0] → [0, sup f ] of f by

f̄ (r) = inf(R−1([0, r ])) = inf{t : A(t) ≤ α(M, M∗)VolBM∗(x∗, r)} ;

the symmetrization of f is then the function f ∗ := f̄ ◦ ρ : �∗ → R
+, where ρ =

dM∗(x∗, ·) (dM∗ being the Riemannian distance in (M∗, g∗)). Notice that { f ∗ > t} =
�∗

t [see Property 5.1 (vi) in Appendix for a proof].
We now state the Theorem of symmetrization which (when coupled with sharp

isoperimetric inequalities) represents the main tool in our comparison results. Sym-
metrization methods have their origin in J. Steiner’s works. The following application
to functional analysis (also called rearrangement) generalizes to Riemannian mani-
folds ideas of G. Talenti [22].

Theorem 3.3 Let (M, g) be a Riemannian manifold and (M∗, g∗, x∗) be a PIMS
for (M, g). Let � ⊂ M be a compact domain with smooth boundary and f be any
smooth nonnegative function on � which vanishes on its boundary. Let f ∗ be the
symmetrization of f , constructed as above on the symmetrized geodesic ball �∗ of
(M∗, g∗), centered at the point x∗. Then

(i) f ∗ is Lipschitz (with Lipschitz constant ‖∇ f ‖L∞) and thus f ∗ lies in
H2

1,c (�∗, g∗);

(ii)
1

Vol(�)

∫
�

f (x)pdvg(x) = 1

Vol(�∗)
∫
�∗ ( f ∗(x))p dvg∗(x) for every p ∈

[1,+∞[;
(iii)

1

Vol(�)

∫
�

‖∇ f (x)‖2dvg(x) ≥ 1

Vol(�∗)
∫
�∗ ‖∇ f ∗(x)‖2dvg∗(x). If, moreover,

(M∗, g∗, x∗) is a strict PIMS for (M, g) then equality holds iff the set { f > 0} ⊂
(�, g) is isometric to the set { f ∗ > 0} ⊂ (�∗, g∗).

On the one hand, the proof of this theorem is classical when � is a domain of R
n

endowed with the Euclidean metric (see e.g. [1, pp. 47–56], [22] and [13]), and it is
natural to believe that Theorem 3.3 can be proved by following the same lines. On
the other hand, there exist proofs of Theorem 3.3 on Riemannian manifolds (see [2,
Chapters IV.A.4–5], [10, Chapter 5, Lemme 5.7] and [17, pp. 176–178]) which are
valid only when f is a Morse function. Specialists of the field are convinced that this
is sufficient (using an approximation of smooth functions by Morse functions and an
analytic compactness argument) to conclude in the case of smooth functions. However
we have not found any place where the above “convincing” arguments are clarified
and where the necessary adaptations of the classical proofs are written: it is the reason
why, in the Appendix (Sect. 5) we provide a proof of Theorem 3.3 which can be viewed
as an adaptation and a simplification of the proof given in [1] for the Euclidean case.
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Maximizing mean exit-time of the Brownian motion 561

Proof of Lemma 1.5: Let f� be the unique solution of (1) on the domain � and let
( f�)∗ be its symmetrization. By (ii) and (iii) of Theorem 3.3 we get

E(�) = E�( f�) = 1

Vol(�)

(
2

∫
�

f� dvg −
∫

�

|∇ f�|2 dvg

)

≤ 1

Vol(�∗)

(
2

∫
�∗

( f�)∗ dvg∗ −
∫

�∗
|∇( f�)∗|2 dvg∗

)
= E�∗

(
( f�)∗

)
.

Let us recall that the mean exit-time from the domain �∗ is the value E(�∗) =
maxu∈H2

1,c(�
∗) (E�(u)). Since by (i) of Theorem 3.3 ( f�)∗ ∈ H2

1,c(�
∗, g∗) it follows

that

E(�∗) ≥ E�∗
(
( f�)∗

) ≥ E(�).

Let us suppose that E(�∗) = E(�), then all the inequalities are equalities, in
particular

∫
�

|∇ f�|2 dvg = α(M, M∗)
∫

�∗
|∇( f�)∗|2 dvg∗

and E�∗ (( f�)∗) = E(�∗). Thus, since the set { f� > 0} coincides with the interior
of �, from the equality case of Theorem 3.3 it follows that �∗ is isometric to �. ��

Proof of Proposition 1.4: As we already noticed in the introduction, the proof can be
deduced immediately from Lemma 1.5. In fact, Definition 2.3 implies that (M, g, x0)

is a PIMS for (M, g) itself in the sense of the Definition 3.1; thus (M, g) and (M∗, g∗)
coincide and the constant α(M, M∗) is equal to 1. ��

4 Proofs of Theorems 1.9 and 1.10

In order to compare mean exit-times for two domains on two different compact man-
ifolds lying in the same class, we have to compare the isoperimetric inequalities on
these two manifolds.

Revisiting Paul Lévy’s work [16] (initially applied to convex bodies in the Euclidean
space), Gromov [11] proved the following celebrated isoperimetric inequality.

Theorem 4.1 For every Riemannian manifold (M, g) whose Ricci curvature satisfies
Ricg ≥ (n − 1)g, for every compact domain with smooth boundary � in M, let �∗ be

a geodesic ball of the canonical sphere (Sn, g0) such that
Vol(�∗, g0)

Vol(Sn, g0)
= Vol(�, g)

Vol(M, g)
,

then

Voln−1(∂�)

Vol(M, g)
≥ Voln−1(∂�∗)

Vol(Sn, g0)
.
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Moreover, this last inequality is an equality if and only if � is isometric to �∗. In other
words, for any x0 ∈ S

n, (Sn, g0, x0) is a strict PIMS for all the Riemannian manifolds
(M, g) which satisfy Ricg ≥ (n − 1)g.

Remark 4.2 The isoperimetric inequality given by Theorem 4.1 is sharp: in fact, as
the canonical sphere (Sn, g0) satisfies Ricg0 = (n − 1)g0, we may apply Theorem 4.1
to the sphere, and then deduce an inequality which is an equality when � is a geodesic
ball of (Sn, g0).

Applying Lemma 1.5 and Theorem 4.1, we obtain:

Corollary 4.3 For every Riemannian manifold (M, g) whose Ricci curvature satisfies
Ricg ≥ (n − 1)g, for every compact domain with smooth boundary � in M, let �∗ be
a geodesic ball of the canonical sphere (Sn, g0) such that Vol(�∗, g0)/Vol(Sn, g0) =
Vol(�, g)/Vol(M, g), then E(�) ≤ E(�∗). Moreover, the equality E(�) = E(�∗) is
realized if and only if � is isometric to �∗.

Remark 4.4 For every K > 0, it is easy to extend Corollary 4.3 to every Riemannian
manifold (M, g) which satisfies Ricg ≥ K (n − 1)g: just replace the canonical sphere
by the sphere of constant sectional curvature K in the statement of Corollary 4.3, apply
Corollary 4.3 to the Riemannian manifold (M, K g) and then use the homogeneity
formula (3).

Remark 4.5 Corollary 4.3 is sharp and answers Questions 1.6 when the class M
under consideration is the class of Riemannian manifolds whose Ricci curvature is
bounded from below by the Ricci curvature of the canonical sphere: in fact, for every
fixed β ∈]0, 1[, let Wβ be the set of all domains �, in all the Riemannian manifolds
(M, g) ∈ M, such that Vol(�, g)/Vol(M, g) = β. It is clear that the the geodesic
ball �∗ of the canonical sphere (Sn, g0) such that Vol(�∗, g0) = βVol(Sn, g0) is
an element of Wβ , and Corollary 4.3 proves that the functional � �→ E(�), when
restricted to the set Wβ , attains its absolute maximum when � = �∗ and that this
maximum is strict. Moreover, Theorem 1.9 proves that, if E(�) is not far from this
maximal value, then M is diffeomorphic to S

n .

Theorem 4.1 was improved and generalized to the case where the Ricci curvature
has any sign by Bérard, Besson and Gallot ([3, Theorem 2] and [10, Theorem 6.16]
for a quantitatively improved version):

Theorem 4.6 For any K ∈ R, a PIMS for all the n-dimensional Riemannian mani-
folds (M, g) which satisfy Ricg ≥ (n −1)K g and diameter(M, g) ≤ D is given by the
Euclidean sphere of radius R(K , D) (PIMS at any point) where R(K , D) is defined
by
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R(K , D) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
K

⎛
⎝

∫ D
√

K
2

0 (cos t)n−1dt∫ π
2

0 (cos t)n−1dt

⎞
⎠

1
n

if K > 0

n
2

(∫ π
2

0 (cos t)n−1dt
)− 1

n
D if K = 0

1√|K | Max

⎛
⎜⎝

∫ D
√|K |

0 (cosh 2t)
n−1

2 dt∫ π

0 (sin t)n−1dt
,

(∫ D
√|K |

0 (cosh 2t)
n−1

2 dt∫ π

0 (sin t)n−1dt

) 1
n

⎞
⎟⎠ if K < 0

In other terms, for every compact domain with smooth boundary � in M, if �∗ is a
geodesic ball on the Euclidean sphere S

n(R(K , D)) of radius R(K , D) and if �∗∗ is
a geodesic ball of the canonical sphere S

n(1) = (Sn, g0) such that

Vol(�∗∗)
Vol(Sn, g0)

= Vol(�∗)
Vol(Sn(R(K , D)))

= Vol(�, g)

Vol(M, g)
,

then

Voln−1(∂�)

Vol(M, g)
≥ Voln−1(∂�∗)

Vol(Sn(R(K , D)))
= 1

R(K , D)

Voln−1(∂�∗∗)
Vol(Sn, g0)

. (5)

Remark 4.7 Let us first remark that the smaller R(K , D) is, the stronger is the
isoperimetric inequality (5). When K > 0, Theorem 4.6 is sharp, because (if we

choose D = π√
K

) the sphere S
n
(

1√
K

)
satisfies its assumptions and the conclu-

sion of Theorem 4.6 in this case is that the isoperimetric inequality (5) is verified

when (M, g) = S
n
(

1√
K

)
. Notice that, in this case, this inequality is indeed an

equality because R(K , D) = R
(

K , π√
K

)
= 1√

K
. Moreover, under the assumptions

“Ricg ≥ (n − 1)K g” and “(M, g) not isometric to S
n
(

1√
K

)
”, Myers’ theorem (and

its equality case) implies that diameter(M, g) < π√
K

, and thus we can apply Theorem

4.6 with the values K = 1 and D < π√
K

of the constants, which implies that, under

these assumptions, R(K , D) < 1√
K

. The isoperimetric inequality (5) is then strictly

stronger than the one of the sphere S
n
(

1√
K

)
.

On the contrary, when K ≤ 0, Theorem 4.6 is not sharp because one always has
diameter (Sn(R(K , D))) > D in this case, and thus the sphere S

n(R(K , D)) does not
satisfy the assumptions of Theorem 4.6.

Corollary 4.8 Let K be an arbitrary real number (of any sign), for any n-dimensional
Riemannian manifold (M, g) which satisfies Ricg ≥ (n−1)K g and diameter(M, g) ≤
D, for every compact domain with smooth boundary � in M, if �∗ is a geodesic ball
on the Euclidean sphere S

n(R(K , D)) and if �∗∗ is a geodesic ball of the canonical
sphere S

n(1) = (Sn, g0) such that
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Vol(�∗∗)
Vol(Sn, g0)

= Vol(�∗)
Vol(Sn(R(K , D)))

= Vol(�, g)

Vol(M, g)
,

then

E(�) ≤ E(�∗) = R(K , D)2 E(�∗∗). (6)

Proof Theorem 4.6 shows that the Euclidean sphere S
n(R(K , D)) of radius R(K , D)

is a PIMS for the Riemannian manifold (M, g). Let � ⊂ M be a compact domain
with smooth boundary, �∗ a geodesic ball on the Euclidean sphere S

n(R(K , D)) of
radius R(K , D) and �∗∗ a geodesic ball of the canonical sphere S

n(1) = (Sn, g0)

such that

Vol(�∗∗)
Vol(Sn, g0)

= Vol(�∗)
Vol(Sn(R(K , D)))

= Vol(�, g)

Vol(M, g)
.

Then Lemma 1.5 gives

E(�) ≤ E(�∗) = R(K , D)2E(�∗∗),

where the last equality is deduced from the fact that the sphere of radius R(K , D) is
isometric to (Sn, R(K , D)2g0) and from formula (3). ��
We now recall an inequality due to G. Perelman [20] (which is an improvement of a
previous result of S. Ilias [12]).

Theorem 4.9 Let (M, g) be a n-dimensional compact Riemannian manifold. Assume
that M is not diffeomorphic to S

n, that Ricg ≥ (n − 1)g and that the sectional
curvature of (M, g) is ≥ −κ2. Then there exists a constant ε(n, κ) > 0 such that
diameter(M, g) ≤ π − ε(n, κ).

Remark 4.10 By applying Theorem 4.6 with the values K = 1 and D = π − ε(n, κ)

of the constants, which implies that, under these assumptions,

R(K , D) = R(1, π − ε(n, κ)) =
⎛
⎝1 −

∫ ε(n,κ)
2

0 (sin t)n−1dt∫ π
2

0 (sin t)n−1dt

⎞
⎠

1
n

, (7)

we observe that, with respect to the isoperimetric inequality of the canonical sphere,
the isoperimetric inequality on (M, g) induced by (5) is improved by some factor
which is bounded away from 1.

Proof of Theorem. 1.9: Applying Theorem 4.6 (with the values K = 1 and D =
diameter(M, g) of the constants) we prove that the Euclidean sphere S

n(R(1, D)) of
radius R(1, D) is a PIMS (at any point) for the Riemannian manifold (M, g). For
every compact domain with smooth boundary � in M , if �0 is a geodesic ball on the
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Euclidean sphere S
n(R(1, D)) of radius R(1, D) and if �∗ is a geodesic ball of the

canonical sphere S
n(1) = (Sn, g0) such that

Vol(�∗)
Vol(Sn, g0)

= Vol(�0)

Vol(Sn(R(1, D)))
= Vol(�, g)

Vol(M, g)
,

then Lemma 1.5 yields

E(�) ≤ E(�0) = R(1, D)2E(�∗), (8)

where the last equality is deduced from the fact that S
n(R(1, D)) is isometric to

(Sn, R(1, D)2g0) and from formula (3). Let us first suppose that (M, g) is not isometric
to (Sn, g0): then Myers’ theorem (and its equality case) implies that diameter(M, g) <

π , and thus that R(1, D) < 1 (if D = diameter(M, g)) by the definition of R(K , D).
Using the fact that R(1, D) < 1 in the inequality (8), we conclude that, if (M, g) is
not isometric to (Sn, g0), then E(�) < E(�∗) for every compact domain with smooth
boundary � in M , which proves the part (i) of Theorem 1.9.

If we now suppose that M is not diffeomorphic to S
n , Theorem 4.9 implies that

the value D = π − ε(n, κ) is a upper bound of the diameter of (M, g). Using the
inequality (8) and formula (7) we get

E(�) ≤
⎛
⎝1 −

∫ ε(n,κ)
2

0 (sin t)n−1dt∫ π
2

0 (sin t)n−1dt

⎞
⎠

2
n

E(�∗)

for every compact domain with smooth boundary � in M , which proves part (ii) of
Theorem 1.9. ��

4.1 Proof of Theorem 1.10:

In the sequel, as in Sect. 3, for any continuous function f , we shall denote by �t the
set of points x ∈ � such that f (x) > t and by A(t) the volume of �t . We first need
the following:

Lemma 4.11 Let (M, g) be a Riemannian manifold. Then, for any compact domain
� ⊂ M and for any nonnegative continuous function f on � which vanishes on ∂�,
one has:

∫
�

f pdvg = p
∫ sup f

0
t p−1 A(t)dt, ∀p ∈ [1,+∞[.

Proof Let ti = i
N sup f (for every i ∈ {0, . . . N }). The function t �→ A(t) = Vol(�t )

being strictly decreasing, we have

N−1∑
i=0

ti (A(ti ) − A(ti+1)) ≤
∫

�

f dvg ≤
N−1∑
i=0

ti+1(A(ti ) − A(ti+1)). (9)
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Let S+
N (resp. S−

N ) denote the right (resp. the left) hand side of (9). This is an approxi-

mation from above (resp. from below) of the integral
∫ sup f

0 A(t)dt . As 0 ≤ S+
N −S−

N ≤
sup f

N A(0), when N → ∞, S+
N − S−

N → 0+ and S+
N , S−

N both go to
∫ sup f

0 A(t)dt (and

to
∫
�

f dvg by (9)). This proves that
∫
�

f dvg = ∫ sup f
0 A(t)dt . Applying this equality

to the function f p and noticing that Vol ({ f p > t}) = Vol
(
{ f > t

1
p }

)
= A

(
t

1
p
)
, we

obtain

∫
�

f pdvg =
∫ (sup f )p

0
A

(
t

1
p

)
dt = p

∫ sup f

0
t p−1 A(t)dt.

��
Proof of Theorem.1.10: For any compact domain � ⊂ M with smooth boundary, let
C( f�) be the set of critical values of f� and S( f�) := f�

(C( f�)
)

be the set of its
singular values; using the definition of E(�), Lemma 4.11 and the fact that S( f�) has
measure zero by Sard’s Theorem, we obtain:

Vol(�) E(�) =
∫

�

f�dvg =
∫

[0,sup f�]\S( f�)

A(t)dt. (10)

For every regular value t of f� one has A(t) ≤ Vol(�) ≤ Vol(M, g)/2 and thus,
by the definition of Cheeger’s isoperimetric constant, Voln−1(∂�t ) ≥ H(M, g)A(t).
From this and from (10) we deduce:

Vol(�) E(�) ≤ 1

H(M, g)

∫
[0,sup f�]\S( f�)

Voln−1(∂�t )dt = 1

H(M, g)

∫
�

|∇ f�|dvg,

where, in the last equality, we have used the coarea formula (11). Thus, by Cauchy–
Schwarz inequality

Vol(�) E(�) ≤ 1

H(M, g)
(Vol(�))

1
2

(∫
�

|∇ f�|2dvg

) 1
2

and hence, since E(�) = 1
Vol(�)

∫
�

|∇ f�|2dvg , one gets (E(�))
1
2 ≤ 1

H(M,g)
which

ends the proof of the theorem. ��

5 Appendix: proof of Theorem 3.3

The main tool for the proof of Theorem 3.3 is the coarea formula (see for instance
[6, pp. 104–107]), which writes, for every measurable function ϕ on a Riemannian
manifold (M, g):

∫
M

ϕ(x) ‖∇ f (x)‖dvg(x) =
∫ sup f

inf f

(∫
f −1({t})

ϕ(x)dat (x)

)
dt . (11)
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Since Federer’s proof (see [9] or [6]), this equation is known to be valid when the
function f : M → R is Lipschitz; however we shall essentially use it when f is
a smooth function12 on a given compact domain with smooth boundary � ⊂ M
vanishing on the boundary of �. As before we denote by �t := { f > t} (resp. by
{ f = t}) the set of points x ∈ � such that f (x) > t (resp. such that f (x) = t), by
S( f ) the (compact) set of critical values (i.e., the image of the compact set of critical
points) of f and by I 0

reg the open set ]0, sup f [\S( f ) of regular values of f . By Sard’s

theorem almost every t ∈ [0, sup f ] belongs to I 0
reg. Thus in formula (11) the integral∫ sup f

inf f must thus be interpreted as the integral on I 0
reg, the set { f = t} is then a smooth

(generally not connected) hypersurface of M , equal to ∂�t and dat is the induced
(n − 1)-dimensional measure of this hypersurface.

Let (M∗, g∗, x∗) be a PIMS for (M, g) (in the sense of Definition 3.1). In the
sequel, we will denote by α the constant α(M, M∗). Let � ⊂ M be any com-
pact domain with smooth boundary (such that Vol(�) < Vol(M, g) ≤ +∞) and
let �∗ = BM∗(x∗, R0) ⊂ M∗ be its “symmetrized domain” in the sense of Defi-
nition 3.1. Given any smooth nonnegative function f on � which vanishes on the
boundary of �, for every t ∈ [0, sup f ], we have defined in Sect. 3 the functions
A(t) := Vol{ f > t} = Vol(�t ) and R(t) (where R(t) is the solution of the equa-
tion Vol[BM∗(x∗, R(t))] = α−1 A(t)) and the geodesic ball �∗

t := BM∗(x∗, R(t))
of (M∗, g∗), which is the symmetrized domain associated to �t . We have also
defined the functions f̄ : [0, R0] → R and f ∗ : �∗ → R

+ by the equalities
f̄ (r) := inf

(
R−1([0, r ])) and f ∗ := f̄ ◦ ρ, where ρ(·) = dM∗(x∗, ·).

Proposition 5.1 The basic properties of the functions f̄ and R are:

(i) R is strictly decreasing and f̄ is decreasing (not strictly in general);
(ii) f̄ (R(t)) = t for every t ∈ [0, sup f ];

(iii) f̄ (0) = sup f̄ = sup f , f̄ = 0 on the interval [R(0), R0];
(iv) f̄ (r) = sup{t : R(t) ≥ r} for every r ∈ [0, R(0)];
(v) t �→ R(t) is continuous on the right at every point t ∈ [0, sup f ];

(vi) { f ∗ > t} = �∗
t = BM∗(x∗, R(t)) for every t ∈ [0, sup f ].

Proof The proofs of (i), (ii) and (iii) are straightforward and left to the reader. Notice
that, for any decreasing sequence (tn)n∈N converging to t , { f > t} is the increasing
union of the { f > tn}’s and thus A(tn) → A(t) and R(tn) → R(t); this proves (v).
By (i) and (ii) one gets (iv):

r < R(t) �⇒ (∃n s. t. r < R(tn) < R(t)) �⇒ f̄ (r) ≥ f̄
(
R(tn))

) = tn > t.

Again by properties (i) and (ii) one obtains f̄ (r) > t �⇒ r < R(t) and we deduce
that { f̄ > t} = [0, R(t)[. Thus { f ∗ > t} = BM∗(x∗, R(t)) = �∗

t and also (vi) is
proved. ��

A less trivial property is expressed by the following:

12 Except at the end of this section, where the coarea formula is applied to a decreasing Lipschitz function
[0, R0] → R.
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Lemma 5.2 f̄ and f ∗ are Lipschitz with Lipschitz constant ‖∇ f ‖L∞ .

Proof As f ∗ := f̄ ◦ρ, it is sufficient to prove the lemma for f̄ . By a classical result of
measure theory, as R : [0, sup f ] → R is a decreasing function which is continuous on
the right, there exists a positive Borel measure μR such that μR(]t, t ′]) = R(t)− R(t ′)
for every t, t ′ ∈ [0, sup f ] such that t ≤ t ′. This measure is the derivative of −R in
the sense of distributions.

As I 0
reg is an open set, for every t ∈ I 0

reg and every sufficiently small h, the interval

[t, t +h] (this notations meaning [t +h, t] when h < 0) is entirely contained in I 0
reg. By

applying formula (11) to the function ϕ = 1
‖∇ f ‖ , which is smooth on f −1([t, t + h]),

one gets:

α
(

Vol
[
BM∗(x∗, R(t))

] − Vol
[
BM∗(x∗, R(t + h))

] )
= A(t) − A(t + h)

=
∫

f −1([t,t+h])
1

‖∇ f (x)‖ ‖∇ f (x)‖ dvg(x) =
∫ t+h

t

(∫
{ f =s}

1

‖∇ f ‖ das

)
ds.

By dividing both sides by h and taking the limit when h → 0, the mean value theorem
implies that R′(t) exists at every t ∈ I 0

reg and satisfies:

α R′(t) Voln−1
[
∂ BM∗(x∗, R(t))

] = −
∫

{ f =t}
1

‖∇ f (x)‖ dat (x). (12)

Let t, t ′ be any points of [0, sup f ] such that t < t ′ and let us denote by I t,t ′
reg the open

set ]t, t ′[\S( f ). By (12) and by the positivity of μR , we get

‖∇ f ‖L∞
(
R(t) − R(t ′)

) ≥ ‖∇ f ‖L∞μR

(
I t,t ′
reg

)
= −‖∇ f ‖L∞

∫
I t,t ′
reg

R′(s)ds

≥
∫

I t,t ′
reg

1

αVoln−1
(
∂�∗

s

)
(∫

f −1({s})
das

)
ds ≥

∫
I t,t ′
reg

Voln−1 (∂�s)

αVoln−1
(
∂�∗

s

)ds ≥ t ′ − t.

For every r ′, r ∈ [0, R0] with r ′ < r and f̄ (r ′) = f̄ (r) we are done. Thus (i) of
Proposition 5.1 allows to suppose that f̄ (r) < f̄ (r ′). Therefore, for every ε such that
0 < ε < 1

2 ( f̄ (r ′) − f̄ (r)), by the definition of f̄ and by (iv) of Proposition 5.1, there
exist t, t ′ ∈ [0, sup f ] such that R(t) ≤ r , t < f̄ (r)+ε, R(t ′) ≥ r ′ and t ′ > f̄ (r ′)−ε.
Using these last inequalities and the previous one, we get

0 < f̄ (r ′) − f̄ (r) − 2ε < t ′ − t ≤ ‖∇ f ‖L∞(R(t) − R(t ′)) ≤ ‖∇ f ‖L∞(r − r ′).

We conclude by making ε → 0+. ��
Lemma 5.2 proves (i) of Theorem 3.3. As f ∗ is Lipschitz, we may apply Lemma

4.11 to both functions f and f ∗ and, for every p ∈ [1,+∞[, we get:

∫
�

f pdvg = p
∫ sup f

0
t p−1 A(t)dt = αp

∫ sup f

0
t p−1 A∗(t)dt = α

∫
�∗

(
f ∗)p

dvg∗ ,
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where A∗(t) := Vol({ f ∗ > t}) = Vol(�∗
t ) = α−1Vol(�t ) = α−1 A(t). This proves

(ii) of Theorem 3.3.
In order to prove (iii) of Theorem 3.3 we apply formula (11) to the function − f̄

(because − f̄ is Lipschitz by Lemma 5.2). This gives13, for any measurable function
ϕ : [0, R0] → R,

∫
[0,R0]

ϕ(r)| f̄ ′(r)|dr =
∫

[0,sup f ]

⎛
⎝ ∑

r∈ f̄ −1({t})
ϕ(r)

⎞
⎠ dt =

∫
I 0
reg

ϕ(R(t))dt,

where the last equality is a consequence of (ii) of Proposition 5.1 and of the fact that
f̄ is decreasing everywhere and strictly decreasing when restricted to the open set
R
(
I 0
reg)

)
[because the restriction of R to I 0

reg is a derivable, open, strictly decreasing
map by (i) of Proposition 5.1 and equality (12)]. Denoting Voln−1

[
∂ BM∗(x∗, r)

]
by

Vn−1(r), integrating with respect to the normal coordinates centered at x∗ on (M∗, g∗)
and then applying the previous equality (where we replace ϕ(r) by − f̄ ′(r)Vn−1(r)),
we obtain:

∫
�∗

‖∇ f ∗(x)‖2dvg∗(x) =
∫ R0

0
| f̄ ′(r)|2Vn−1(r)dr =

∫
I 0
reg

| f̄ ′(R(t))|Vn−1(R(t))dt

=
∫

I 0
reg

Voln−1(∂�∗
t )

|R′(t)| dt =
∫

I 0
reg

αVoln−1(∂�∗
t )

2∫
{ f =t}

1
‖∇ f ‖dat

dt, (13)

where we made use of (ii) of Proposition 5.1 to prove the third equality and of equality
(12) to prove the last equality.

On the other hand, applying the coarea formula (11) to the function f , replacing in
this formula the integrand ϕ(x) by ‖∇ f (x)‖ and using Cauchy-Schwarz inequality,
we obtain:

∫
M

‖∇ f (x)‖2 dvg(x) =
∫

I 0
reg

(∫
∂�t

‖∇ f ‖dat

)
dt ≥

∫
I 0
reg

Voln−1(∂�t )
2∫

{ f =t}
1

‖∇ f ‖dat
dt

≥
∫

I 0
reg

α2Voln−1(∂�∗
t )

2∫
{ f =t}

1
‖∇ f ‖dat

dt ≥ α

∫
�∗

‖∇ f ∗(x)‖2dvg∗(x),

(14)

where the last inequality can be deduced from (13) and where the second inequality is
a consequence of the assumption that (M∗, g∗, x∗) is a PIMS for (M, g). This proves
the inequality (iii) of Theorem 3.3.

13 In the present 1−dimensional case, the coarea formula is much more simple to prove: in fact, by the
Rademacher theorem − f̄ , being Lipschitz by the Lemma 5.2, is a. e. differentiable; moreover its derivative
(in the sense of distributions) is a nonnegative measure μ f̄ = f̄ ′(r) dr (of bounded density with respect to

the Lebesgue measure dr ) which is the pulled back by − f̄ of the Lebesgue measure of [0, sup f ], because
μ f̄ (]r, r ′[) = f̄ (r) − f̄ (r ′).
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Finally, let us assume that this inequality is an equality then, in (14), all inequalities
are equalities, in particular Voln−1(∂�t ) = αVoln−1(∂�∗

t ) for every t ∈ I 0
reg and, if

(M∗, g∗, x∗) is a strict PIMS for (M, g), this implies that �t is isometric to �∗
t . As

{ f > 0} is the increasing union of the sets { f > tn} when tn ∈ I 0
reg and tn → 0+, we

have proved that �0 = { f > 0} is isometric to its symmetrized domain �∗
0 = { f ∗ >

0}. This concludes the proof of Theorem 3.3.
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