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Abstract The classical summability theory can not be used in the topological spaces
as it needs addition operator. Recently some authors have studied the summability
theory in the topological spaces by assuming the topological space to have a group
structure or a linear structure or introducing some summability methods those do
not need a linear structure in the topological space as statistical convergence and
distributional convergence. In the present paper we introduce a new concept of density
and we study the summability theory in an arbitrary Hausdorff space by introducing
a new type of statistical convergence and distirbutional convergence via Abel method
that is a sequence-to-function transformation. Moreover we give a Bochner integral
representation of Abel-summability in the Banach spaces.

Keywords Abel-distributional convergence · Abel-density · Hausdorff spaces ·
Abel summability
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1 Preliminaries

The classical summability theory can not be used in the topological spaces as it needs
addition operator. Recently some authors have studied summability theory in the topo-
logical spaces by assuming the topological space to have a group structure or a linear
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structure or introducing some summability methods those do not need a linear struc-
ture in the topological space as statistical convergence and distributional convergence
[4–6,9,16–19,22]. One of the main aims of the present paper is to study the summa-
bility theory in an arbitrary Hausdorff topological space by introducing a new type
of statistical convergence and distributional convergence via Abel method that is a
sequence-to-function transformation.

A-statistical convergence, one of the main concepts of the summability theory,
has been studied by several authors for scalar sequences [2,3,8,11–13,20]. Recently
some authors have dealt with this concept in the Hausdorff topological spaces [4,22].
Moreover some topological definitions and results for the space of all real numbers
have been given via Abel convergence in [7] and some Tauberian theorems in the
distributional sense for power series where Cesàro summability follows from Abel
summability can be found in [10]. In the present paper by defining Abel-statistical
convergence not only do we study summability theory in the Hausdorff topological
spaces but also we give a new type of convergence method that is stronger than
statistical convergence.

Now we recall the A-summability and A-density concepts those are closely linked
to A-statistical convergence.

Let A = (ank) be a summability matrix and let z = (zk) be a real valued sequence.
If the sequence (Az)n = ∑∞

k=0ankzk exists, i.e., the series
∑∞

k=0ankzk is convergent
for each n ∈ N0 then we say that Az is the A-transformation of z where N0 is the
set of all nonnegative integers. If the sequence Az converges to a number L then
we say that z is A-summable to L . A summability matrix A is said to be regular if
limn→∞(Az)n = L whenever limk→∞ zk = L . The following theorem characterizes
the regular matrices:

Theorem 1 A summability matrix A = (ank) is regular if and only if:

(i) supn
∑

k |ank | < ∞,

(ii) limn
∑

kank = 1,
(iii) ak := limn→∞ ank = 0 for all k ∈ N0 [1].

Let A = (ank) be a nonnegative regular summability matrix. Then A-densi ty of
E ⊆ N0 is given by

δA(E) := lim
n→∞

∑

k∈E
ank

whenever the limit exists [2,3,12]. If A = C1 then we say E has natural density δ(E)

instead of A-density where C1 = (cnk) is a summability matrix defined as

cnk =
{ 1

n+1 , 0 ≤ k ≤ n
0, otherwise

.

Let (X, τ ) be a Hausdorff topological space and let A = (ank) be a nonnegative
summability matrix such that each row adds up to one. Then a sequence x = (xk) in
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X is said to be A-statistically convergent to α ∈ X if for any open set U that contains
α,

lim
n→∞

∑

xk /∈U
ank = 0

i.e., the A-density of the set E(U ) := {k : xk /∈ U } is zero or equivalently χE(U ) that
is the characteristic sequence of E(U ) is A-summable to zero. If A = C1 then x is
said to be statistically convergent to α.

Now we recall the Abel method and then we define the Abel-density concept:
Let z = (zk) be a real valued sequence. If the series

∞∑

k=0

zk y
k

converges for all y ∈ (0, 1) and

lim
y→1−(1 − y)

∞∑

k=0

zk y
k = L (1.1)

then we say that z is Abel convergent to L [15]. The Abel-density of E ⊆ N0 is given
by

μ(E) := lim
y→1−(1 − y)

∑

k∈E
yk

whenever the limit exists. Since

1

1 − y
=

∞∑

k=0

yk

for |y| < 1 it is obvious that μ(N0) = 1. In the present paper we also deal with the
existence of Abel-density of sets by using spliced sequences.

Let (X, τ ) be a Hausdorff topological space. Then a sequence x = (xk) in X is said
to be Abel-statistically convergent to α ∈ X if for any open set U that contains α,

lim
y→1−(1 − y)

∑

xk /∈U
yk = 0

i.e., the Abel-density of the set E(U ) is zero or equivalently χE(U ) is Abel-convergent
to zero. Now we recall the following theorem of Powell and Shah [15]:

Theorem 2 If a real valued sequence is C1-summable then it is Abel-convergent to
the same value (but not conversely).
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Remark 1 AsAbel summability is stronger thanC1-summability the following results
hold immidately:

(i) If the natural density of a set E ⊂ N0 exists then the Abel-density of it exists as
well. More precisely if A-density of a set E ⊂ N0 exists then Abel density of it
exists where A is a nonnegative summability matrix such that Abel-summability
is stronger than A-summability.

(ii) A sequence in a Hausdorff topological space is Abel-statistically convergent
whenever it is statistically convergent. Indeed a sequence in a Hausdorff space
is Abel-statistically convergent whenever it is A-statistically convergent where
A is a nonnegative summability matrix such that each row adds up to one and
Abel-summability is stronger than A-summability.

Example 1 As the set E = {
k = n2 : n ∈ N0

}
has zero natural density it has zero

Abel-density as well.

Example 2 Let E = {2k : k ∈ N0} . Since
1

1 − y
= ∑∞

k=0y
k for |y| < 1, we get

lim
y→1−(1 − y)

∑

k∈E
yk = lim

y→1−(1 − y)
∞∑

k=0

y2k

= lim
y→1−(1 − y)

1

1 − y2

= lim
y→1−

1

1 + y

= 1

2

which implies μ(E) = 1/2.

The following example shows that there exist some sets those do not have Abel-
density.

Example 3 Let D be the set of all real valued sequences z = (zn) such that for all
n ∈ N0 0 < zn < 1 and limn→∞ zn = 1 and let B ={

B(z) = (bnk) : bnk =
(1 − zn)zkn, z ∈ D

}
. Using Theorem 1 it is not difficult to see that each matrix in B

is regular whose each row adds up to one. Now take a fixed z ∈ D. By a theorem of
Steinhaus [21], there exists a sequence t = (tk) consisting of 0’s and 1’s that is not
B(z)-summable. Thus the limit

lim
n→∞(1 − zn)

∞∑

k=0

tk z
k
n

does not exist which implies the limit

lim
y→1−(1 − y)

∞∑

k=0

tk y
k
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does not exist. Now if we consider the set E ⊂ N0 defined by

E = {k ∈ N0 : tk = 1}

we get

lim
y→1−(1 − y)

∑

k∈E
yk = lim

y→1−(1 − y)
∞∑

k=0

tk y
k

which implies μ(E) does not exist.

2 Abel distributional convergence and Abel density

Osikiewicz [14] has studied the existence of the A-densities of sets by using spliced
real sequences. Recently Unver et al. [22] have given a characterization of A-statistical
convergence in the Hausdorff topological spaces via A-distributional convergence and
they have studied the existence of the densities of sets of a partition as well. Let (X, τ )

be a Hausdorff topological space and let σ(τ) be the Borel sigma field of subsets of
(X, τ ). Consider a set function F : σ(τ) → [0, 1] such that F(X) = 1 and if G0,

G1, . . . are disjoint sets in σ(τ) then

F

⎛

⎝
∞⋃

j=0

G j

⎞

⎠ =
∞∑

j=0

F(G j ).

Such a function is called a distribution on σ(τ). Recall the following definition:

Definition 1 Let F be a distribution on σ(τ) and let A = (ank) be a nonnegative
summability matrix whose each row adds up to one and let x = (xk) be a sequence
in X . Then the sequence x is said to be A-distributionally convergent to F if for all
G ∈ σ(τ) with F(∂G) = 0 we have

lim
n→∞

∑

xk∈G
ank = F(G)

where ∂G is the boundary of G [22].

The following definition is the Abel type analog of Definition 1:

Definition 2 Let F be a distribution on σ(τ) and let x = (xk) be a sequence in X .
Then the sequence x is said to be Abel-distributionally convergent to F if for all
G ∈ σ(τ) with F(∂G) = 0 we have

lim
y→1−(1 − y)

∑

xk∈G
yk = F(G).
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Now we give a characterization of Abel-statistical convergence and then we study
the existence of Abel-densities of sets.

Theorem 3 Let X be a Hausdorff topological space and let x = (xk) be a sequence
in X. Then x is Abel-statistically convergent to α ∈ X if and only if it is Abel-
distributionally convergent to F : σ(τ) → [0, 1] defined by

F(G) =
{
0, if α /∈ G
1, if α ∈ G

.

Proof Let x be an Abel-statistically convergent sequence to α. Then for any open set
U that contains α we have

lim
y→1−(1 − y)

∑

xk /∈U
yk = 0

Thus for each z ∈ D

lim
n→∞(1 − zn)

∞∑

k=0

zkn = 0

which implies x is B(z)-statistically convergent to α for each B(z) ∈ B. Therefore
from Proposition 1 of [22] for each B(z) ∈ B it is B(z)-distributionally convergent
to F which implies x is Abel-distributionally convergent to F . Conversely let x be
an Abel-distributionally convergent sequence to F. Then for all B(z) ∈ B, x is B(z)-
distributionally convergent to F.Thus fromProposition 1 of [22] it is B(z)-statistically
convergent to α which implies x is Abel-statistically convergent to α. �	

Now we recall some definitions (see [14]):

Definition 3 LetM be afixedpositive integer.AnM-partition ofN0 consists of infinite
sets Ki = {ϑi ( j)} for i = 0, 1, . . . , M−1 such that

⋃M−1
i=0 Ki = N0 and Ki ∩K j = ∅

for all i �= j . An ∞-partition on N0 consists of a countably infinite number of infinite
sets Ki = {ϑi ( j)} for i ∈ N0 such that

⋃∞
i=0 Ki = N0 and Ki ∩K j = ∅ for all i �= j.

Definition 4 Let {Ki : i = 0, 1, . . . , M − 1} be a fixed M-partition of N0, let x (i) =(
x (i)
j

)
be a sequence in X with lim j→∞ x (i)

j = αi , i = 0, 1, . . . , M − 1. If k ∈ Ki ,

then k = ϑi ( j) for some j . Define x = (xk) by xk = xϑi ( j) = x (i)
j . Then x is called

an M-splice over {Ki : i = 0, 1, . . . , M − 1} with limit points α0, α1, . . . , αM−1.

Definition 5 Let {Ki : i ∈ N0} be a fixed ∞-partition of N0, let x (i) =
(
x (i)
j

)
be

a sequence in X with lim j→∞ x (i)
j = αi , i ∈ N0. If k ∈ Ki , then k = ϑi ( j) for

some j . Define x = (xk) by xk = xϑi ( j) = x (i)
j . Then x is called an ∞-splice over

{Ki : i ∈ N0} with limit points α0, α1, . . . , αM , . . ..

123
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Theorem 4 Let X beaHausdorff topological spaceand let {Ki : i=0, 1, . . . , M − 1}
be an M-partition of N0. Then the following statements are equivalent:

(i) μ(Ki ) exists for all i = 0, 1, . . . , M − 1.
(ii) There exist p0, p1, . . . , pM−1 ∈ [0, 1] such that

∑M−1
i=0 pi = 1 and

any M-spliced sequence over {Ki : i = 0, 1, . . . , M − 1} with limit points
α0, α1, . . . , αM−1 is Abel-distributionally convergent to the distribution F :
σ(τ) → [0, 1] where

F(G) =
∑

0≤i≤M−1
αi∈G

pi , for all G ∈ σ(τ).

(iii) There exist p0, p1, . . . , pM−1 ∈ [0, 1] such that
∑M−1

i=0 pi = 1 and the M-
splice of x (0), x (1), . . . , x (M−1) over {Ki : i = 0, 1, . . . , M − 1} where x (i) =
(αi , αi , . . .) being a constant sequence, is Abel-distributionally convergent to
the distribution F : σ(τ) → [0, 1] where

F(G) =
∑

0≤i≤M
αi∈G

−1

pi , f or all G ∈ σ(τ).

Proof i�⇒ ii:Asume thatμ(Ki ) exists for each i = 0, 1, . . . , M−1.Let pi = μ(Ki )

for i = 0, 1, . . . , M − 1. Since {Ki : i = 0, 1, . . . , M − 1} is an M-partition of N0 it
is obvious that

1 =
M−1∑

i=0

μ(Ki ) =
M−1∑

i=0

pi .

Let F : σ(τ) → [0, 1] be a set function defined by

F(G) =
∑

0≤i≤M
αi∈G

−1

pi , for all G ∈ σ(τ).

It is not difficult to see that F is a distribution on σ(τ). Now it is enough to
show that x is Abel-distributionally convergent to the distribution F. For each
i = 0, 1, . . . , M − 1 the existence of μ(Ki ) implies that for each B(z) ∈ B and
each i = 0, 1, . . . , M − 1, δB(z)(Ki ) exists and equals to μ(Ki ). Since for each
i = 0, 1, . . . , M − 1, pi = μ(Ki ) = δB(z)(Ki ) from Theorem 1 of [22] for each
B(z) ∈ B, x is B(z)-distributionally convergent to F i.e for each z ∈ D and for all
G ∈ σ(τ) with F(∂G) = 0

lim
n→∞(1 − zn)

∑

xk∈G
zkn = F(G)
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640 M. Ünver

which implies

lim
y→1−(1 − y)

∑

xk∈G
yk = F(G).

Thus x is Abel-distributionally convergent to F .
ii�⇒ iii: Since x (i) = (αi , αi , . . .) is convergent for all i = 0, 1, . . . , M − 1 the

proof follows immediately.
iii�⇒ i: Assume that there exist p0, p1, . . . , pM−1 ∈ [0, 1] such that ∑M−1

i=0 pi =
1 and the sequence x that is the M-splice of x (0), x (1), . . . , x (M−1) over {Ki :
i = 0, 1, . . . , M − 1} where x (i) = (αi , αi , . . .) being a constant sequence, is
Abel-distributionally convergent to the distribution F. Then for each B(z) ∈ B,
x is B(z)-distributionally convergent to F . Then from Theorem 1 of [22] for each
i = 0, 1, . . . , M − 1 and for each B(z) ∈ B δB(z)(Ki ) exists and equals to pi which
implies

lim
n→∞(1 − zn)

∑

k∈Ki

zkn = pi .

Thus for each i = 0, 1, . . . , M − 1

μ(Ki ) = lim
y→1−(1 − y)

∑

k∈Ki

yk = pi

which concludes the proof. �	

The following theorem characterizes the sigma additivity of Abel-densities of an
infinite partition.

Theorem 5 Let X be a Hausdorff topological space and let {Ki = {ϑi ( j)} : i ∈ N0}
be an ∞-partition of N0. Then μ(Ki ) exists for all i ∈ N0 and

∑∞
i=0 μ(Ki ) = 1 if

and only if there exist pi ∈ [0, 1] for i ∈ N0 such that
∑∞

i=0 pi = 1 and any ∞-
splice sequence over {Ki : i ∈ N0}with limit pointsα1, α2, . . . is Abel-distributionally
convergent to the distribution F : σ(τ) → [0, 1] where

F(G) =
∑

αi∈G
pi , for all G ∈ σ(τ).

Proof Assume that μ(Ki ) exists for each i ∈ N0. Then for each i ∈ N0 and for each
B(z) ∈ B, δB(z)(Ki ) exists and equals to μ(Ki ). Thus we have for each i ∈ N0 and
B(z) ∈ B that

∞∑

i=0

δB(z)(Ki ) = 1.
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FromTheorem2of [22] for each B(z) ∈ Bweget that any∞-splice sequence x = (xk)
over {Ki : i ∈ N0} with limit points α1, α2, . . . is B(z)-distributionally convergent to
the distribution F : σ(τ) → [0, 1] where

F(G) =
∑

αi∈G
δB(z)(Ki ) =

∑

αi∈G
μ(Ki ), for all G ∈ σ(τ)

i.e., for all G ∈ σ(τ) with F(∂G) = 0

lim
n→∞(1 − zn)

∑

xk∈G
zkn = F(G)

for each z ∈ D. Hence for all G ∈ σ(τ) with F(∂G) = 0

lim
y→1−(1 − y)

∑

xk∈G
yk = F(G)

which implies x is Abel-distributionally convergent to F.

Conversely assume that there exist pi ∈ [0, 1] for i ∈ N0 such that
∑∞

i=0 pi = 1
and any ∞-splice sequence over {Ki : i ∈ N0} with limit points α1, α2, . . . is Abel-
distributionally convergent to F. Then for all G ∈ σ(τ) with F(∂G) = 0

lim
y→1−(1 − y)

∑

xk∈G
yk = F(G).

Therefore for all G ∈ σ(τ) with F(∂G) = 0 we have

lim
n→∞(1 − zn)

∑

xk∈G
zkn = F(G) (2.1)

for each z ∈ D. Then from Theorem 2 of [22] and equality (2.1) imply for each
B(z) ∈ B and for all i ∈ N0, δB(z)(Ki ) exists and equals to pi with

∞∑

i=0

pi = 1.

Thus for each z ∈ D and for all i ∈ N0

lim
n→∞(1 − zn)

∑

k∈Ki

zkn = pi

which implies

μ(Ki ) = lim
y→1−(1 − y)

∑

k∈Ki

yk = pi

for all i ∈ N0. Hence μ(Ki ) exists for all i ∈ N0 and
∑∞

i=0 μ(Ki ) = 1. �	
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In [22] Unver et al. have given a Bochner integral representation of A-limits of the
spliced sequences in the Banach spaces. Our final theorem gives a similar result for
the Abel-limits of the spliced sequences. Of course we use the result of [22].

Theorem 6 Let (X, ‖·‖) be a Banach space,and let {Ki = {ϑi ( j)} : i ∈ N0} be an
∞-partition of N0. If μ(Ki ) exists for all i ∈ N0 and

∑∞
i=0 μ(Ki ) = 1 then for any

bounded ∞-spliced sequence x = (xk) over {Ki : i ∈ N0}

lim
y→1−

∞∑

k=0

xk y
k =

∫

X

tdF (2.2)

where F is a distribution defined by

F(G) =
∑

αi∈G
μ(Ki ), for all G ∈ σ(τ).

and the integral in (2.2) is the Bochner integral.

Proof Assume that μ(Ki ) exists for all i ∈ N0 and
∑∞

i=0 μ(Ki ) = 1. Then for each
B(z) ∈ B and for all i ∈ N0, δB(z)(Ki ) exists and equals to μ(Ki ) with

∞∑

i=0

δB(z)(Ki ) = 1.

Then from Proposition 2 of [22] we have for any bounded ∞-spliced sequence x =
(xk) over {Ki : i ∈ N0}

lim
n→∞(1 − zn)

∞∑

k=0

xkz
k
n =

∫

X

tdF (2.3)

for each B(z) ∈ B where F is a distribution defined by

F(G) =
∑

αi∈G
δB(z)(Ki ) =

∑

αi∈G
μ(Ki ). (2.4)

Hence from equalities (2.3) and (2.4) we have

lim
y→1−

∞∑

k=0

xk y
k =

∫

X

tdF

which concludes the proof. �	
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