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Abstract Let X be an infinite-dimensional Banach space. In 1995, settling a long
outstanding problem of Pettis, Dilworth and Girardi constructed an X -valued Pettis
integrable function on [0, 1] whose primitive is nowhere weakly differentiable. Using
their technique and some new ideas we show that ND, the set of strongly measurable
Pettis integrable functions with nowhere weakly differentiable primitives, is lineable,
i.e., there is an infinite dimensional vector space whose nonzero vectors belong toND.

Keywords Pettis integral · Nowhere differentiable · Dvoretzky’s theorem ·
Lineable · Spaceable
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1 Introduction

Throughout this note X is an infinite dimensional Banach space. For X -valued func-
tions there are essentially two distinct notions of integration: the Bochner integral
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346 B. Bongiorno et al.

and the Pettis integral. The latter one includes properly the Bochner integral and pre-
serves some of its good properties, e.g, countable additivity and absolute continuity
of the indefinite integral, and convergence theorems. For X -valued functions on [0, 1]
the Bochner indefinite integral is almost everywhere differentiable. As Pettis himself
pointed out [1], the same property is not enjoyed by the Pettis integral. An interesting
problem left open in [1] was whether the indefinite Pettis integral of a strongly mea-
surable Pettis integrable function f is almost everywhere weakly differentiable (that
is, does there exist a set E ⊂ [0, 1] of full measure such that

∫ t
0 x

∗ f is differentiable
to x∗ f for each t ∈ E and for each x∗ in the dual of X ).

After a string of partial results beginning 1940 ([2–5]), this problem was settled
decisively and beautifully in 1995 by Dilworth and Girardi [6]. They exhibited that
every infinite dimensional Banach-space admits a Pettis integrable function from [0, 1]
into X whose primitive is nowhere weakly differentiable. Their proof is rather flexible
and gives the impression that there are many such functions. How does one make
such a statement precise? One possibility is to show that in the space of all strongly
measurable function from [0, 1] into X , the set of Pettis integrable functions with
nowhere weakly differentiable primitive is a dense Gδ set. This was done by Popa
[7] in 2000. The topology one uses in this setting is the topology generated by the
Pettis norm. The shortcoming of this method is that the Pettis norm is not complete
[2]. Hence, proving that the set of Pettis integrable functions with nowhere weakly
differentiable primitive is a dense Gδ set loses some of its significance.

An alternate notion of bigness in Banach space was introduced by Gurariy [8]
and followed up in [9–11]. This notion of bigness is of algebraic nature. If X is a
Banach space then a subset M of X is lineable if M ∪ {0} contains an infinite dimen-
sional vector space. If, moreover, this infinite dimensional vector space is closed in
the norm topology, then M is said to be spaceable. During the last twenty years many
classical, pathological subsets of Banach spaces have been shown to be lineable or
spaceable. What is surprising is that most of these sets are far from being vector
spaces. For example, Gurariy [12] showed that the space of continuous nowhere dif-
ferentiable functions on [0, 1] is lineable. The spaceability of this set was shown in
[13]. Roderíguez-Piazza [14] showed that every separable Banach space is isometric to
a subspace of C[0, 1] whose every non-zero element is nowhere differentiable. Later
this result was strengthened by Hencl [15] who showed that one can replace “nowhere
differentiable” by “nowhere approximately differentiable and nowhere Hölder func-
tion”. More recently, the spaceability of nowhere integrable functions was shown by
Glab, Kaufman and Pellegrini [16]. For a survey of results concerning lineability and
spaceability as well as many interesting results and open problems, we refer the reader
to the following recent [17,18].

In this paper we study, from the viewpoint of lineability, the set of strongly measur-
able Pettis integrable functions whose Pettis integral is nowhere weakly differentiable.
We show (Theorem 2.2) that for every infinite dimensional Banach-space X there is
a linearly independent set V of strongly measurable Pettis integrable X -valued func-
tions, satisfying the property that V has the cardinality of the continuum and for each
sequence {λk} ∈ �1 and each sequence of { fk} in V , the function f = ∑∞

k=1 λk fk
is Pettis integrable and its primitive is nowhere weakly differentiable, provided that
it is not the zero function. Hence, the lineability of ND follows. Our techniques use
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Lineability of non-differentiable Pettis primitives 347

ideas of Dilworth and Girardi as well as some interesting applications of the Dvoret-
zky’s theorem and some basic tools of infinite combinatorics. The following problems
remain open.

Problem 1.1 Is ND spaceable?

If the answer to the above questions is yes, can more be shown?

Problem 1.2 Let X be an infinite dimensional Banach space. Can every separable
Banach space be isometrically embedded into ND ∪ {0}?

The paper is organized as follows: Sect. 2 contains definitions and some basic facts
concerning vector-valued integration. The main result of this article, Theorem 2.2, is
also stated there. The rest of the paper concerns the proof of this theorem. We have
decided to give proof of the main results in two parts. In Sect. 3 we give a proof in the
case when X = �2. The reason for giving a separate proof for �2 is that this case does
not use Dvoretzky’s Theorem. Hence, the combinatorics and the estimates are easier
to follow. Building up on the notation, ideas and techniques of Sect. 3, in Sect. 4 we
give the proof of the general case.

2 Basic facts

Throughout X is a infinite dimensional Banach space and X∗ is its dual space. [0, 1]
is the unit interval of the real line equipped with the Lebesgue measure λ. By L we
denote the family of all Lebesgue measurable subsets of [0, 1].

We recall that a strongly measurable function f : [0, 1] → X is said to be Bochner
integrable in [0, 1] if ∫ 1

0 || f || < ∞. A function f : [0, 1] → X is said to be Pettis
integrable in [0, 1] if x∗ f ∈ L1 for all x∗ ∈ X∗ and for each E ∈ L there exists a
vector xE ∈ X such that x∗(xE ) = ∫

E x∗ f , for all x∗ ∈ X∗. We write xE = (P)
∫
E f

and we call it the Pettis integral of f over E . Moreover we call Pettis primitive or
simple primitive of f the function F(t) = (P)

∫ t
0 f . We refer the reader to [19] for

basic theory of vector-valued integration.
We use P (resp. B) to denote the set of all strongly measurable Pettis integrable

(resp. Bochner integrable) functions from [0, 1] into X . Recall that B � P .
We have the following basic fact.

Lemma 2.1 (see [20, Corollary 5.1]) Let f : [0, 1] → X be defined by

f =
∞∑

k=1

xkχAk

where {Ak} is a sequence of pairwise disjoint sets of L and {xn} a sequence in X.

(1) f ∈ B iff
∑∞

k=1 ‖xk‖λ(Ak) < ∞.
(2) f ∈ P is Pettis integrable iff

∑∞
k=1 xkλ(Ak) is unconditionally convergent in X.

Moreover, if either of the integrals exists, then it equals
∑∞

k=1 xkλ(Ak).

The following is the main theorem of this article.
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348 B. Bongiorno et al.

Theorem 2.2 There exists a set V ⊂ P such that

(1) V is the size of the cardinality of the continuum,
(2) V is linearly independent,
(3) for each sequence {λk} ∈ �1 and a sequence of { fk} in V we have that

f =
∞∑

k=1

λk fk

is in P , and
(4) moreover, if f is not the zero function, then the primitive F of f , has the property

that for all x ∈ [0, 1], we have

lim sup
h→0

∥
∥
∥
∥
F(x + h) − F(x)

h

∥
∥
∥
∥ = ∞

3 The case X = �2

The proof in the case of X = �2 is simpler and does not make a use Dvoretzky’s
theorem. We present this proof first to give the general idea. We will then prove the
general case.

We now introduce some terminology and notation necessary for the proof.
By {0, 1}∞, {0, 1}<∞ we denote the set of all infinite and the set of all finite

(including the empty) sequences of {0, 1}, respectively. For each σ ∈ {0, 1}<∞, we
let |σ | denote the length of σ and σ i , i ∈ {0, 1}, denote the extension of σ by i . If
σ ∈ {0, 1}<∞ ∪{0, 1}∞, and |σ | ≥ i , then σ|i denotes the restriction of σ to the first i
terms. If τ ∈ {0, 1}<∞, then [τ ] denotes the set of σ ∈ {0, 1}<∞ which are extension
of τ , namely the set of all σ ∈ {0, 1}<∞ such that σ|i = τ where i = |τ |. We let

B = {(σ, i)|σ ∈ {0, 1}<∞, 0 ≤ i ≤ |σ |}.

For each σ ∈ {0, 1}<∞, we define a closed interval Iσ ⊆ [0, 1] of length 2−|σ |
recursively in the following fashion: If σ is the empty sequence, then Iσ = [0, 1]. In
general, if Iσ is defined then Iσ0 is the left half of Iσ and Iσ1 is the right half of Iσ .

Using the fact that there are nowhere dense sets of positive measure, we obtain a
collection {A(σ, i) : (σ, i) ∈ B} such that the following conditions hold:

• each A(σ, i) is a closed subset of Iσ ,
• λ(A(σ, i)) > 0, and
• if (σ, i) �= (τ, j), then A(σ, i) ∩ A(τ, j) = ∅.
We also enumerate the standard orthonormal basis of �2 as {e(σ, i) : (σ, i) ∈ B} so

the following conditions hold:

• each of e(σ, i) is of the form (0, . . . , 1, 0, . . .), and
• e(σ, i) ⊥ e(τ, j) if (σ, i) �= (τ, j).
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Lineability of non-differentiable Pettis primitives 349

Let c(σ, i) ∈ R for (σ, i) ∈ B. Then, using these coefficients we define a special
type of function as below:

f =
∑

(σ,i)∈B
c(σ, i) · 1

λ(A(σ, i))
· e(σ, i) · χA(σ,i).

Functions of these type will be called basic functions.
If τ ∈ {0, 1}<∞ and f is as above, we define

f|τ =
∑

(σ,i)∈B, σ∈[τ ]
c(σ, i) · 1

λ(A(σ, i))
· e(σ, i) · χA(σ,i).

We will freely use the following facts about basic functions.

Lemma 3.1 Let

f =
∑

(σ,i)∈B
c(σ, i) · 1

λ(A(σ, i))
· e(σ, i) · χA(σ,i).

Then,

(1) f ∈ P iff
∑

(σ,i)∈B c(σ, i)2 < ∞. Moreover, in the case that f ∈ P , we have
that

∥
∥
∥
∥

∫

[0,1]
f

∥
∥
∥
∥ =

√ ∑

(σ,i)∈B
c(σ, i)2

(2) If I, J are subintervals of [0, 1] with I ⊆ J , then

∥
∥
∥
∥

∫

I
f

∥
∥
∥
∥ ≤

∥
∥
∥
∥

∫

J
f

∥
∥
∥
∥ .

(3) If τ ∈ {0, 1}<∞, then

∥
∥
∥
∥

∫

Iτ
f

∥
∥
∥
∥ ≥

∥
∥
∥
∥

∫

Iτ
f|τ

∥
∥
∥
∥ =

√ ∑

(σ,i)∈B, σ∈[τ ]
c(σ, i)2.

Proof (1) follows from Lemma 2.1 and from the fact that the standard base in l2 is
unconditional (see [21]). (2) and (3) follow from the fact that

∫

I
f =

∑

(σ,i)∈B
c(σ, i) · e(σ, i) · λ(A(σ, i) ∩ I )

λ(A(σ, i))

��
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We let

D = {n|n : N → N,n(i) ≤ i}.

For each n ∈ D, we define a special type of basic function. Namely, let f (n) :
[0, 1] → �2 be defined as

f (n) =
∞∑

k=0

∑

σ∈{0,1}k

1

(k + 1)2k/2
· 1

λ(A(σ,n(k)))
· e(σ,n(k)) · χA(σ,n(k)).

Lemma 3.2 For eachn ∈ D, we have that f (n) is Pettis integrable and for τ ∈ {0, 1}i ,
we have that

∥
∥
∥
∥

∫

Iτ
f (n)|τ

∥
∥
∥
∥ = 2−i/2

√√
√
√

∞∑

k=i

1

(k + 1)2
.

Lemma 3.3 Let {λi } be a sequence in �1 and { fi } be such that fi = f (ni ) for some
ni ∈ D. Then,

f =
∞∑

i=1

λi fi ∈ P and ∀τ ∈ {0, 1}<∞,

∥
∥
∥
∥

∫

Iτ
f|τ

∥
∥
∥
∥ ≤

∞∑

i=1

|λi |
∥
∥
∥
∥

∫

Iτ
fi |τ

∥
∥
∥
∥.

Proof We will show that f is Pettis integrable and

∥
∥
∥
∥

∫

[0,1]
f

∥
∥
∥
∥ ≤

∞∑

i=1

|λi |
∥
∥
∥
∥

∫

[0,1]
fi

∥
∥
∥
∥,

as restricting the function to Iτ does not alter the basic computations. We first note
that

f =
∞∑

k=0

∑

σ∈{0,1}k

k∑

j=0

1

(k + 1)2k/2
· d(k, j)

λ(A(σ, j))
· e(σ, j) · χA(σ, j),

where d(k, j) = ∑
{i :ni (k)= j} λi . Hence, |d(k, j)| ≤ ∑

{i :ni (k)= j} |λi |. Since j �= j ′
implies that {i : ni (k) = j} ∩ {i : ni (k) = j ′} = ∅, we have that

k∑

j=0

|d(k, j)|2 ≤
k∑

j=0

⎛

⎝
∑

{i :ni (k)= j}
|λi |

⎞

⎠

2

≤
( ∞∑

i=1

|λi |
)2

.
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We note that f is Pettis integrable provided that the series

∞∑

k=0

∑

σ∈{0,1}k

k∑

j=0

|d(k, j)|2
(k + 1)22k

< ∞.

Indeed,

∞∑

k=0

∑

σ∈{0,1}k

k∑

j=0

|d(k, j)|2
(k + 1)22k

=
∞∑

k=0

∑

σ∈{0,1}k

1

(k + 1)22k

k∑

j=0

|d(k, j)|2

≤
∞∑

k=0

∑

σ∈{0,1}k

1

(k + 1)22k

( ∞∑

i=1

|λi |
)2

=
( ∞∑

i=1

|λi |
)2 ∞∑

k=0

1

(k + 1)2
< ∞.

Hence we have that f is Pettis integrable. Moreover, as by Lemma 3.2, ‖ ∫
[0,1] fi‖ =

√∑∞
k=0

1
(k+1)2

for all i = 1, 2, . . ., we have that

∥
∥
∥
∥

∫

[0,1]
f

∥
∥
∥
∥ =

⎛

⎝
∞∑

k=0

∑

σ∈{0,1}k

k∑

j=0

|d(σ, j)|2
(k + 1)22k

⎞

⎠

1/2

≤
⎛

⎜
⎝

⎛

⎝
∞∑

j=1

|λ j |
⎞

⎠

2 ∞∑

k=0

1

(k + 1)2

⎞

⎟
⎠

1/2

=
∞∑

j=1

|λ j |
√√
√
√

∞∑

k=0

1

(k + 1)2

=
∞∑

j=1

|λ j |
∥
∥
∥
∥

∫

[0,1]
f j

∥
∥
∥
∥,

completing the proof. ��
Proof (of Theorem 2.2 for X = �2.) We first obtain a subfamily {nt } of D, 0 < t < 1,
such that the following condition holds:

s, t ∈ (0, 1) & s �= t �⇒ {k : ns(k) = nt (k)} is finite. (3.1)

This may be done in the following fashion. For each 0 < t < 1, consider the line
Lt going through the origin with slope t . For each k ∈ N choose nt (k) ∈ N ∩ [0, k]
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352 B. Bongiorno et al.

so that Lt (k) − 1 < nt (k) < Lt (k) + 1. Then, the collection {nt } has the desired
property.

Let V = { fnt : t ∈ (0, 1)}. We will now show that V has the desired properties.
It is clear that V has the cardinality that of the continuum. By (3.1) it follows that no

non-trivial finite linear combination of elements of { fnt } is the zero function. Hence,
V is linearly independent. That V satisfies conclusion (3) of the theorem follows from
Lemma 3.3.

Finally, to verify conclusion (4) of the theorem, let us show that if f is not the zero
function. then for all x ∈ [0, 1], we have

lim
h→0

∥
∥
∥
∥
F(x + h) − F(x)

h

∥
∥
∥
∥ = ∞,

where F is the primitive of f . As f is not the zero function, we may assume, by
relabelling, that all of the { fi }’s are distinct and λ1 �= 0. Moreover, we lose no gen-
erality by assuming that λ1 = 1. Let i0 be such that

∑∞
i=i0 |λi | < 1

2 . Let ti be such
that fi = fnti . Let M > 0. By our choice of {nti }, we have that there exists a posi-
tive integer l such that for all k ≥ l, σ ∈ {0, 1}k and 1 ≤ i < i ′ ≤ i0, we have that
ni (k) �= ni ′(k) and hence e(σ, ni (k)) ⊥ e(σ, ni ′(k)). Choose k0 so large so that k0 > l

and 2i/2−3
√∑∞

k=i
1

(k+1)2
> M for all i > k0. Let δ = 2−k0 . Let h ∈ R be such that

0 < |h| < δ. We wish to show that

∥
∥
∥
∥
F(x + h) − F(x)

h

∥
∥
∥
∥ > M.

Without loss of generality, we may assume that h > 0. Let j be the smallest positive
integer so that there is τ ∈ {0, 1} j so that Iτ ⊆ [x, x + h]. We note that j > k0 and
h < 4 · 2− j .

‖F(x + h) − F(x)‖ =
∥
∥
∥
∥

∫

[x,x+h]
f

∥
∥
∥
∥

≥
∥
∥
∥
∥

∫

Iτ
f

∥
∥
∥
∥ (3.2)

≥
∥
∥
∥
∥

∫

Iτ
f|τ

∥
∥
∥
∥ (3.3)

=
∥
∥
∥
∥
∥
∥

∫

Iτ

i0∑

i=1

λi fi |τ +
∫

Iτ

∞∑

i=i0

λi fi |τ

∥
∥
∥
∥
∥
∥

≥
∥
∥
∥
∥
∥

∫

Iτ

i0∑

i=1

λi fi |τ

∥
∥
∥
∥
∥

−
∥
∥
∥
∥
∥
∥

∫

Iτ

∞∑

i=i0

λi fi |τ

∥
∥
∥
∥
∥
∥

(3.4)

≥
∥
∥
∥
∥
∥

∫

Iτ

i0∑

i=1

λi fi |τ

∥
∥
∥
∥
∥

−
∞∑

i=i0

|λi |
∥
∥
∥
∥

∫

Iτ
fi |τ

∥
∥
∥
∥ (3.5)
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Lineability of non-differentiable Pettis primitives 353

≥
∥
∥
∥
∥

∫

Iτ
f1|τ

∥
∥
∥
∥ −

∞∑

i=i0

|λi |
∥
∥
∥
∥

∫

Iτ
fi |τ

∥
∥
∥
∥ (3.6)

=
⎛

⎝1 −
∞∑

i=i0

|λi |
⎞

⎠ 2− j/2

√√
√
√

∞∑

k= j

[
1

(k + 1)2

]

(3.7)

Let us give some explanations for the above inequalities. Let us first observe that
f is a basic function. Inequalities (3.2) and (3.3) above follow from Lemma 3.1.
Inequality (3.4) is simply the triangle inequality. Meanwhile, inequality (3.5) follows
from Lemma 3.3. Inequality (3.6) holds because j > k0 > l which implies that for all
1 ≤ i < i ′ ≤ i0 we have that e(σ, ni (|σ |)) ⊥ e(σ, ni ′(|σ |)) for all σ extensions of τ

and (σ, k) ∈ B. Finally, estimate (3.7) follows from Lemma 3.2 Now using the above
estimate and the fact that h < 4 · 2− j , we obtain that

∥
∥
∥
∥
F(x + h) − F(x)

h

∥
∥
∥
∥ >

(
1 − ∑∞

i=i0 |λi |
)
2− j/2

√
∑∞

k= j

[
1

(k+1)2

]

4 · 2− j

≥ 2 j/2−3

√√
√
√

∞∑

k= j

1

(k + 1)2

> M.

��

4 The general case

The proof of the general case is similar to the �2 case, the main difference being the
lack of orthonormal basis in an arbitrary Banach space X . We use the notation and
the terminology of the previous section with one exception: {e(σ, i) : (σ, i) ∈ B} will
have to be constructed with the help of Dvoretzky’s theorem. The calculations are also
more involved.

Lemma 4.1 Let {bn} be a basic sequence in X. Then there is K > 1 such that for all
λ0, λ1 . . . ∈ R for which

∑∞
i=0 λi bi converges in X we have that

∥
∥
∥
∥
∥

∞∑

i=0

λi bi

∥
∥
∥
∥
∥

≥ 1

K

∥
∥
∥
∥
∥

l∑

i=k

λi bi

∥
∥
∥
∥
∥

for all k < l ∈ N ∪ {∞}.

Proof Let Y be the subspace of X generated {bn}. Let πk : Y → Y be the natural
projection defined as

πk

( ∞∑

i=0

λi bi

)

=
k∑

i=0

λi bi .
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354 B. Bongiorno et al.

(π∞ is simply the identity map.) It is well-known that πk : Y → Y is a bounded linear
map. Moreover, it is known that {πk : k ∈ N ∪ {∞}} is uniformly bounded. For each
k < l ∈ N ∪ {∞}, let

qk,l

( ∞∑

i=0

λi bi

)

=
l∑

i=k

λi bi .

Then, qk,l = πl −πk−1. Hence, the family {qk,l} is uniformly bounded and the lemma
follows. ��

Throughout this section {bn} and K are as above in the Lemma 4.1.
We now proceed to construct {e(σ, j) : (σ, i) ∈ B}. Let {nk}∞k=0 be a strictly

increasing sequence such that n0 = 0. Let

Bk = {(σ, i) : σ ∈ {0, 1}[nk ,nk+1), 0 ≤ i ≤ |σ |}.

We call Bk the kth block.
The following lemma follows from Dvoretzky’s theorem (see [22]).

Lemma 4.2 Let {nk}∞k=0 andBk be as above. There exist a strictly increasing sequence
{mk} with m0 = 0 and {e(σ, i) : (σ, i) ∈ Bk} such that the following conditions hold:

{e(σ, i) : (σ, i) ∈ Bk} ⊆ span{b j : j ∈ [mk,mk+1)},
∀λ(σ, i) ∈ R

√ ∑

(σ,i)∈Bk

λ(σ, i)2 ≥
∥
∥
∥
∥
∥
∥

∑

(σ,i)∈Bk

λ(σ, i)e(σ, i)

∥
∥
∥
∥
∥
∥

≥ 1

2

√ ∑

(σ,i)∈Bk

λ(σ, i)2.

As before, we let

f =
∑

(σ,i)∈B
c(σ, i) · 1

λ(A(σ, i))
· e(σ, i) · χA(σ,i),

and for τ ∈ {0, 1}nk , let

f|τ =
∑

(σ,i)∈B, σ∈[τ ]
c(σ, j) · 1

λ(A(σ, j))
· e(σ, j) · χA(σ, j).

Lemma 4.3 Let f and f|τ be as above with τ ∈ {0, 1}nk .
(1) If

∑∞
j=0

√∑
(σ,i)∈B j

c(σ, i)2 < ∞, then f ∈ P .

(2) 1

2K

√ ∑

(σ,i)∈Bk , σ∈[τ ]
c(σ, i)2 ≤

∥
∥
∥
∥

∫

Iτ
f|τ

∥
∥
∥
∥ ≤

∞∑

j=k

√ ∑

(σ,i)∈B j , σ∈[τ ]
c(σ, i)2
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(3)
∥
∥
∥
∥

∫

Iτ
f

∥
∥
∥
∥ ≥ 1

K

∥
∥
∥
∥

∫

Iτ
f|τ

∥
∥
∥
∥ .

Proof To see (1) recall that f ∈ P provided that
∑

(σ,i)∈B c(σ, i) e(σ, i) converges
unconditionally. To see this, let ε(σ, i) ∈ {−1, 1} for all (σ, i) ∈ B. Then,

∥
∥
∥
∥
∥
∥

∑

(σ,i)∈B
ε(σ, i)c(σ, i) e(σ, i)

∥
∥
∥
∥
∥
∥

≤
∞∑

j=0

∥
∥
∥
∥
∥
∥

∑

(σ,i)∈B j

ε(σ, i)c(σ, i) e(σ, i)

∥
∥
∥
∥
∥
∥

(4.1)

≤
∞∑

j=0

√ ∑

(σ,i)∈B j

c(σ, i)2 (4.2)

< ∞. (4.3)

Note that inequality (4.1) is simply the triangle inequality and inequality (4.2) follows
from Lemma 4.2.

Let us now verify (2). To obtain the lower bound, we observe that

∥
∥
∥
∥

∫

Iτ
f|τ

∥
∥
∥
∥ =

∥
∥
∥
∥
∥
∥

∑

(σ,i)∈B, σ∈[τ ]
c(σ, i) · λ(A(σ, i) ∩ Iτ )

λ(A(σ, i))
· e(σ, i)

∥
∥
∥
∥
∥
∥

(4.4)

=
∥
∥
∥
∥
∥
∥

∑

(σ,i)∈B, σ∈[τ ]
c(σ, i) · e(σ, i)

∥
∥
∥
∥
∥
∥

(4.5)

=
∥
∥
∥
∥
∥
∥

∞∑

j=k

∑

(σ,i)∈B j , σ∈[τ ]
c(σ, i) · e(σ, i)

∥
∥
∥
∥
∥
∥

(4.6)

≥ 1

K

∥
∥
∥
∥
∥
∥

∑

(σ,i)∈Bk , σ∈[τ ]
c(σ, i) · e(σ, i)

∥
∥
∥
∥
∥
∥

(4.7)

≥ 1

2K

√ ∑

(σ,i)∈Bk , σ∈[τ ]
c(σ, i)2. (4.8)

Inequality (4.7) follows from the fashion in which e(σ, i)’s were chosen and
Lemma 4.1. Meanwhile Inequality (4.8) follows from Lemma 4.2. To obtain the upper
bound, we observe that

∥
∥
∥
∥

∫

Iτ
f|τ

∥
∥
∥
∥ =

∥
∥
∥
∥
∥
∥

∞∑

j=k

∑

(σ,i)∈B j , σ∈[τ ]
c(σ, i) · e(σ, i)

∥
∥
∥
∥
∥
∥

(4.9)

≤
∞∑

j=k

∥
∥
∥
∥
∥
∥

∑

(σ,i)∈B j , σ∈[τ ]
c(σ, i) · e(σ, i)

∥
∥
∥
∥
∥
∥

(4.10)
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≤
∞∑

j=k

√ ∑

(σ,i)∈B j , σ∈[τ ]
c(σ, i)2. (4.11)

Inequality (4.10) simply is the triangle inequality. Inequality (4.11) follows from
Lemma 4.2.

Finally, let us now prove (3). We note that

∥
∥
∥
∥

∫

Iτ
f

∥
∥
∥
∥ =

∥
∥
∥
∥
∥
∥

∑

(σ,i)∈B, τ∈[σ ]
c(σ, i) · λ(A(σ, i) ∩ Iτ )

λ(A(σ, i))
· e(σ, i)

+
∑

(σ,i)∈B, σ∈[τ ]
c(σ, i) · e(σ, i)

∥
∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥
∥

k−1∑

j=0

∑

(σ,i)∈B j , τ∈[σ ]
c(σ, i) · λ(A(σ, i) ∩ Iτ )

λ(A(σ, i))
· e(σ, i)

+
∞∑

j=k

∑

(σ,i)∈B j , σ∈[τ ]
c(σ, i) · e(σ, i)

∥
∥
∥
∥
∥
∥

≥ 1

K

∥
∥
∥
∥
∥
∥

∞∑

j=k

∑

(σ,i)∈B j , σ∈[τ ]
c(σ, i) · e(σ, i)

∥
∥
∥
∥
∥
∥

= 1

K

∥
∥
∥
∥

∫

Iτ
f|τ

∥
∥
∥
∥ .

Again in the inequalities above we make a use of the fashion in which e(σ, i)’s where
chosen and Lemma 4.1. ��
Recall that

D = {n|n : N → N, n(i) ≤ i}.

and

f (n) =
∞∑

k=0

∑

σ∈{0,1}k

1

(k + 1)2k/2
· 1

λ(A(σ,n(k)))
· e(σ,n(k)) · χA(σ,n(k)).

For the sake of notational convenience, for each k ∈ N, let

uk ≡

√√
√
√
√

nk+1−1∑

i=nk

1

(i + 1)2
.
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Henceforth, we assume that {nk} is rapidly increasing so that

uk+1 <
1

3
uk .

Moreover, note that uk ∼ O
(

1
nk

)
and hence

lim
k→∞ 2

nk
2 uk = ∞.

Lemma 4.4 For each n ∈ D, we have that f (n) is Pettis integrable and for τ ∈
{0, 1}nk , we have that

1

2K
2− nk

2 uk ≤
∥
∥
∥
∥

∫

Iτ
f (n)|τ

∥
∥
∥
∥ ≤ 3

2
2− nk

2 uk .

Proof Let us compute the lower estimate first. By Lemma 4.3 we have that

∥
∥
∥
∥

∫

Iτ
f (n)|τ

∥
∥
∥
∥ ≥ 1

2K

√√
√
√
√

nk+1−1∑

i=nk

2i−nk

[
1

(i + 1)2i/2

]2

= 1

2K
2− nk

2

√√
√
√
√

nk+1−1∑

i=nk

[
1

(i + 1)

]2

= 1

2K
2− nk

2 uk .

Again, using the upper estimate in Lemma 4.3 we have that

∥
∥
∥
∥

∫

Iτ
f (n)|τ

∥
∥
∥
∥ ≤

∞∑

j=k

√√
√
√
√

nk+1−1∑

i=nk

2i−nk

[
1

(i + 1)2i/2

]2

≤ 2−nk/2
∞∑

j=k

√√
√
√
√

nk+1−1∑

i=nk

[
1

(i + 1)2

]2

≤ 2−nk/2
∞∑

j=k

u j

≤ 2−nk/2
∞∑

j=k

uk

(
1

3

) j−k

≤ 3

2
2−nk/2uk .

��
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Lemma 4.5 Let {λi } be a sequence in �1 and { fi } be such that fi = f (ni ) for some
ni ∈ D. Then,

f =
∞∑

i=1

λi fi ∈ P and ∀τ ∈ {0, 1}<∞,

∥
∥
∥
∥

∫

Iτ
f

∥
∥
∥
∥ ≤

∞∑

i=1

|λi |
∥
∥
∥
∥

∫

Iτ
fi

∥
∥
∥
∥ .

Proof We only need to show that f ∈ P as the second part simply follows from the
general theory of integration. We first note that

f =
∞∑

k=0

∑

σ∈{0,1}k

k∑

j=0

1

(k + 1)2k/2
· d(k, j)

λ(A(σ, j))
· e(σ, j) · χA(σ, j),

where d(k, j) = ∑
{i :ni (k)= j} λi . Hence, |d(k, j)| ≤ ∑

{i :ni (k)= j} |λi |. Since j �= j ′
implies that {i : ni (k) = j} ∩ {i : ni (k) = j ′} = ∅, we have that

k∑

j=0

|d(k, j)|2 ≤
k∑

j=0

⎛

⎝
∑

{i :ni (k)= j}
|λi |

⎞

⎠

2

≤
⎛

⎝
∞∑

j=0

|λ j |
⎞

⎠

2

.

Let us rewrite f . For (σ, j) ∈ B, let c(σ, j) = 1
(|σ |+1)2|σ |/2 · d(|σ |, j). Then

f =
∑

(σ, j)∈B
c(σ, j) · 1

λ(A(σ, j))
· e(σ, j) · χA(σ, j).

By (1) of Lemma 4.3, we have that f is Pettis integrable provided that
∑∞

k=0

√∑
(σ, j)∈Bk

c(σ, j)2 < ∞. Indeed,

∞∑

k=0

√ ∑

(σ, j)∈Bk

c(σ, j)2 =
∞∑

k=0

√√
√
√
√

nk+1−1∑

i=nk

∑

σ∈{0,1}i

i∑

j=0

1

2i (i + 1)2
d(i, j)2

≤
∞∑

k=0

√√
√
√
√

nk+1−1∑

i=nk

∑

σ∈{0,1}i

1

2i (i + 1)2

⎛

⎝
∞∑

j=1

|λ j |
⎞

⎠

2

=
∞∑

k=0

√√
√
√
√

nk+1−1∑

i=nk

1

(i + 1)2

⎛

⎝
∞∑

j=1

|λ j |
⎞

⎠

2

=
⎛

⎝
∞∑

j=1

|λ j |
⎞

⎠
∞∑

k=0

√√
√
√
√

nk+1−1∑

i=nk

1

(i + 1)2
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=
∞∑

k=0

uk

<
3

2
u0 < ∞.

��
Proof (of Theorem 2.2 for X arbitrary infinite dimensional Banach space.)

As before let {nt }, 0 < t < 1, be a subfamily of D that satisfies the following
condition:

s, t ∈ (0, 1) & s �= t �⇒ {k : ns(k) = nt (k)} is finite.

Let V = { fnt : t ∈ (0, 1)}. We will now show that V has the desired properties.
It is clear that V has the cardinality that of the continuum. As before we have that

V is linearly independent. That V satisfies conclusion (3) of the theorem follows from
Lemma 4.5.

Finally, to verify conclusion (4) of the theorem, let us show that if f is not the zero
function, then for all x ∈ [0, 1], we have

lim sup
h→0

∥
∥
∥
∥
F(x + h) − F(x)

h

∥
∥
∥
∥ = ∞,

where F is the primitive of f . As f is not the zero function, we may assume, by
relabelling , that all of the { fi }’s are distinct and λ1 �= 0. Moreover, we lose no
generality by assuming that λ1 = 1. Let i0 be such that

∑∞
i=i0 |λi | < 1

8K . Let ti be
such that fi = fnti . Let M > 0. By our choice of {nti }, we have that there exists

a positive integer l such that for all k ≥ l, σ ∈ {0, 1}k and 1 ≤ i < i ′ ≤ i0, we

have that nti (σ ) �= nti ′ (σ ). Choose k so large so that k > l and 1
4K 2 2

nk
2 uk > M . Let

τ ∈ {0, 1}nk be such that x ∈ Iτ . We wish to show that

∥
∥
∥
∫
Iτ

f
∥
∥
∥

|Iτ | > M.

By (3) of Lemma 4.3, we have that
∥
∥
∥
∫
Iτ

f
∥
∥
∥ ≥ 1

K

∥
∥
∥
∫
Iτ

f|τ
∥
∥
∥. Hence, it suffices to

show that
∥
∥
∥
∫
Iτ

f|τ
∥
∥
∥

|Iτ | > KM.

We let

∥
∥
∥
∥

∫

Iτ
f|τ

∥
∥
∥
∥ =

∥
∥
∥
∥
∥
∥

∫

Iτ

( ∞∑

i=1

λi fi

)

|τ

∥
∥
∥
∥
∥
∥

≥ L1 − L2,
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where

L1 =
∥
∥
∥
∥
∥
∥

∫

Iτ

(
i0∑

i=1

λi fi

)

|τ

∥
∥
∥
∥
∥
∥

, L2 =
∥
∥
∥
∥
∥
∥

∫

Iτ

⎛

⎝
∞∑

i=i0+1

λi fi

⎞

⎠

|τ

∥
∥
∥
∥
∥
∥

.

Let us write

i0∑

i=1

λi fi =
∑

(σ, j)∈B
c(σ, j) · d(σ, j) · 1

λ(A(σ, j))
· e(σ, j) · χA(σ, j) where

c(σ, j) = c(σ ) = 1

(|σ | + 1)2
|σ |
2

, and d(σ, j) =
∑

{1≤i≤i0:ni (|σ |)= j}
λi

if {1 ≤ i ≤ i0 : ni (|σ |) = j} is not empty, d(σ, j) = 0 otherwise.

Then, we have that

L1 =
∥
∥
∥
∥
∥
∥

∫

Iτ

(
i0∑

i=1

λi fi

)

|τ

∥
∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥
∥

∫

Iτ

⎛

⎝
∑

(σ, j)∈B
c(σ, j) · d(σ, j) · 1

λ(A(σ, j))
· e(σ, j) · χA(σ, j)

⎞

⎠

|τ

∥
∥
∥
∥
∥
∥

≥ 1

2K

√ ∑

(σ, j)∈Bk , σ∈[τ ]
c(σ, j)2 · d(σ, j)2 (4.12)

≥ 1

2K

√√
√
√
√

nk+1−1∑

i=nk

∑

σ∈{0,1}i , σ∈[τ ]
c(σ )2 (4.13)

= 1

2K

√√
√
√
√

nk+1−1∑

i=nk

∑

σ∈{0,1}i , σ∈[τ ]

(
1

(|σ | + 1)2
|σ |
2

)2

(4.14)

= 1

2K

√√
√
√
√

nk+1−1∑

i=nk

2i−nk

[
1

(i + 1)2i/2

]2
= 2− nk

2

2K
uk . (4.15)

Let us give some justifications for the inequalities. Inequality (4.12) follows from
(2) of Lemma 4.3. Let us now explain why inequality (4.13) holds. We note that if
1 ≤ i < i ′ ≤ i0 and σ ∈ [τ ], then nti (|σ |) �= nti ′ (|σ |). Hence, σ ∈ [τ ] implies that
d(σ, j) = 0 or λi for some 1 ≤ i ≤ i0. Moreover, for every σ ∈ [τ ] there is a j so
that d(σ, j) = λ1 = 1. Hence inequality (4.13) holds. The rest of the equalities are
basic computations.
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We next obtain an upper estimate of L2.

L2 =
∥
∥
∥
∥
∥
∥

∫

Iτ

⎛

⎝
∞∑

i=i0+1

λi fi

⎞

⎠

|τ

∥
∥
∥
∥
∥
∥

(4.16)

=
∥
∥
∥
∥
∥
∥

∫

Iτ

∞∑

i=i0+1

λi ( fi )|τ

∥
∥
∥
∥
∥
∥

≤
∞∑

i=i0+1

|λi |
∥
∥
∥
∥

∫

Iτ
( fi )|τ

∥
∥
∥
∥ (4.17)

≤
⎛

⎝
∞∑

i=i0+1

|λi |
⎞

⎠
(
3

2
2− nk

2 uk

)

(4.18)

≤ 1

8K

3

2
2− nk

2 uk <
1

4K
2− nk

2 uk

We note that inequality (4.17) follows from Lemma 4.5 and inequality (4.18) follows
from Lemma 4.4.

Putting these estimates together we get that

∥
∥
∥
∥

∫

Iτ
f|τ

∥
∥
∥
∥ ≥ L1 − L2 >

1

4K
2− nk

2 uk

This, in turn, implies that

∥
∥
∥
∫
Iτ

f|τ
∥
∥
∥

|Iτ | >

1
4K 2− nk

2 uk
2−nk

≥ 1

4K
2

nk
2 uk > KM,

completing the proof. ��
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