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Abstract We establish that over a C2,1 manifold the exponential map of any Lip-
schitz connection or spray determines a local Lipeomorphism and that, furthermore,
reversible convex normal neighborhoods do exist. To that end we use the method of
Picard-Lindelöf approximation to prove the strong differentiability of the exponential
map at the origin and hence a version of Gauss’ Lemma which does not require the
differentiability of the exponential map. Contrary to naive differential degree count-
ing, the distance functions are shown to gain one degree and hence to be C1,1. As an
application to mathematical relativity, it is argued that the mentioned differentiability
conditions can be considered the optimal ones to preserve most results of causality
theory. This theory is also shown to be generalizable to the Finsler spacetime case. In
particular, we prove that the local Lorentzian(-Finsler) length maximization property
of causal geodesics in the class of absolutely continuous causal curves holds already
for C1,1 spacetime metrics. Finally, we study the local existence of convex functions
and show that arbitrarily small globally hyperbolic convex normal neighborhoods do
exist.
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1 Introduction and results

Let M be an n-dimensional paracompact connected C2,1 manifold and let xμ : U →
R
n be a local chart where U is an open subset. Every chart induces a chart

(xμ, vμ) : π−1(U ) → R
n × R

n , μ = 0, 1, . . . , n − 1, on the tangent bundle
π : TU → U .

For the moment let us consider a second order ODE defined just over U by

dxμ

dt
= vμ, (1)

dvμ

dt
= Hμ(x, v), (2)

where Hμ is locally Lipschitz. Under a coordinate change x̃μ = x̃μ(xα) the system
becomes ˙̃xμ = ṽμ, ˙̃vμ = H̃μ(x̃, ṽ), where

H̃μ(x̃, ṽ) = ∂ x̃μ

∂xα∂xβ

∂xα

∂ x̃γ

∂xβ

∂ x̃δ
ṽγ ṽδ + ∂ x̃μ

∂xν
H ν(x(x̃), v(x̃, ṽ)), (3)

and vμ(x̃, ṽ) = ∂xμ

∂ x̃ν ṽν . The transformation shows that the following notions are
well-defined as independent of the coordinate chart:

1. Hμ is positive homogeneous of second degree on the velocities, that is, for every
s > 0, Hμ(x, sv) = s2Hμ(x, v),
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Convex neighborhoods for Lipschitz connections and sprays 571

2. Hμ is a homogeneous quadratic form in the velocities.

In the former case we say that the second order ODE defines a spray over M [2,39]
while in the latter more restrictive case we say that it defines a (torsionless) connection.
In the latter case we set Hμ(x, v) = −Γ

μ
αβ(x)vαvβ and we recognize in Eq. (3)

the transformation rule for the Christoffel symbols Γ
μ
αβ . The transformation rule (3)

clarifies that M must be C2,1 to make sense of the Lipschitz condition on sprays. The
non-stationary solutions to Eqs. (1, 2) will be called geodesics.

Remark 1 Actually, the above notion of spray is somewhat more general than that
introduced in [2,39] since these authors drop the condition s > 0 on (a). Our
definition, consistent with current usage [4], allows us to include non-reversible
pseudo-Finsler manifolds in our analysis of sprays. Clearly, if Hμ(x, v) defines a
spray then H̃μ(x, v) := Hμ(x,−v) defines also a spray called the reverse spray. If
Hμ(x, v) = Hμ(x,−v) the spray is called reversible. If x(t) is a geodesic then x(−t)
is a geodesic for the reverse spray but not necessarily for the original spray. Thus the
direction of the parametrization of geodesics is important. If we say that two points are
connected by a unique geodesic we tacitly assume that the spray under consideration is
Hμ(x, v); that claim does not exclude the possible presence of a connecting geodesic,
with different image, for the reverse spray.

From now on we shall consider just locally Lipschitz sprays and we shall clearly
speak of connection whenever Hμ is a quadratic form. If Hμ is twice continuously
differentiable with respect to the velocities on the zero section of T M , then differ-
entiating twice Hμ(x, sv) = s2Hμ(x, v) with respect to s and letting s → 0 we
obtain Hμ(x, v) = 1

2 (∂
2Hμ/∂vα∂vβ(x, 0))vαvβ , that is the spray is a connection

[39]. Whenever the connection comes from a pseudo-Riemannian metric g we shall
assume g to be C1,1

loc . For notational convenience, we shall write just C
k,1 for Ck,1

loc . It
is customary [9] to call non-regular the geometrical theory for which the differentia-
bility condition on g is weaker than C2 (or that on the connection or spray is weaker
than C1). As an example of manifold which has a C1,1 metric g, consider a cylinder
closed by two semispherical cups, where the submanifold is endowed with the metric
induced from the Euclidean space.

1.1 Example: Pseudo-Finsler geometry

Pseudo-Finsler geometry [1,6,7] is a generalization of Finsler geometry [5,42] in
which the fundamental tensor g is required to be non-degenerate rather than positive
definite. Geodesics in pseudo-Finsler geometry are described by sprays.

Since the definitions of pseudo-Finslermanifoldwhich can be found in the literature
impose too strong differentiability conditions we provide a different definition.

Definition 1 A pseudo-Finsler manifold (M, g) is a paracompact connected C2,1

manifold endowed with a C1,1 symmetric tensor

g : T M\0 → T ∗M ⊗M T ∗M, (x, v) �→ g(x,v),

123



572 E. Minguzzi

defined on the non vanishing vectors, which is non-singular and satisfies (in one and
hence every chart induced from a chart on M)

∂g(x,v) μν

∂vα
vν = 0,

∂g(x,v) μν

∂vα
vα = 0. (4)

It is called reversible if g(x,v) = g(x,−v).

Sometimes we shall write g or gv for g(x,v) either in order to shorten the notation or
because we regard v as an element of T M\0. In the pseudo-Riemannian case g is
independent of v and written without the v index.

Remark 2 The latter equation in display is equivalent to the homogeneity condition:
for every s > 0, g(x,sv) = g(x,v). Thus it implies that L : TM → R defined by

L(x, v) := 1

2
g(x,v)(v, v), for v �= 0, (5)

L(x, 0) := 0 (6)

is positively homogeneous of second degree, namely for every s > 0, and v �= 0,
L(x, sv) = s2L(x, v). The former equation implies

∂L

∂vμ
(x, v) = g(x,v) μνv

ν, (7)

∂2L

∂vμ∂vν
= g(x,v) μν. (8)

We could have defined the pseudo-Finsler manifold as a pair (M, L) in which L is
positive homogeneous of second degree, and where g is defined through Eq. (8). This
is the definition adopted by most authors. Indeed, differentiating twice with respect
to s, L(x, sv) = s2L(x, v), and setting s = 1 gives Eq. (5). Equation (7) is obtained
from Eq. (8) observing that ∂L

∂vμ is positively homogeneous of first degree.
Our definition dispenses from additional differentiability conditions that would

have to be imposed on L in order to define g. Furthermore, it has the advantage of
making clear the connection with pseudo-Riemannian geometry. Also it clarifies that
not every tensor g(x,v), positive homogeneous of zero degree in v, is a pseudo-Finsler
metric as the first equation in (4) has to be satisfied.

A geodesic is a stationary point of the functional (with a prime we denote differ-
entiation, typically with respect to a parameter s, if the parameter is t we often use a
dot)

S[x] =
∫ s1

s0
L(x, x ′) ds, x : [s0, s1] → M, x(s0) = x0, x(s1) = x1,

where x ∈ C1([s0, s1]). By the same argument used above for Hμ we cannot demand g
to exist and to be continuous on the zero section unless L is quadratic in the velocities,
which corresponds to the case of pseudo-Riemannian geometry. In our terminology
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Convex neighborhoods for Lipschitz connections and sprays 573

the Finsler (Riemannian) structures are special cases of the pseudo-Finsler (pseudo-
Riemannian) ones. In the former case

√
2L is often denoted F .

We observe that it is always possible to introduce an auxiliary Riemannian metric h
overM and to consider the unit sphere subbundle of TM. If x is kept fixed then g(x,v) μν

depends only on the direction andorientationofv namelyon v̂, and since the unit sphere
bundle is compact over compact subsets, g(x,v) μν is bounded in relatively compact
neighborhoods of points of TM belonging to the zero section. The same observation
holds for the partial derivatives with respect to x of g, and hence combinations such as
gv αβvδ or ∂gv νβ

∂xα vδ are locally Lipschitz also at the zero section once they are defined
to vanish there. In particular, Eqs. (5) and (7) make sense also for v = 0, and for fixed
x , L is C1,1 on the zero section and C3,1 outside it.

The Lagrangian L is constant over the geodesics because, using the Euler–Lagrange
equations (we cannot invoke the Hamiltonian to obtain this result since we have not
proved the convexity of L in the velocities)

dL

dt
= ∂L

∂xμ
vμ + ∂L

∂vμ

dvμ

dt
=

(
d

dt

∂L

∂vμ

)
vμ + ∂L

∂vμ

dvμ

dt
= d

dt

(
∂L

∂vμ
vμ

)
= 2

dL

dt

where in the last step we used the homogeneity of L . The spray reads

Hμ(x, v) = −1

2
gμν
v

(
∂gv να

∂xβ
+ ∂gv νβ

∂xα
− ∂gv αβ

∂xν

)
vαvβ,

where it is understood that Hμ(x, 0) = 0. It is Lipschitz as required because
g−1
(x,v) = g−1

(x,v̂)
depends continuously on the unit sphere bundle which is compact

over compact subsets of M , thus the inverse gμν

(x,v) stays bounded in relatively com-
pact neighborhoods of points belonging to the zero section, and combinations of the
form gμν

(x,v)v
β are locally Lipschitz everywhere once they are defined to vanish on the

zero section.
We shall return to the geometry of pseudo-Finsler spaces when we shall discuss

Gauss’ Lemma. Any mention to the various connections that can be introduced in this
theory will be avoided in both results and proofs.

1.2 The exponential map for sprays

As we mentioned, the non-stationary solutions to Eqs. (1, 2) will be called geodesics.
As this is a system of first order ODE over T M , according to the Picard-Lindelöf
theorem, the existence and uniqueness of its solutions are guaranteed by the locally
Lipschitz condition on Hμ.

Let γv(t) be the unique geodesic which starts from π(v) with velocity v. The set Ω
is given by those v for which the geodesic exists at least for t ∈ [0, 1]. The exponential
map exp : Ω → M × M is given by

v �→ (π(v), γv(1)),
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574 E. Minguzzi

while the pointed exponential map at p ∈ M , is expp : Ωp → M ,Ωp = Ω ∩π−1(p),
expp v := γv(1) = π2(exp v). By the homogeneity of Hμ on velocities we have

γsv(t) = γv(st), (9)

thus the set Ω (and Ωp) is star-shaped in the sense that if v ∈ Ω then sv ∈ Ω for
every s ∈ [0, 1]. Equation (9) clarifies that it make sense to call affine the geodesic
parameter, for any affine reparametrization of a geodesic gives a curve which solves
the geodesic equation.

Remark 3 The exponential map of the reverse spray, denoted ˜exp is

˜exp v := (π(v), γv(−1)), ˜expp v := γv(−1),

and since in general γv(−1) �= γ−v(1) this map cannot be simply expressed through
the exponential map exp. Of course, if the spray is reversible it coincides with v �→
exp(−v).

Hartman [29] proved that for connections the uniqueness of the geodesic equation is
lost if the Lipschitz condition is weakened to continuity [29]. This result was improved
by Hartman and Wintner [33] [31, Exercise 6.2, Chap. 5] who considered the metric

ds2 =
(
1 + |v|1+α

) (
du2 + dv2

)

for 0 < α < 1. Its connection satisfies an Hölder condition of exponent α, and on any
neighborhood of p = (0, 0) one can find infinite geodesics which start from p with
velocity (1, 0).

These examples suggest the Lipschitz condition as the best differentiability condi-
tion that can be placed on a spray.

Remark 4 Actually, if the connection is that of a Riemannian C2 surface of Euclidean
3-space then uniqueness of geodesics is guaranteed, and one can even buildC1 normal
coordinates though the connection is just continuous [29]. Moreover, still in the 2-
dimensional case under Lipschitzness of the connection one can prove results which
are stronger than those considered in this work1 [29,30,33]. Nevertheless, we shall
work in the general n-dimensional case since the 2-dimensional one appears too special
and less relevant for applications (it suffices to recall that in 2-dimensions any metric
is locally conformally flat).

In this work we shall prove that the exponential map of every spray is a local
Lipeomorphism (local bi-Lipschitz homeomorphism) and that on M any point admits
arbitrarily small convex neighborhoods (Theor. 4).

In a Riemannian framework, this result can be improved in some directions. For
instance, it is well known that Riemannian spaces with sectional curvature bounded
from below or above find a remarkable generalization in the notion of Alexandrov

1 Please notice that according to [32] claim III in [33] is incorrect.
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Convex neighborhoods for Lipschitz connections and sprays 575

space. In this quite general setting there are indeed results on the existence of convex
neighborhoods [9, Prop. 5.5] [54,55].

We were finishing this work when we learned that Kunzinger, Steinbauer and Sto-
jkovíc, in a recent preprint [36], have also provided a proof of the bi-Lipschitzness
of the pointed exponential map and of the existence of convex neighborhoods.
As us they were motivated by a recent work by Chrusciel and Grant on causal-
ity theory under low differentiability conditions [16]. Their approach is comple-
mentary to our own and deserves some comments. They consider a net of smooth
Riemannian metrics gε obtained from g through convolution with a mollifier, and
use methods from comparison geometry to obtain sufficiently strong estimates on
the exponential maps of the regularized metrics, so as to be able to carry over
the bi-Lipschitz property through the limit. In order to perform this last step in
the general pseudo-Riemannian case they use some results on comparison geome-
try for indefinite metrics recently obtained by Chen and LeFloch [14]. They also
show that the Riemannian case can be dealt with using the Rauch comparison
theorem.

Our approach has several advantages among which that of being tailored to the
results on convexity that we wish to prove. The differences between our strategy
and more classical approaches based on the smooth category and the inverse func-
tion theorem are minimal; there is no use of comparison geometry, nor regulariza-
tion is required. No prior knowledge of Riemannian geometry is actually needed,
for we never use the concept of (sectional) curvature or Jacobi field. Our results
are therefore obtained improving some local analytical results, without introduc-
ing advanced topics in differential geometry or touching the very foundations of
the theory under consideration. This is desirable since we are actually obtaining
basic results on local convexity which could be placed at the very beginning of
treatments on differential geometry under low regularity. Our study may be useful,
for instance, to understand the limits of pseudo-Finsler geometry and particularly
Lorentzian geometry, for which a theory of the same generality of Alexandrov’s is
missing.2

We have also tried to be as a complete as possible. In this way the reader will be
able to refer to the results of this work without the need of making involute arguments
in the attempt of extending the results herein obtained. For instance, we prove that
the non-pointed exponential map exp is a Lipeomorphism from a neighborhood of the
zero section to a neighborhood of the diagonal on M × M . This result is quite useful
in applications, for instance in causality theory it is used in the proof that the causal
relation over convex normal sets is closed (Theor. 12).

Unless otherwise specified, ‖ ‖ will denote the Euclidean norm onRn . Let us recall
that a function f : O → R

k defined on an open set O ⊂ R
n is Lipschitz if for every

p, q ∈ O ,

‖g(p) − g(q)‖ < K‖p − q‖

2 There are well known difficulties in this generalization. They are related to the fact that sectional curvature
bounds imply constant curvature [28,50]. These problems could be sidestepped imposing only bounds on
the sectional curvature of timelike planes [28].
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576 E. Minguzzi

for some K > 0. It is locally Lipschitz if this inequality holds over every compact
subset of O , with K dependent on the compact subset. If f depends on another
variable z, then f is uniformly Lipschitz if the Lipschitz constant does not depend
on z. It is locally uniformly Lipschitz if, chosen any compact set on the domain of z,
the Lipschitz constant can be chosen to be dependent on just the compact set rather
than z. As a consequence, a function of, say, two variables f (x, y) which is Lipschitz
is also Lipschitz in one variable uniformly in the other. A Lipeomorphism f is a
homeomorphism for which both f and f −1 are locally Lipschitz. In the cases that
will interest us f will be defined in an open subset O ⊂ R

n , and f (O) will also be
an open subset of Rn .

It is well known that the ODE ẋ = f (x) for which f is Lipschitz admits unique
solutions which have a Lipschitz dependence on the initial conditions [31, Ex. 1.2,
Chap. 2] [13, Prop. 1.10.1] [38, Cor. 1.6]. As a result, the exponential map exp and its
pointed version expp are locally Lipschitz.

We shall improve this result as in the next theorem. This refinement will be used
in the proof that in a Riemannian space the geodesics are locally length minimizing
in the family of absolutely continuous curves (and to prove an analogous result in the
Lorentzian case). To increase readability we postponemost proofs to the next sections.

Theorem 1 Let us consider a Lipschitz spray (Lipschitz Hμ) on a C2,1 manifold M,
and let ϕ : W → T M, W ⊂ [0,+∞) × T M, ϕ(t, v) := γ ′

v(t) be the geodesic flow
map defined at those (t, v) ∈ R× T M for which the geodesic γv extends up to time t
(so that the expression on the right-hand side makes sense). Then W is an open subset
of [0,+∞) × T M such that [0, 1] × Ω ⊂ W and such that for every s ∈ [0, 1] if
(t, v) ∈ W then (st, v), (t, sv) ∈ W. Analogously, Ω ⊂ T M is open and star-shaped
in the sense that for every s ∈ [0, 1] if v ∈ Ω then sv ∈ Ω .

Moreover, ϕ(·, v) is C1,1, ϕ is locally Lipschitz and there is a star-shaped subset
Ω̃ ⊂ Ω such that, Ω\Ω̃ has zero Lebesgue measure, and for every v ∈ Ω̃ and every
t ∈ [0, 1], ϕ(t, ·) is differentiable at (t, v) and the differential (Jacobian) ∂2ϕ(·, v)

is locally Lipschitz in t , locally uniformly with respect to those v belonging to Ω̃

(that is the local Lipschitz constant can be chosen so that it does not vary in a small
neighborhood of v as long as the independent variable stays in Ω̃). Finally, for any
v ∈ Ω̃ we have that for almost every t ∈ [0, 1] the following mixed differentials exist,
are locally bounded and coincide

∂1∂2ϕ = ∂2∂1ϕ.

These conclusions do not change if we restrict ϕ to some Lipschitz m-dimensional
submanifold N of T M. In this case the differential ∂2 refers to the variables of the
Lipschitz chart on N and the almost everywhere existence of ∂2ϕ must be understood
in the m-dimensional Lebesgue measure of N .

One would like to prove that the (pointed) exponential map is invertible, say a local
Lipeomorphism or a local diffeomorphism. Hartman [31, Exercise 6.2, Chap. 5] [32]
showed in the connection case that the exponential map is actually C1 and hence a
local diffeomorphism provided the connection admits a continuous exterior derivative.
We shall not impose these additional conditions.
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The local injectivity of the exponential map for Lipschitz connections was proved
by Whitehead in his paper on the existence of convex normal neighborhoods [62].
In [63] he observed that the result could be generalized to sprays. Whitehead uses a
theorem by Picard which applies to boundary value problems of second order ODEs
[31, Cor. 4.1, Chap. 12]. Using the theorem on the invariance of domain one could
infer that the exponential map provides a local homeomorphism, though from here it
does not seems easy to obtain that it admits a Lipschitz inverse.

Our approach relies instead on an improved version of the inverse function theorem
due to Leach [40] (see also [13]). This theorem depends on Peano’s definition of
strong derivative [52] and on the natural corresponding notion of strong differential
studied by Severi. Unfortunately, Peano’s contributions in this direction are, together
with many other accomplishments by the Italian mathematician, little known [20].
Nijenhuis’ attempt [49] to popularize Peano’s choice and Leach’s inversion theorem
passed essentially unnoticed. Peano’s choice provides a better definition of differential,
so good, in fact, that having to choose one should probably adopt it in place of the
usual differential in analysis textbooks. Indeed, the strong differential leads to stronger
and more elegant results, and seems to corresponds better with the intuition. We hope
that this study, showing the usefulness of Peano’s strong derivative for the exponential
map will serve to motivate its mention in University courses.

Let us recall Peano’s definition of strong differential and its basic properties. We
give a general definition for Banach spaces although we shall work on R

k for some
k ≥ 1. We denote with B(p, r) := {q : |q − p| < r} the open ball of radius r centered
at p, and with B̄(p, r) := {q : |q − p| ≤ r} the closed ball.

Definition 2 Let E and F beBanach spaces, and let f : O → F , be a function defined
on an open set O ⊂ E . The strong differential of f at p ∈ O is a bounded linear
transformation L : E → F which approximates changes of f in the sense that for
every ε > 0, there is a δ > 0 such that if |q1 − p| ≤ δ and |q2 − p| ≤ δ, then:

| f (q1) − f (q2) − L(q1 − q2)| ≤ ε|q1 − q2|. (10)

Clearly, if the strong differential at p exists then it is unique. If f is strongly
differentiable at p then taking q2 = p shows that it is also Fréchet differentiable
and that the differentials so defined coincide. In the finite dimensional case which will
interest us all norms are equivalent thus the notions of strong differentiation and strong
differential are independent of the norm used.

We list some properties of strong differentiation which are easy to prove [21,40,
41,49,52].

(i) If f is strongly differentiable at p then it satisfies a Lipschitz condition in a
neighborhood of p.3

(ii) If f is differentiable in a neighborhood of p and the differential is continuous at
p then it is strongly differentiable at p.

3 One could ask whether every Lipschitz function is strongly differentiable almost everywhere. The answer
is negative already for functions defined on the real line [27, Sect. 14.4.1].
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578 E. Minguzzi

(iii) If f is strongly differentiable over a subset A ⊂ E then the strong differential is
continuous over A with respect to the induced topology.

(iv) If a continuous function f : U1 × U2 → V on a product Banach space admits
strong partial differentials at p (obtained keeping constant the other variable) then
it is strongly differentiable at p and the total differential has the usual gradient
expression in terms of partial differentials.

(v) The composition of strongly differentiable functions is strongly differentiable.
(vi) The mixed partial strong derivatives coincide wherever they exist [46].
(vii) If f : R → R has positive strong differential at p, then f is continuous and

increasing in a neighborhood of p.

Conditions (ii) and (iii) clarify that a function is C1 over an open set if and only if
it is strongly differentiable over it. Some key theorems in analysis that require a C1

condition on a neighborhood of p can be proved demanding the weaker condition of
strong differentiability at p. An example is Leach’s inversion theorem [13,35,40,49]
which generalizes Dini’s and which we state in a form suitable for our purposes:

Theorem 2 (Leach) Let f : O → R
n, be a function defined on an open subset O ⊂

R
n, such that f has strong differential L : Rn → R

n at p ∈ O. If L is invertible then
there are an open neighborhood N1 of p, an open neighborhood N2 of f (p), and a
function g : N2 → R

n such that, f (N1) = N2, g(N2) = N1, f |N1 and g are one the
inverse of the other, they are both Lipschitz and g has strong differential L−1 at f (p).

Moreover, in this case f is differentiable at q ∈ N1 if and only if g is differentiable
at f (q), in which case the differentials are invertible. This last statement holds also
with differentiable replaced by strongly differentiable.4

In order to clarify the connection between this inversion theorem and Clarke’s [17]
it is convenient to recall the notion of Clarke’s generalized differential for locally
Lipschitz functions:

Definition 3 The generalized Jacobian of a locally Lipschitz function f : O → R
n ,

O ⊂ R
k at p, denoted ∂ f (p), is the convex hull of all matrices M of the form

M = lim
pi→p

d f (pi )

where pi converges to p, f is differentiable at pi for each i and d f denotes the usual
Jacobian.

By Rademacher’s theorem the generalized differential is non-empty at p and we
have (see also [17,21])

Proposition 1 If f : O → R
n, O ⊂ R

k , is strongly differentiable at p then ∂ f (p) =
{d f (p)}.

4 The fact that N1 and N2 can be chosen to be open sets such that both f |N1 and g are Lipschitz follows
from Leach’s original formulation plus (i). The statement in the last paragraph is not contained in Leach’s
original formulation but can be found in its proof.
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Proof Indeed, take any ε > 0 and let δ > 0 be such that Eq. (10) holds. Let J be the
limit of a sequence Ji = d f (pi ) for pi → p. We can assume ‖pi − p‖ < δ/2 for
each i . Let e be any normalized unit vector. For each i we can find some 0 < δi ≤ δ/2
such that

‖ f (qi ) − f (pi ) − d f (pi )(qi − pi )‖ ≤ ε‖qi − pi‖

for every qi such that ‖qi − pi‖ ≤ δi . Let qi = pi + δi e, then

δi‖(L − Ji )e‖ = ‖(L − Ji )(qi − pi )‖ ≤ ‖ f (qi ) − f (pi ) − Ji (qi − pi )‖
+ ‖ f (qi ) − f (pi ) − L(qi − pi )‖ ≤ 2ε‖qi − pi‖ = 2εδi .

Simplifying δi , taking the limit i → ∞ and using the arbitrariness of ε and e proves
that J = d f (p) and hence ∂ f (p) = {d f (p)}. ��

Clarke proved that if k = n and ∂ f admits only invertible elements then f is a local
Lipeomorphism. Leach’s version states something more for f strongly differentiable
at p, for it establishes that the inverse is strongly differentiable at f (p).

Our strategy is then clear: we are going to prove the strong differentiability of
the exponential map in order to deduce the Lipschitzness of the inverse by means of
Leach’s (or Clarke’s) inversion theorem. The proof of the strong differentiability of
the exponential map will pass through a local analysis based on the Picard-Lindelöf
approximation method.

In the end we shall prove:

Theorem 3 Let M be a C2,1-manifold endowed with a locally Lipschitz spray.

(exp) The set Ω is open in the topology of T M. The exponential map exp : Ω →
M × M, Ω ⊂ T M, is locally Lipschitz.
Moreover, exp is strongly differentiable over the zero section, namely over the
image of p �→ 0p. The map exp provides a Lipeomorphism between an open
star-shaped neighborhood of the zero section and an open neighborhood of
the diagonal of M × M.

(expp) For every p ∈ M the setΩp is open in the topology of TpM. The pointed expo-
nential map expp : Ωp → M, Ω ⊂ TpM, is locally Lipschitz and strongly
differentiable at the origin. The map expp provides a local Liperomorphism
from a star-shaped open subset of Ωp and an open neighborhood of p (for
more see Theorems 1 and 4).

In the pointed case this result can be refined. We shall need some definitions.

Definition 4 An open neighborhood N of p ∈ M will be called normal if there is an
open star-shaped subset Np ⊂ Ωp such that expp : Np → N is a Lipeomorphism.

Definition 5 An open set C ⊂ M will be called convex normal if it is a normal
neighborhood of each of its points. We shall say that C̄ is strictly convex normal if
C is convex normal and any two points of C̄ are connected by a unique geodesic
contained in C but for the endpoints. A (strictly) convex normal set is caller reversible
if it is so also for the reverse spray.
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Remark 5 In a reversible convex normal subsetC for any two points p, q ∈ C there is
a geodesic γpq : [0, 1] → C connecting p to q and a geodesic γqp : [0, 1] → C con-
nectingq to p. They coincide if the spray is reversible. Furthermore, there are geodesics
for the reverse spray γ̃pq(t) = γqp(1− t) connecting p to q and γ̃qp(t) = γpq(1− t)
connecting q to p. The last identities follow from the uniqueness of the connecting
geodesic for the spray. Observe that while the convexity of C with respect to the spray
implies the convexity ofC with respect to the reverse spray, a reversible convex normal
set has a stronger property which cannot be deduced from the corresponding property
for the spray, that is, in a reversible convex normal set C we have that ˜exp−1

p |C is a
Lipeomorphism for every p ∈ C .

The following concept will be useful in the next section.

Definition 6 Let C be a convex normal set, let p, q ∈ C and let x : [0, 1] → C ,
x(0) = p, x(1) = q, be the unique geodesic connecting them. The vector ẋ(1) is
denoted P(p, q) and called position vector.

We shall prove:

Theorem 4 Let M be a C2,1-manifold endowed with a locally Lipschitz spray. Let O
be an open neighborhood of p ∈ M. Then there is a reversible strictly convex normal
neighborhood C of p contained in O, such that exp establishes a Lipeomorphism
between an open star-shaped subset of TC and C ×C. Analogously, ˜exp establishes
a Lipeomorphism between an open star-shaped subset of TC and C × C.

Moreover, for every chart {xμ} defined in a neighborhood of p, C can be chosen
equal to the open ball B(p, δ) for any sufficiently small δ (the ball is defined through
the Euclidean norm induced by the coordinates).

If the spray is compatible with a pseudo-Finsler structure then this result can be
further refined.

Remark 6 The previous theorems can be formulated inmore generality forCk,1 sprays
over Ck+2,1 manifolds with k ≥ 0 or for Ck+1,α sprays over Ck+3,α , α ∈ [0, 1),
manifolds. The exponential map and its inverse have the degree of differentiability of
the spray.

These cases follow more or less straightforwardly from the Lipschitz k = 0 case
treated here or from what is already known for C1 sprays. For a direct proof that
generalizes that for the Lipschitz case see Remark 15.

1.3 Gauss’ Lemma for pseudo-Finsler sprays

Let a consider again a pseudo-Finsler geometry in which the fundamental tensor gv is
C1,1 and the spray is Lipschitz. This means that in the pseudo-Riemannian case g is
C1,1 and the connection is Lipschitz.

The local length minimization property of geodesics in Riemannian spaces, or
the local Lorentzian length maximization property of causal geodesics in Lorentzian
manifolds, are proved passing through Gauss’ Lemma (in the Lorentzian case see
[15,51]). This Lemma is known to hold in Finsler geometry [5]
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(Gauss’ Lemmaunder sufficient differentiability conditions) Let p ∈ M , let N be
a normal neighborhood of p and let v ∈ exp−1

p N\0. Letw ∈ TpM ∼ Tv(TpM).
Then

g(d expp)vv((d expp)vv, (d expp)vw) = gv(v,w). (11)

This lemma is usually expressed as above using the push forward of the exponential
map [26, Theor. 3.70] [12]. As the exponential map is C1 for C2 metrics, one expects
this lemma to be valid for C2 metrics.

The just mentioned classical proofs of Gauss’ lemma work indeed in the C2 case.
Without entering in too many details the reader should just keep in mind that for what
concerns differentiability with respect to the initial conditions the exponential map,
by Peano’s theorem [31, Theor. 3.1], behaves better in the radial direction than in
the transverse directions. As a consequence, the mixed derivative of the expression
f (t, s) = expp(tv(s)) is continuous if v(s) is C1, cf. [31, Cor. 3.2]. Thus one can use
Schwarz theorem and fully justify the proof of [12].

Other proofs seem less convincing [59, Cor. 2.2]. It is very easy to forget that one
cannot work directly with, say, derivatives of vector or tensor fields expressed in a
normal coordinate chart or the Christoffel symbols in normal coordinates, indeed,
since this chart is just C1, vector and tensor fields on them can be at most C0 and
hence are not differentiable and similarly the Christoffel symbols are not defined [18].

The situation is worse for Lipschitz connection or sprays and C1,1 metrics. Under
this differentiability hypothesis the exponential map is just Lipschitz, thus Gauss’
Lemma is not even expected to hold. However, we shall show that Gauss’ Lemma
still holds true in a formulation which does not require the differentiability of the
exponential map.

We shall need some technical result either on (a) the differentiation under the
integral sign, or on (b) Schwarz’s theorem on the equality of mixed partial derivatives.
We shall discuss them in Sect. 1.8. In the end we shall prove (in order to obtain a
more restrictive pseudo-Riemannian version just remove the vector index from the
fundamental tensor g):

Theorem 5 Let (M, g) be a C2,1 pseudo-Finsler manifold for which g is C1,1 (Sect.
1.1). Let N be a normal neighborhood of p ∈ M. The function D2

p : N → R defined
by

D2
p(q) := 2L(p, exp−1

p (q)) = gexp−1
p (q)

(exp−1
p (q), exp−1

p (q)) (12)

is C1,1 in q and
dD2

p(q) = 2gP(p,q)(P(p, q), ·), (13)

where P(p, q) = γ ′
exp−1

p q
(1) is the position vector of q with respect to p. Thus the

level sets of D2
p are orthogonal to the geodesics issued from p, and for t, s > 0 the

(−t)-time flow map of P(p, ·) is a Lipeomorphism between (D2
p)

−1(s) and its image

on (D2
p)

−1(s e−2t ).

Finally, Eq. (11) holds wherever expp : exp−1
p N → N is differentiable, hence

almost everywhere. Thus the usual Gauss’ Lemma holds under C2 differentiability of
the metric g.

123



582 E. Minguzzi

Geometrically Eq. (13) states the geodesic connecting p to q is perpendicular
to a level set D2

p = cnst (in pseudo-Finsler geometry v is perpendicular to w if
gv(v,w) = 0).

Observe that D2
p can be negative if g is not positive definite. If g is positive definite,

aswe shall prove in amoment in Theorem 6, Dp(q) coincideswith the Finsler distance
between p and q in the space (N , g|N ) and hence coincides with the Finsler distance
on M provided the ball of radius Dp(q) centered at p is contained in N .

Remark 7 It is somewhat surprising that D2
p is C1,1. One would expect it to be Lip-

schitz because from its definition, that is Eq. (12), we see that it is built from the
the inverse of the exponential map which is Lipschitz. The additional degree of dif-
ferentiability comes from the fact that we can check that the differential is almost
everywhere as in Eq. (13). This result can then be extended everywhere thanks to the
Lipschitzness of D2

p and the continuity of P(p, q) (see Theorem 16).

Remark 8 The proof of this result can be easily generalized to show that for (p, q)

belonging to a reversible convex normal set, Dp(q) isC1,1 in (p, q) and its differential
is

dD2
p(q)(vp, vq) = 2gP(p,q)(P(p, q), vq) + 2gP̃(q,p)(P̃(q, p), vp),

where vp ∈ TpM , vq ∈ TqM , and P̃ is the position vector map according to the
reverse spray. Furthermore, with Prop. 3 we shall prove that P(p, q) is strongly dif-
ferentiable on the diagonal of M × M hence D2

p(q) has first differential which is
strongly differentiable at the origin.

We shall state the next result for pseudo-Finsler manifolds for which the fundamen-
tal tensor is either positive definite (Finsler geometry) or of signature (−,+, · · · ,+)

(Lorentzian-Finsler geometry). It is necessary to elaborate the last structure in the
notion of Finsler spacetime which extends the usual notion of spacetime met in math-
ematical relativity.

Let us start from a Lorentzian-Finsler manifold (M, g), and let us keep in mind
that if the fundamental tensor gv does not depend on the velocity then we are back
to a Lorentzian manifold [8]. Non vanishing vectors are called spacelike, lightlike or
timelike depending on the sign of gv(v, v), namely positive, null or negative, and the
terminology extends to C1 curves provided the causality type of the tangent vector
is consistent throughout the curve (which is assured for geodesics since in that case
gv(v, v) is constant over the curve). A vector is null if it is lightlike or zero, and non-
spacelike if it is causal or zero. At any x ∈ M let us denote with Ix ⊂ TxM the subset
of timelike vectors, and with Jx the subset of non-spacelike vectors and with Ex the
subset of null vectors.

Beem and Perlick [6,56] have shown that each component of Ix is convex, and
hence, by continuity, that each component of Jx\{0} is convex. Since ∂L(x, v)/∂v �=
0 for v �= 0, the hypersurfaces gv(v, v) = cnst are imbedded submanifolds and
hence each component of Ex\{0} plus {0} is the boundary of some component of Ix .
Analogously, each component of Jx\{0} plus {0} is the closure of some component of
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Ix . Furthermore, again because ∂L(x, v)/∂v �= 0 for v �= 0, distinct components of
Jx\{0} do not intersect.

For simplicity we shall restrict our analysis to

Definition 7 Finsler spacetimes are pseudo-Finsler manifolds (M, g) for which (a)
g has signature (−,+, · · · ,+), (b) for one (and hence every) x ∈ M , Ix has just 2
components, (c) there exists a global continuous timelike vector field which defines a
notion of future cone.

Condition (c), can be accomplished passing to a double coveringwhile (b) is assured
under reversibility if the spacetime has dimension larger than two [47].

Given the time orientation, causal vectors are either future or past, and so the regular
C1 causal curves are either past directed or future directed . TheC1 causal curveswhich
we shall consider will be future directed.

Remark 9 Observe that we do not assume that g is reversible. Thuswe have essentially
two different distributions of light cones on spacetime and hence two causality theo-
ries. In what follows, by mentioning only future directed timelike curves we restrict
ourselves to one of these theories.

Two points x, y ∈ M are said to be chronologically related in a set S ⊂ M , this
being denoted y ∈ I+

S (x), (x, y) ∈ I+
S or x �S y, if there is a future directed C1

timelike curve from x to y contained in S. Two points are said to be causally related,
this being denoted y ∈ J+

S (x), (x, y) ∈ J+
S or x ≤S y, if there is a future directed C1

causal curve from x to y contained in S or x = y ∈ S. We write x <S y if x ≤S y but
x �= y. If S = M then we write simply �, ≤ and <.

A curve σ : [a, b] → M will be absolutely continuous (an AC-curve for short) if
its components in one (and hence every) local chart are locally absolutely continuous.
Equivalently, introduced a complete Riemannianmetric onM , and denotingwith ρ the
corresponding distance, σ is absolutely continuous if it satisfies locally the the usual
definition of absolute continuity between (topological) metric spaces. Since every pair
of Riemannian metrics over a compact set is Lipschitz equivalent, and M is locally
compact, this definition does not depend on the metric chosen. Analogously, we can
define the concept of Lipschitz curve.

We shall say that an AC-curve σ : [a, b] → M , t �→ σ(t), is future directed causal
if σ̇ is is future directed causal almost everywhere. We do not need to define a notion
of absolutely continuous timelike curve.

The Lorentzian–Finsler length of a causal AC-curve is

l[σ ] =
∫ b

a

√−gσ̇ (σ̇ , σ̇ ) dt,

and it is finite because the integrand belongs to L1([a, b]) as in coordinates we have
σ̇ μ ∈ L1([a, b]), √|σ̇ μ| ∈ L2([a, b]).

In the Finsler case the concept of Finsler length is defined analogously but with a
plus sign inside the square root. The Finsler distance from p to q is the infimum of the
Finsler lengths of the C1 curves connecting p to q. It is symmetric and hence a true
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distance whenever the Finsler structure is reversible. We can also define a Lorentzian-
Finsler distance between p and q with p ≤ q as the supremum of the Lorentzian-
Finsler lengths of the causal AC-curves connecting p to q. As in Lorentzian geometry,
it satisfies a reverse triangle inequality [8].

Theorem 6 Let (M, g) be a C2,1 pseudo-Finsler manifold for which g is C1,1 (Sect.
1.1). Let N be a normal neighborhood of p ∈ M and suppose that g is

Finsler:
Let σ : [0, 1] → N, s �→ σ(s), be any AC-curve starting from p, then its
length is larger than that of the (unique) geodesic connecting its endpoints,
unless its image coincides with that of that geodesic. In this last case the Finsler
distance from p provides an affine parameter r(s) where the dependence on s
is absolutely continuous and increasing.

Lorentzian–Finsler:
Let σ : [0, 1] → N be any future directed causal AC-curve starting from p,
then exp−1(σ (s)) is future directed causal for every s > 0, and if exp−1(σ (ŝ))
is lightlike then σ |[0,ŝ] coincides with a future directed lightlike geodesic seg-
ment up to parametrizations. Finally, the Lorentzian–Finsler length of σ is
smaller than that of the (unique) future directed casual geodesic connecting
its endpoints, unless its image coincides with that of that geodesic. In this
last case the affine parameter of the geodesic is absolutely continuous and
increasing with s.

Remark 10 Physically the Lorentzian–Finsler version proves that a motion which is
almost everywhere slower than light is also locally slower than light. This is the main
result which allows us to develop causality theory for Lipschitz connections in Finsler
spacetimes. In particular, I+

N (p) (or J+
N (p)) coincideswith the exponentialmap-image

in N of the future directed timelike (resp. causal) cone at p.

Remark 11 It is natural to askwhether locally a spacelike geodesic segmentminimizes
the functional

∫ √
gσ̇ (σ̇ , σ̇ ) dt over the C1 spacelike curves connecting the same

endpoints. The answer is negative already in 1+1 Minkowski spacetime, just consider
almost lightlike zig-zag curves which approximate the geodesic. Their presence shows
that the infimum of the functional vanishes.

1.4 Some applications to mathematical relativity

We recall that according to Hawking and Ellis [34] a future directed continuous causal
curve x : [a, b] → M , is a continuous curve such that for every open convex normal
set C intersecting x , whenever x([t1, t2]) ⊂ C , t1 < t2, the points x(t1) and x(t2) are
connected by a future directed causal geodesic contained in C . This definition can be
imported word by word to the realm of Finsler spacetimes.

An interesting consequence of Theorem 6 is Theorem 7 which will provide a kind
of converse of the well known fact that continuous causal curves are Lipschitz when
parametrized with respect to the arc-length of a Riemannian metric [53] (due to the
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light cones that bound the curve). Known proofs in Lorentzian geometry [11] work
under stronger differentiability assumption which guarantee the validity of the usual
Gauss’ Lemma.

For its proof we shall need a lemma (a Lorentzian version is [48, Lemma 2.13]).
Given two Lorentzian-Finsler metrics g1 and g2 we write g1 < g2 if the causal vectors
for g1 are timelike for g2.

Lemma 1 Let (M, g) be a Finsler spacetime. Let p ∈ M then we can find in a
neighborhood O of p a flat Lorentzian metric (hence independent of v) g+, such that
g < g+.

Proof Let {xμ} be a coordinate chart in a neighborhood O of p ∈ M . Let h =
(dx0)2 + (dx1)2 + · · · + (dxn−1)2 be the usual Euclidean metric and let us consider
the corresponding unit sphere subbundle of T M . Let Ĵx , x ∈ O , be the intersection of
Jx with the unit sphere at x . Since the components of Jx\{0} are convex in the linear
structure of TxM , Ĵx is made of two closed disjoined convex sets of the unit sphere at
TxM . We can always find a great circle separating the two convex sets (note that the
sphere has dimension n−1, the circle has dimension n−2, thus the terminology used
is not accurate for n �= 3) (to prove this use for instance the stereographic projection
from a point not belonging to the convex sets, use the Hahn-Banach theorem, and then
project back to the sphere) and we can also rotate the coordinate system so that the
hyperplane on TpM spanned by that great circle is orthogonal to ∂0. By continuity
the Lorentzian metric at p, g+ = −N (dx0)2 + (dx1)2 + · · · + (dxn−1)2, satisfies
g < g+ for sufficiently large N . Still by continuity of Jx on x (this continuity can
be rigourously expressed in the Hausdorff metric on sets, but the details will not be
needed) the relation g < g+ holds in a neighborhood of p which we can redefine to
be O . ��
Theorem 7 Let (M, g) be a Finsler spacetime where M is a C2,1-manifold endowed
with a C1,1 fundamental field g. Let I be an interval of the real line. Every future
directed causal AC-curve x : I → M is a future directed continuous causal curve.
Every future directed continuous causal curve x : I → M once suitably parametrized
(e.g. with respect to the arc-length of a Riemannian metric) becomes a future directed
causal locally Lipschitz curve.

Remark 12 It is not true that every continuous causal curve is a causal AC-curve.
For instance, consider the timelike geodesic of Minkowski spacetime which satisfies
x = 0 and which is parametrized by x0. Consider the parametrization t = f −1

s (x0)
where fs is a singular monotone continuous function [57, Ex.8.20], so that ḟs = 0
almost everywhere.

Proof It is sufficient to prove it for I = [a, b]. Suppose that x is a future directed
causal AC-curve, let C be a convex normal set intersecting x , and let t1 < t2 be such
that x([t1, t2]) ⊂ C . The set C is a normal neighborhood for p := x(t1) thus by
Theorem 6 the geodesic connecting x(t1) and x(t2) is (future directed) causal.

Conversely, suppose that x : I → M is a future directed continuous causal curve
and let t̄ ∈ I . By Lemma 1 we can find C2,1 coordinates xμ in a convex neighborhood
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C of p := x(t̄) such that for some N > 0, the Lorentzian metric g+ = −N (dx0)2 +
(dx1)2 + · · · (dxn−1)2 satisfies g < g+ throughout C .

The function x0(t) must be increasing in a neighborhood of t̄ . Indeed, for t1, t2
belonging to a sufficiently small neighborhood of t̄ , x(t1), x(t2) ∈ C . By Theorem 6
there is a future directed causal g-geodesic connecting x(t1) with x(t2), which is in
particular a future directed g+-causal C1 curve. But x0 is increasing over this type
of curve since x0 is the usual time coordinate for the subset (C, g+) of Minkowski
spacetime, which proves the claim.

Once parametrized with respect to x0 the curve becomes Lipschitz because of the
condition of g-causality which implies g+-causality which implies ‖x(t2) − x(t1)‖ ≤
N |x0(t2) − x0(t1)|. Clearly, if l is an arc-length parameter induced by the Euclidean
coordinate metric (dx0)2 + (dx)2 then x0(l) is 1-Lipschitz, and so x(l) is locally
Lipschitz. As all Riemannian metrics are Lipschitz equivalent over compact sets, x is
locally Lipschitz whenever parametrized with respect to Riemannian arc-length. ��

Continuous causal curves in Lorentzian geometry enjoy nice properties under vari-
ous notions of limit [45]. The proofs presented in reference [45] hold as well under our
present weaker differentiability assumptions and in the Finsler spacetime case. Anal-
ogously, as should be expected from the above equivalence, the family of absolutely
continuous curves is closed under uniform convergence, a fact quite well known since
the work of Tonelli on one-dimensional variational principles [10].

The theorems so far proved in the Lorentzian–Finsler case are sufficient to establish
the validity ofmost results ofmathematical relativity and especially of causality theory
for C1,1 metrics on even Finsler rather than just Lorentzian spacetimes. In particular,
the notions of chronological and causal relations do not require modifications from
the standard ones [34]. The chronological relation is still open, the boundaries of the
causal and chronological futures of a point coincide, the achronal boundaries are still
Lipschitz hypersurfaces and so on.

We wish to include a result of this type to show that most proofs can be extended
word by word from the Lorentzian C3 metric case to the Lorentzian–Finslerian C1,1

metric case. Let us recall that a set is achronal if there is no timelike curve starting
and ending at the set.

Lemma 2 Let (M, g) be a Finsler spacetime where M is a C2,1-manifold endowed
with a C1,1 fundamental field g. Let p < q then (p, q) ∈ I+ or every continuous
causal curve connecting p to q is an achronal future directed lightlike geodesic (up
to parametrizations).

Proof Assume (p, q) /∈ I+ and let γ : [0, 1] → M be a future directed continuous
causal curve such that γ (0) = p and γ (1) = q. Since the image of γ is compact
there is a finite covering with convex normal neighborhoodsUi , i = 1, . . . , n. We can
assume Ui ∩ Ui+1 �= ∅ and that there are pi ∈ γ ∩ Ui ∩ Ui+1, i = 1, . . . , n − 1,
p0 ≡ p ∈ U1 and pn ≡ q ∈ Un . Since γ is a continuous causal curve by Theorem
6 (pi , pi+1) ∈ J+

Ui+1
thus pi and pi+1 are joined by a geodesic ηi in Ui+1 and this

geodesic coincides with γ between the same points or it is timelike.
Let us show that the presence of one timelike segment ηi implies (p, q) ∈ I+.

This is so because from the curve made of geodesic segments ηi one can construct a
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piecewise curve made of timelike geodesic segments. Indeed, one start from ηi and
translate slightly the final point of ηi−1 along ηi so that the new connecting η′

i−1
becomes timelike (as the Lorentzian–Finsler distance between the new endpoints is
necessarily positive). Analogously, one translates slightly the starting point of ηi+1
along ηi so that the new connecting η′

i+1 becomes timelike. Then one continues in this
way by taking as reference the timelike geodesic segments η′

i−1 or η′
i+1. The corners

of the so obtained piecewise timelike curve can be finally smoothed out.
Also note that if all the segments ηi are lightlike but do not join smoothly then one

can, arguing as above, replace one lightlike segment with one timelike segment by
moving slightly the starting endpoint along the previous segment.

In conclusion if (p, q) /∈ I+ the continuous causal curve must be coincident with a
lightlike geodesic connecting p to q. This geodesic must be achronal, otherwise there
is a timelike curve σ connecting p′, q ′ ∈ γ . The continuous causal curve connecting p
to p′ following γ and p′ to q ′ following σ and q ′ to q following γ is, by the just proved
result, a lightlike geodesic which is impossible since σ is timelike. The contradiction
proves that γ is achronal. ��

Under the assumption of the previous theorem we have:

Corollary 1 If p � r and r ≤ q then p � q. If p ≤ r and r � q then p � q.

Proof It follows from the fact that the composition of a timelike and a causal curve,
in whatever order, gives a causal curve which is not a lightlike geodesic as at some
points it is timelike. ��

The question as to whether causality theory could bemindlessly generalized toC1,1

spacetime metrics was considered by Chruściel and Grant [16] among others. They
developed a generalization of causality theory to continuous metrics and found that
classical results involving the existence of normal neighborhoods cannot be proved in
their framework. They observed:

We note that several statements in (causality theory) concerning geodesics
remain true for C1,1 metrics; it is conceivable that all of them remain true,
but justifications would be needed.

We provided arguments which prove the correctness of this expectation. Indeed, the
existence of convex normal neighborhoods is the central technical tool which allows
one to complete many local arguments, such as that on the openness of the chronology
relation, over which causality theory is based. Once the existence of convex normal
neighborhoods has been established, and the local maximization property of causal
geodesics has been obtained, most (if not all) results of causality theory followwithout
any substantial alteration to their classical proofs. Of course those result that can be
expressed only through the use of the second derivative of the metric, for instance
because they use the curvature tensor, would require further discussion (especially in
the Finsler case).

Working with continuous metrics as in [16] expands very much causality theory
though there is a price to be paid. Some desirable results do not hold anymore, for
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instance lightlike geodesics are not necessarily locally achronal (for Lipschitz con-
nections this result is guaranteed by Theorem 6). For other differences the reader is
referred to [16].

1.5 Distance balls are convex

If the spray is the Levi-Civita connection of a Riemannian metric g it is natural to
ask whether the convex neighborhood can be chosen to be a distance ball, that is,
if for sufficiently small δ, D−1

p ([0, δ)) is convex normal. Whitehead gave a positive
answer to this problem through a proof which demands quite strong differentiability
properties on Dp and hence on the metric. He reasons that it is sufficient to intro-
duce normal coordinates (y1, . . . , yn) on N , because in this way the distance balls
become coincident with the coordinate balls (we proved the existence of convex nor-
mal neighborhood constructing them as coordinate balls). Unfortunately, we can apply
our argument which shows the convexity of coordinate balls only for charts which are
C2,1, thus the exponential map would have to be C2,1 and hence the metric would
have to be C3,1 (and the manifold C4,1). A different approach [58,61] demands just
the twice continuous differentiability of D2

p, but under our assumptions D2
p turns out

to be just C1,1. Finally, one could invoke Morse’s Lemma so as to find a coordinate
system in which the level sets of D2

p are coordinate spheres [43]. Unfortunately, this
lemma applies only if D2

p is C
2.

Nevertheless, we shall prove that D2
p is strongly convex using a Picard–Lindelöf

analysis.
Let us recall [23] that a real function defined on an open convex set C of an affine

space A is strongly convex with constant λ if there is a λ > 0 such that for every
x, y ∈ C , α ∈ [0, 1],

f (αx + (1 − α)y) ≤ α f (x) + (1 − α) f (y) − λ

2
α(1 − α)‖x − y‖2.

A C1 real function is strongly convex on C with constant λ > 0 if and only if its
differential d f is strongly monotone with constant λ, that is, for every x, y ∈ C ,

[d f (y) − d f (x)] · (y − x) ≥ λ‖y − x‖2.
In a Riemannian space we have analogous definitions and results [60, Prop. 16.2]. A
real function defined on an open geodesically convex set C is geodesically strongly
convex with constant λ if there is λ > 0 such that for every geodesic x : J → C ,
α ∈ [0, 1],

f (x((1 − α)a + αb)) ≤ (1 − α) f (x(a)) + α f (x(b)) − λ

2
α(1 − α)D(x(a), x(b))2.

A C1 real function is geodesically strongly convex on C with constant λ > 0 if and
only if its differential d f is geodesically strongly monotone with constant λ, that is,
for every arc-length parametrized geodesic x : J → C ,
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d f (ẋ(b)) − d f (ẋ(a)) ≥ λD(x(a), x(b)).

The proof of the equivalence is obtained applying the result for the affine space case
to the composition f (x(t)).

We shall prove

Theorem 8 Let M be a C2,1-manifold endowed with a C1,1 Riemannian metric g and
corresponding locally Lipschitz Levi-Civita connection. Let p ∈ M and let ε > 0.
Let xμ : U → R

n be a chart in a neighborhood of p such that, gαβ(p) = δαβ ,
Γ

μ
αβ(p) = 0. Let C ⊂ U be a coordinate ball around p which we already know to

be convex normal for sufficiently small radius. We also have that for sufficiently small
radius for every q, q1, q2 ∈ C, interpreting the minus sign and scalar product through
the Euclidean structure induced by the coordinate system on C

|[dD2
q(q2) − dD2

q(q1)](q2 − q1) − 2(q2 − q1)
2| ≤ ε(q2 − q1)

2, (14)

and for every q ∈ C and arc-length parametrized geodesic x : J → C

|∇ẋ(b)D
2
q(x(b)) − ∇ẋ(a)D

2
q(x(a)) − 2D(x(a), x(b))| ≤ εD(x(a), x(b)). (15)

In particular, D2
q : C → [0,+∞) is strongly convex with parameter λ = 2 − ε with

respect to both the Euclidean

D(q, (1 − α)q1 + αq2)
2 ≤ (1 − α)D(q, q1)

2 + αD(q, q2)
2

−
(
1 − ε

2

)
α(1 − α)‖q2 − q1‖2,

and the Riemannian structures of C

D(q, x((1 − α)a + αb))2 ≤ (1 − α)D(q, x(a))2 + αD(q, x(b))2

−
(
1 − ε

2

)
α(1 − α)D(x(0), x(1))2.

Thus for any sufficiently small r the open balls D−1
p ([0, r)) are contained in C and

are (strictly) convex normal neighborhoods.

As the balls D−1
p ([0, r)) are convex we can infer a number of equivalent convexity

properties thanks to the equivalences for metric spaces proved in [25], for instance Dp

is itself convex.
We have the following improvement of our previous formulation of Gauss’ Lemma

(Theorem 5) which shows that the direct product sum for the metric can be accom-
plished on a sphere of a chosen radius r̄ and almost everywhere outside it.

Theorem 9 With the notations of the previous theorem, the levels sets D−1
p (r) areC1,1

hypersurfaces diffeomorphic to Sn−1 with an induced Lipschitz metric hr . Locally on
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C we can always find C2,1 functions θi i = 1, . . . , n − 1, such that in the C1,1 chart
(r, θ1, . . . , θn−1) the metric takes the form

g = dr2 + (hr )i j (dθi − Aidr)(dθ j − A jdr), (16)

where hr = (hr )i jdθidθ j and all the components (hr )i j , Ai , are Lipschitz in (r, θ).
For any chosen sufficiently small radius r̄ new Lipschitz coordinates (r, α1,

. . . , αn−1) can be found such that {αi } provide a C1,1 chart on D−1
p (r̄) and the metric

takes the direct sum form

g = dr2 + (hr (α))i j dα
idα j ,

where the components (hr (α))i j are defined almost everywhere and are bounded (this
holds also for spherical normal coordinates) and for r = r̄ they are defined everywhere
and are Lipschitz in α.

1.6 Convexity on Lorentzian manifolds

In this section we study the problem of the existence of convex/concave functions
and sets in Lorentzian manifolds. The Lorentzian case is more involved that the Rie-
mannian but is essential for the understanding of Lorentzian manifolds under low
differentiability conditions.

In the next theorem ηαβ is the usualMinkowski metric in diagonal form (η00 = −1,
ηi i = +1 for i ≥ 1).

Theorem 10 Let M be a C2,1-manifold endowed with a C1,1 Lorentzian metric g
and corresponding Levi-Civita Lipschitz connection. Let p ∈ M and let ε > 0. Let
xμ : U → R

n be a chart in a neighborhood of p such that, gαβ(p) = ηαβ ,Γ
μ
αβ(p) = 0.

Let C ⊂ U be a coordinate ball around p which we already know to be convex normal
for sufficiently small radius. We also have that for sufficiently small radius, for every
geodesic x : [0, 1] → C, and for every q ∈ C

∣∣∣∣∣
d

dt
D2
q(x(t))

∣∣∣∣
t=1

− d

dt
D2
q(x(t))

∣∣∣∣∣
t=0

− 2D2(x(0), x(1))| ≤ ε‖x(1) − x(0)‖2, (17)

where the Euclidean and affine structure of the coordinate chart is used just on the
right-hand side.

Observe that in the next theorem there is no mention to the Euclidean or affine
structures induced by a coordinate chart (we stress once again that D2

p can be negative).

Theorem 11 Let M be a C2,1-manifold endowed with a C1,1 Lorentzian metric g and
corresponding locally Lipschitz Levi-Civita connection. Let p ∈ M and let ε > 0.
Let γ : I → M, t �→ γ (t), be a timelike geodesic such that p = γ (0). The convex
normal set C � p of Theorem 4 can be chosen so small that once I is redefined to be
the connected component of γ −1(C) containing 0, the following property holds.
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For every q, r ∈ γ (I ), q �= r , there is a strictly convex normal set O � r ,
Ō ⊂ C, such that all the points of Ō are either in the chronological future or in the
chronological past of q; every geodesic x : J → O, connecting two points on the
same level set (D2

q)
−1(c), c < 0, of the function D2

q : C × C → R, satisfies, once
reparametrized with respect to g-arc length (x is necessarily spacelike by Theorem 6,
thus D(x(a), x(b)) ≥ 0), for every a, b ∈ J ,

|∇ẋ(a)D
2
q(x(a)) − ∇ẋ(b)D

2
q(x(b)) − 2D(x(a), x(b))| ≤ εD(x(a), x(b)). (18)

In particular, D2
q(x(t)) is strongly convex with parameter 2 − ε

D2
q(x((1 − α)a + αb)) ≤ (1 − α)D2

q(x(a)) + αD2
q(x(b))

−
(
1 − ε

2

)
α(1 − α)D(x(a), x(b))2,

and the sets of the form (D2
q)

−1((−∞, c)) ∩ O for c < 0 are strictly geodesically
convex.

Remark 13 Mimicking the proof of [3, Prop. 3.1] it is easy to show that the Lorentzian

distance on O from q, DL
q =

√
−D2

q is semiconvex and hence almost everywhere

first and twice differentiable. However, in order to prove the geodesic convexity of
(D2

q)
−1((−∞, c)) ∩ O we need a result on the convexity of D2

q rather than on the
convexity of DL

q . Furthermore, we stress that the notion of semiconvexity, due to
Rockafellar, is a rather weak notion. For instance the concave function −x2 on R is
semiconvex (thus the terminology semiconvexity can be misleading).

We recall that a subset A ⊂ M is causally convex in B ⊂ M , with A ⊂ B, if every
C1 causal curve contained in B and joining two points of A is necessarily contained
in A. An open subset B is strongly causal if every point p ∈ B admits arbitrarily
small open neighborhoods which are causally convex in B. An open subset S of M
is called causally simple if it is strongly causal and J+

S ⊂ S × S is closed in the
product topology [34,48]. A causally simple subset S is globally hyperbolic if for
every p, q ∈ S, J+

S (p) ∩ J−
S (p) is compact.

The following claimwas known under stronger differentiability assumptions. It can
be found in a footnote of [48].

Theorem 12 Convex normal subsets are causally simple.

Proof Let T be the global timelike vector fieldwhich provides the time orientation. Let
C be a convex normal subset, and let f1, f2 : C×C → R be the functions f1(p, q) :=
g(exp−1

p q, exp−1
p q), f2(p, q) := g(exp−1

p q, T (p)) since exp−1 and g are continuous

f1 and f2 are continuous, and hence J
+
C = f −1

1 ((−∞, 0])∩ f −1
2 ((−∞, 0)) is closed.

A spacetimeC is strongly causal if and only if for every p, q ∈ C , (p, q) ∈ J+
C and

(q, p) ∈ J+
C imply p = q (see [44]). Suppose that there are p, q ∈ C , p �= q, such

that p ≤C q and q ≤C p (we just proved J+
C = J+

C ). Let γ1 be the future directed
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causal geodesic connecting p to q and let γ2 be the future directed causal geodesic
connecting q to p. Then the images of γ1 and γ2 differ (otherwise there would be a
geodesic which is both future and past directed), and hence there are two geodesics
connecting p to q, a contradiction to the uniqueness of the connecting geodesic in
convex normal sets (Theor. 4). ��
Corollary 2 Let M be a C2,1-manifold endowed with a C1,1 Lorentzian metric g and
corresponding locally Lipschitz Levi-Civita connection. Let p ∈ M then there is a
local base {Ci } for the topology at p such that for every i , Ci is strictly convex normal,
globally hyperbolic, C̄i+1 ⊂ Ci , and Ci+1 is causally convex in Ci (and hence C1).

Part of the previous result was already known [48], what was open was the result
on the convexity of Ci . Observe that if Ci is globally hyperbolic then any two causally
related events are connected by a causal geodesic contained in Ci (by the Avez-
Seifert theorem [34]). Thus what was really missing was the convexity with respect
to spacelike geodesics. These globally hyperbolic convex normal sets behave pretty
well, indeed this property is left invariant under finite intersections. As a consequence,
by Lebesgue’s covering lemma, for any compact set K on spacetime, for any metric
ρ : M×M → R inducing the manifold topology, and finite covering of K by globally
hyperbolic convex normal sets, there is an ε > 0 such that for any pair of points p, q
such that ρ(p, q) < ε, points p and q are contained in one element of the covering
and hence connected by some geodesic.

Remark 14 A spacetime is strongly causal if every point admits an arbitrarily small
causally convex set (in M). In a strongly causal spacetime, we can find a causally
convex (in M) open neighborhood Y of p contained in C1, and for sufficiently large i ,
Ci ⊂ Y . As a consequence, the sets Ci for sufficiently large i are also causally convex
in M . Thus for strongly causal spacetimes we can include in the previous Corollary
the causal convexity of Ci with respect to M among the properties of these sets.

1.7 Two variations on the main theme

Our results admit a number of variations obtained replacing the base point p of the
pointed exponential mapwith an embeddedmanifold. For instance, consider a pseudo-
Riemannian manifold endowed with a C1,1 metric and a Lipschitz metric compatible
connection. Let φ : S → M , k ≥ 1, be aC1,1 k-dimensional embedding, such that the
induced metric is pseudo-Riemannian. Its non-degeneracy implies that at each point
p ∈ φ(S) the tangent space TpM is the direct sum of the tangent space to φ(S) and it
normal space. Let ν(S) be the corresponding n-dimensional normal bundle with base
φ(S).

We shall prove the following theorem analogous to Theorem 3:

Theorem 13

(expν(S)) The vector bundle ν(S) is Lipschitz. Moreover, the map expν(S) is strongly
differentiable on the image of the zero section of π |ν(S) : ν(S) → φ(S),
and establishes a Lipeomorphism between a neighborhood of the image of
the zero section and a neighborhood of φ(S).
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By the Lipschitzness of ν(S) we can apply to expν(S) := exp |ν(S) the results of
Theorem 1. This theorem can also be used to construct tabular neighborhoods. The
pointed exponential map can be regarded as a special case of this type of construction
for k = 0.

We can also consider a function Hμ dependent on time provided it is Lipschitz.
Let γ(t0,v)(t) be any solution of

dxμ

dt
= vμ, (19)

dvμ

dt
= Hμ(t, x, v), (20)

with initial condition v ∈ T M at time t0.

Theorem 14 The solution γ(t0,v)(t) is locally Lipschitz in (t, t0, v) and γ(t0,v)(·) is
C2,1
loc . Let (t̂, p̂) ∈ R× M, then for every ε > 0 there is an open neighborhood C of p̂

such that for every p1, p2 ∈ C, t1, t2 ∈ (t0 − ε, t0 + ε), t1 < t2, there is one and only
one solution starting from p1 at time t1 and reaching p2 at time t2 entirely contained
in C.

The idea is to rewrite the system of first order ODE as follows

dt

ds
= t ′,

dxμ

ds
= x ′μ,

dt ′

ds
= 0,

dx ′μ

ds
= (t ′)2 Hμ(t, x, x ′/t ′) = Hμ(t, x, x ′),

where x ′ = vt ′, so as to reduce the problem to the (s-)time independent case. The
previous theorem is then a corollary of Theorem 4 whenever in the proof provided
for that theorem in place of the Banach space (Rn, ‖ ‖) we consider the Banach space
(Rn+1,max(‖ ‖, | |)).

1.8 Some technical preliminary results

Let us first recall that in finite dimensions and for Lipschitz functions the notions of
Gâteaux differential and Frechet differential coincide [19, p. 158].

Proposition 2 Any Lipschitz function f : O → R, O ⊂ R
n, which is Gâteaux differ-

entiable at p is differentiable at p.

Proof Let G be the Gâteaux differential at p. By contradiction, suppose that G is not
the differential of f at p, then there is ε > 0 and a sequence vn ∈ R

n , vn �= 0, vn → 0,
such that
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‖ f (p + vn) − f (p) − G(vn)‖ > ε‖vn‖. (21)

Let en = vn/‖vn‖, by the compactness of Sn−1 we can assume without loss of gen-
erality that en → e, with ‖e‖ = 1. Let us decompose vn in components parallel and
perpendicular to e

vn = ane + bn

where an is a scalar and bn is a vector. We have

‖ f (p + vn) − f (p) − G(vn)‖ ≤ ‖ f (p + vn) − f (p + ane)‖
+ ‖ f (p + ane) − f (p) − G(ane)‖
+ ‖G(ane) − G(vn)‖

= K‖bn‖ + oe(an) + |G| ‖bn‖,

where K is the Lipschitz constant. The condition en → e reads an/‖vn‖ →
1, ‖bn‖/‖vn‖ → 0. For sufficiently large n the previous inequality contradicts
Eq. (21). ��

In order to prove Theorem 1 we shall need the following result on differentiation
under the integral sign which, we believe, is interesting in its own right.

Theorem 15 Let f : [a, b] × R
k → R, (x, y) �→ f (x, y), be a continuous function

which is locally Lipschitz in y uniformly in x. Then for almost every y, the differential
d2 f exists at (u, y) for almost every u ∈ [a, b], it is summable in [a, b], and for every
x ∈ [a, b]:

(
d2

∫ x

a
f (u, y) du

)
=

∫ x

a
d2 f (u, y) du.

Proof Let ȳ ∈ R
n , there is a relatively compact neighborhood O � ȳ which is a

product of open intervals. The function f (x, ·)|O is K -Lipschitz in y where K does
not depend on x . In particular, for any x ∈ [a, b] the function f (x, ·) is differentiable
almost everywhere (Rademacher’s theorem). Let E(x) ⊂ O be the subset where
f (x, ·)|O is differentiable. Fubini’s theorem applied to the characteristic function of

A = ∪x∈[a,b][{x} × E(x)] ⊂ [a, b] × O,

states that for almost every y ∈ O , the differential d2 f exists at (x, y) for almost every
x ∈ [a, b]. From now on let y be one of these special values.

As a consequence, for almost every y ∈ O , and for every vector v ∈ R
k , the partial

derivative ∂v f (x, y) exists for almost every x ∈ [a, b]. Because of the Lipschitz
condition we have |∂v f (x, y)| ≤ K‖v‖. Let εn → 0 then

∂v f (x, y) = lim
n→∞ f yn (x),
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where

f yn (x) = 1

εn
[ f (x, y + vεn) − f (x, y)], | f yn (x)| ≤ K‖v‖.

By the dominated convergence theorem ∂v f (x, y) is summable and

∂v

∫ x

a
f (u, y)du =

∫ x

a
∂v f (u, y)du.

This equation proves that the linear operatorG(v) on the right-hand side is theGâteaux
differential at y of F(x, v) := ∫ x

a f (u, v)du. Moreover, this function is Lipschitz in
v thus F(x, ·) is differentiable and G coincides with its differential (Prop. 2). ��

Alternatively, we could use a theorem [46] which improves Schwarz’s theorem
on the equality of mixed partial derivatives. The reader is referred to [46] for further
details. A result similar to the next one was proved by Federer [24, Lemma 4.7].

Theorem 16 Let f : O → R be a Lipschitz function defined on an open subset ofRn.
Let J : O → R

n be a continuous function. If the differential of f exists and coincides
with J almost everywhere then f is C1 and its differential is J .

Proof For n = 1 this statement follows from inspection of the function

f (x) − f (a) −
∫ x

a
J (u)du,

a ∈ O . This function is Lipschitz, thus absolutely continuous, and hence has a deriv-
ative which vanishes almost everywhere, thus it is a constant. Taking x = a we find
that this constant is zero, thus f (x) = f (a) + ∫ x

a J (u)du which implies that f is C1

with derivative J .
We can assume without loss of generality, O = R

n . Let v ∈ R
n , we want to

show that at every x ∈ O , ∂v f = J (v). This fact would imply that f is Gâteaux
differentiable at each point with Gâteaux differential J , thus the desired conclusion
would follow from Prop. 2.

By Fubini’s and Rademacher’s theorem for almost every hyperplane perpendicular
to v, the function f is almost everywhere differentiable at the points belonging to the
hyperplane.

Let us introduce coordinates {y0, . . . , yn} such that one such hyperplane has equa-
tion y0 = 0 and v = ∂y0 . Let g(y1, ·, yn) := f (0, y1, . . . , yn) be the Lipschitz
restriction of f to the hyperplane.

The function J (t, y) is continuous and hence uniformly continuous over compact
subsets. As a consequence, the function

F(t, y) = g(y) +
∫ t

0
J (t, y; e0) dt

is continuous in (t, y) and C1 in t .
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Let (t, y) ∈ R
n and let U � (t, y) be an open neighborhood. The function f is

almost everywhere differentiable with differential J . By Fubini’s theorem for almost
every line parallel to the y0-axis ( the line is determined by its intersection with
y0 = 0 and “a.e.” in this statement is meant in the Lebesgue (n − 1)-dimensional
measure of this hyperplane), f is almost everywhere differentiable with differential
J . Thus there is some (t ′, y′) ∈ U passing through one such line. The function f − F
over such line is Lipschitz and differentiable almost everywhere with zero derivative,
thus it is a constant. But f − F = 0 at y0 = 0 thus that constant vanishes and
hence f (t ′, y′) = F(t ′, y′). As both functions are continuous and U is arbitrary,
f (t, y) = F(t, y) that is f = F . We conclude that ∂v f = ∂vF = ∂y0F = J (e0),
which is what we wanted to prove. ��

2 Proofs I: a Picard-Lindelöf analysis

This section is devoted to the proofs of the results stated in the previous section and,
in particular, to the proof of Theorem 4. In order to prove the strong differentiability
of exp we shall make a Picard-Lindelöf analysis of the geodesic equation in the small.
We shall also pass through the proof of existence and Lipschitz dependence on initial
conditions. Though they are already known they will be useful to fix the notation and
introduce the bounds used in the last step of the proof.

Let xμ : U → R
n be a coordinate chart in a neighborhood U of p ∈ M . Without

loss of generality let us assume that xμ(p) = 0 and let r be such that the closed ball
B̄(p, r) = {q : ‖q − p‖ ≤ r} is contained inU , where ‖ ‖ is the Euclidean coordinate
norm. On the tangent bundle we introduce the local coordinate system {xμ, ẋμ}. We
shall regard the coordinate chart image xμ(U ) as an open subset of the normed space
(Rn, ‖ ‖).

Let us consider the system (1, 2) where Hμ is homogeneous of second degree in v

and Lipschitz

‖H(x2, v2) − H(x1, v1)‖ ≤ α‖x2 − x1‖ + β‖v2 − v1‖

in the domain B̄(p, r) × {v : ‖v‖ ≤ 1}.
Suppose that v1, v2 are not bounded as stated. Let V be any constant such that

V > max(‖v1‖, ‖v2‖). (22)

The Lipschitz conditions is then better rewritten in the following form:

‖H(x2, v2) − H(x1, v1)‖ = V 2
∥∥∥H(x2,

v2

V
) − H(x1,

v1

V
)

∥∥∥
≤ V 2

{
α‖x2 − x1‖ + β‖v2

V
− v1

V
‖
}

≤ αV 2‖x2 − x1‖ + βV ‖v2 − v1‖.
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Let
M = sup

x∈B̄(p,r)

sup
‖v‖=1

‖H(x, v)‖. (23)

We rewrite (1, 2) in integral form

xμ(t, x0, ẋ0) = xμ
0 +

∫ t

0
ẋμ(t, x0, ẋ0) dt, (24)

ẋμ(t, x0, ẋ0) = ẋμ
0 +

∫ t

0
Hμ

(
x(t, x0, ẋ0), ẋ(t, x0, ẋ0)

)
dt, (25)

where (x0, ẋ0) is the initial condition at time t = 0. We have included in the above
expression the dependence of (x, ẋ) on the initial conditions. Unless needed we shall
remove it from the expressions below.

Let (x0, ẋ0) belong to the domain

max{‖x0‖, ‖ẋ0‖} < δ, (26)

where δ is a positive constant such that (the expression makes sense for M = 0)

δ <
1

M

(
1 − e−Mr/2

)
≤ r

2
, (27)

and is sufficiently small that

δ

1 − δM
≤ 1,

βδ

2(1 − δ M)

(
1 +

√
1 + 4α/β2

)
≤ 1. (28)

Starting from k = −1 with

x−1(t) = x0, ẋ−1(t) = 0,

we define inductively the next two functions defined over [0, 1]which, in the induction
hypothesis are well defined and C1 and are such that (xk, ẋk)(t) ∈ π−1(B̄(p, r)) for
every t ∈ [0, 1]

xμ
k+1(t) = xμ

0 +
∫ t

0
ẋμ
k (t) dt, (29)

ẋμ
k+1(t) = ẋμ

0 +
∫ t

0
Hμ

(
xk(t), ẋk(t)

)
dt. (30)

In particular observe that they imply for k = 0

x0(t) = x0, ẋ0(t) = ẋ0,

while for k ≥ 1 they will generically depend on t . From Eqs. (29, 30) we obtain (we
shall repeatedly use the inequality ‖ ∫

vμ(t)dt‖ ≤ ∫ ‖vμ(t)‖dt which is well known
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once interpreted as the fact that the length of a C1 curve on R
n is greater than the

distance between its endpoints)

‖xk+1(t)‖ ≤ ‖x0‖ +
∫ t

0
‖ẋk(t)‖ dt,

‖ẋk+1(t)‖ ≤ ‖ẋ0‖ +
∫ t

0
M ‖ẋk(t)‖2 dt.

The second inequality implies inductively the following bound

‖ẋk+1(t)‖ ≤ ‖ẋ0‖
1 − ‖ẋ0‖Mt

,

which is clearly satisfied for k = −1 andwhich, replaced into the first inequality gives

‖xk+1(t)‖ ≤ ‖x0‖ − 1

M
ln(1 − ‖ẋ0‖Mt) ≤ δ − 1

M
ln(1 − δ M).

By (27) we have for every k ≥ 0,

‖xk(t)‖ < r,

‖ẋk(t)‖ <
δ

1 − δ M

thus these functions define indeed points belonging to π−1(B̄(p, r)). We observe that
for any instants t1, t2 ∈ [0, 1] and any pair v1 := ẋi (t1), v2 := ẋ j (t2)

V := δ

1 − δ M
(31)

satisfies the condition of Eq. (22). From now on V will be given by this equation.

2.1 Existence of geodesics

We have:

‖xk+1(t) − xk(t)‖ ≤
∫ t

0
‖ẋk(t) − ẋk−1(t)‖ dt,

‖ẋk+1(t) − ẋk(t)‖ ≤
∫ t

0
‖H(xk(t), ẋk(t)) − H(xk−1(t), ẋk−1(t))‖ dt,

≤
∫ t

0
{A‖xk(t) − xk−1(t)‖ + B‖ẋk(t) − ẋk−1(t)‖} dt,

where A = [ δ
1−δ M ]2α and B = βδ

1−δ M . There is a positive constant D such that
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A

D
+ B = D, (32)

namely

D = 1

2

(
B +

√
B2 + 4A

)
= βδ

2(1 − δ M)

(
1 +

√
1 + 4α/β2

)
. (33)

By Eq. (28)

D ≤ 1.

By induction we have the bounds

‖xk(t) − xk−1(t)‖ ≤ 1

D

(Dt)k

k!
‖ẋk(t) − ẋk−1(t)‖ ≤ (Dt)k

k!
They imply that the series

xμ
k (t) = xμ

0 +
n∑

k=0

[
xμ
k+1(t) − xμ

k (t)
]
,

ẋμ
k (t) = ẋμ

0 +
n∑

k=0

[
ẋμ
k+1(t) − ẋμ

k (t)
]
,

define a succession of continuous functions which converge uniformly to (continuous)
functions xμ(t) and ẋμ(t) over [0, 1]. By uniform convergence we can pass to the limit
in Eqs. (29, 30). Indeed, observe that Hμ(x, ẋ) is continuous over the compact set
B̄(p, r) × {v : ‖v‖ ≤ V } and hence uniformly continuous. Thus these limits indeed
solve the system (24, 25). In particular, Eq. (24) proves that indeed ẋμ(t) = d

dt x
μ(t).

For the proof of the uniqueness of geodesics the reader can consult [31, Theor. 1.1,
Chap. 2].

2.2 Lipschitz dependence on initial conditions (Theorem 1)

The Lipschitz dependence on the initial condition can be proved using the Gronwall’s
inequality. It is rather easy to obtain it directly using the Picard–Lindelöf approxima-
tion.

Let us consider two solutions xμ(t) and yμ(t) of the geodesic equation with initial
conditions (xμ

0 , ẋμ
0 ), (yμ

0 , ẏμ
0 ), which belong to the domain given by Eq. (26). Starting

from these initial conditions we define inductively functions xμ
k (t), yμ

k (t) as above,
and subtract the corresponding Eqs. (29, 30).
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‖xk+1(t) − yk+1(t)‖ ≤ ‖x0 − y0‖ +
∫ t

0
‖ẋk(t) − ẏk(t)‖ dt,

‖ẋk+1(t) − ẏk+1(t)‖ ≤ ‖ẋ0 − ẏ0‖ +
∫ t

0
{A‖xk(t) − yk(t)‖ + B‖ẋk(t) − ẏk(t)‖} dt.

We now regard the chart-trivialized tangent bundle of coordinates {xμ, ẋμ} as the
direct sum of vector spaces Rn ⊕ R

n endowed with the norm

‖(x, ẋ)‖ := max{‖x‖, ‖ẋ‖}.

By induction we obtain

‖xk(t) − yk(t)‖ ≤ max{D‖x0 − y0‖, ‖ẋ0 − ẏ0‖} e
Dt

D
,

‖ẋk(t) − ẏk(t)‖ ≤ max{D‖x0 − y0‖, ‖ẋ0 − ẏ0‖} eDt .

Clearly, the induction hypothesis is satisfied for k = 0. Taking the limit k → ∞

‖x(t) − y(t)‖ ≤ max{D‖x0 − y0‖, ‖ẋ0 − ẏ0‖} e
Dt

D
,

‖ẋ(t) − ẏ(t)‖ ≤ max{D‖x0 − y0‖, ‖ẋ0 − ẏ0‖} eDt .

Recalling that D ≤ 1 these inequalities imply

‖(x, ẋ)(t) − (y, ẏ)(t)‖ ≤ ‖(x0, ẋ0) − (y0, ẏ0)‖ eDt

D
,

which proves the Lipschitz dependence on the initial conditions (the exponential map
is obtained for t = 1).

The joint dependence on t and (x0, ẋ0) is also locally Lipschitz, indeed since the
time dependence of (x, ẋ)(t) is C1,1 it is locally Lipschitz, thus for t, t ′ ∈ [a, b]

‖(x, ẋ)(t ′) − (y, ẏ)(t)‖ ≤ ‖(x, ẋ)(t ′) − (x, ẋ)(t)‖ + ‖(x, ẋ)(t) − (y, ẏ)(t)‖,

from which we infer the local Lipschitzness of the dependence on (t, x0, ẋ0).
As a consequence, the geodesic flow over T M is locally Lipschitz because every

geodesic segment can be covered with a finite number of coordinate patches. By
continuity the domain W where it is defined is open and satisfies the conditions of
Theorem 1. Analogously, Ω is open.

Let us rewrite the system (24, 25) reintroducing the dependence on the initial
conditions

(x, ẋ)(t, x0, ẋ0) = (x0, ẋ0) +
∫ t

0
( f1, f2)(t, x0, ẋ0)dt, (34)

where

f μ
1 (t, x0, ẋ0) = ẋμ(t, x0, ẋ0),

f μ
2 (t, x0, ẋ0) = Hμ

(
x(t, x0, ẋ0), ẋ(t, x0, ẋ0)

)
.
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Convex neighborhoods for Lipschitz connections and sprays 601

Since the dependence (x, ẋ)(t, x0, ẋ0) is Lipschitz we can apply Theorem 15 with the
replacements x → t , y → (x0, ẋ0).

We conclude that for almost every (x0, ẋ0) the differential d(x0,ẋ0)( f1, f2)(u) exists
for almost every u, it is summable and for every t ∈ [0, 1]

d(x0,ẋ0)(x, ẋ) = d(x0,ẋ0)(x0, ẋ0) +
∫ t

0
d(x0,ẋ0)( f1, f2)(u, x0, ẋ0)du. (35)

In particular, for almost every (x0, ẋ0) satisfying Eq. (27) the differential d(x0,ẋ0)(x, ẋ)
exists for every t ∈ [0, 1] and is given by this equation. Let us callU this special subset
of the initial conditions.

Since the functions f1 and f2 are locally Lipschitz the differential on the right-
hand side is bounded and so, for every (x0, ẋ0) ∈ U , the quantity d(x0,ẋ0)(x, ẋ) has
a Lipschitz dependence on t where the Lipschitz constant does not vary in a small
relatively compact neighborhood of (x0, ẋ0). In otherwords, d(x0,ẋ0)(x, ẋ) is a function
dependent on (t, x0, ẋ0) which is Lipschitz in t uniformly in those (x0, ẋ0) belonging
to U .

Differentiating Eq. (35) with (x0, ẋ0) ∈ U we get that for almost every t

d

dt
d(x0,ẋ0)(x, ẋ) = d(x0,ẋ0)( f1, f2) = d(x0,ẋ0)

d

dt
(x, ẋ).

Though we performed just a local analysis, the conclusion does not change in the
setting of Theorem 1 where U is replaced by Ω̃ since, as observed above, every
geodesic segment can be covered with a finite number of coordinate patches. The fact
that U and Ω̃ are star-shaped is a consequence of Eq. (9).

In order to prove the last statement of Theorem 1 it suffices to observe that we can
restart the last argument beginning with Eq. (34) by introducing the Lipschitz depen-
dence (x0, ẋ0)(z) where z are local coordinates on N . Since (x, ẋ)(t, z) is locally
Lipschitz the whole argument stills works where it is understood that ∂zϕ exists
almost everywhere in the Lebesgue m-dimensional measure of N (This measure can
be equivalently defined either as done here using a chart of N or in a more intrinsic
way regarding N as a subset of T M , see [22, Sect. 3.3.3]). Theorem 1 is proved.

Remark 15 We pause for a moment to outline how to generalize this proof for C1,1

sprays over C3,1 manifold, the further generalization to the Ck,1, k ≥ 0, spray case
being then analogous.

The idea is to introduce variables xμ
k,β , x

μ

k,β̇
, ẋμ

k,β , ẋ
μ

k,β̇
and add to the system (29,

30) the equations obtained (formally) differentiating the right-hand side (29, 30) with
respect to the initial conditions

xμ
k+1,β(t) = δ

μ
β +

∫ t

0
ẋμ
k,β(t) dt,

xμ

k+1,β̇
(t) =

∫ t

0
ẋμ

k,β̇
(t) dt,
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ẋμ
k+1,β(t) =

∫ t

0
(∂xα Hμ)xα

k,β + (∂ẋα Hμ)ẋα
k,β dt,

ẋμ

k+1,β̇
(t) = δ

μ
β +

∫ t

0
(∂xα Hμ)xα

k,β̇
+ (∂ẋα Hμ)ẋα

k,β̇
dt.

The proof of the convergence for k → ∞ proceeds as above. From here it follows
that xμ

,β , x
μ

,β̇
, ẋμ

,β , ẋ
μ

,β̇
are Lipschitz as they solve a first order Lipschitz ODE. Since

the solution is unique xμ
,β coincides with ∂

xβ
0
xμ and so on.

2.3 Strong differentiability of exp (Theorems 3 and 13)

Let us consider two solutions xμ(t) and yμ(t) of the geodesic equation with initial
conditions (xμ

0 , ẋμ
0 ), (yμ

0 , ẏμ
0 ), which belong to the domain given by Eq. (26). Starting

from these initial conditions we define inductively functions xμ
k (t), yμ

k (t) as above,
and subtract the corresponding Eqs. (29, 30), rearranging them as follows

xk+1(t) − yk+1(t) − (x0 − y0) − (ẋ0 − ẏ0)t =
∫ t

0
[ẋk(t) − ẏk(t) − (ẋ0 − ẏ0)] dt,

ẋk+1(t) − ẏk+1(t) − (ẋ0 − ẏ0) =
∫ t

0

[
H (xk(t), ẋk(t)) − H (yk(t), ẏk(t))

]
dt.

Thus

‖xk+1(t)−yk+1(t) − (x0 − y0)−(ẋ0 − ẏ0)t‖ ≤
∫ t

0
‖ẋk(t) − ẏk(t) − (ẋ0 − ẏ0)‖ dt,

and

‖ẋk+1(t) − ẏk+1(t) − (ẋ0 − ẏ0)‖ ≤
∫ t

0
‖H(xk(t), ẋk(t)) − H(yk(t), ẏk(t))‖ dt

≤
∫ t

0
{A‖xk − yk‖ + B‖ẋk − ẏk‖} dt

≤
∫ t

0
{A[‖xk − yk − (x0 − y0) − (ẋ0 − ẏ0)t‖ + ‖x0 − y0‖ + ‖ẋ0 − ẏ0‖t]

+ B[‖ẋk − ẏk − (ẋ0 − ẏ0)‖ + ‖ẋ0 − ẏ0‖]} dt.

By induction it follows that

‖xk(t) − yk(t) − (x0 − y0) − (ẋ0 − ẏ0)t‖ ≤ max{D‖x0 − y0‖, ‖ẋ0 − ẏ0‖}

×
(
eDt − 1

D
− t

)
,

‖ẋk(t) − ẏk(t) − (ẋ0 − ẏ0)‖ ≤ max{D‖x0 − y0‖, ‖ẋ0 − ẏ0‖}
(
eDt − 1

)
.
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The induction hypothesis for the former equation and k = 1 is satisfied because of Eq.
(29). The induction hypothesis for the latter equation and k = 1 is satisfied because
using Eq. (32)

‖ẋ1(t) − ẏ1(t) − (ẋ0 − ẏ0)‖ ≤
∫ t

0
A‖x0 − y0‖ + B‖ẋ0 − ẏ0‖dt

≤ max{D‖x0 − y0‖, ‖ẋ0 − ẏ0‖}Dt.

Taking the limit k → ∞ we obtain

‖x(t) − y(t) − (x0 − y0) − (ẋ0 − ẏ0)t‖ ≤ max{D‖x0 − y0‖, ‖ẋ0 − ẏ0‖}

×
(
eDt − 1

D
− t

)
, (36)

‖ẋ(t) − ẏ(t) − (ẋ0 − ẏ0)‖ ≤ max{D‖x0 − y0‖, ‖ẋ0 − ẏ0‖}
(
eDt − 1

)
, (37)

Let us disregard for the moment the last inequality. We have the trivial inequality

‖x0 − y0 − (x0 − y0)‖ ≤ max{D‖x0 − y0‖, ‖ẋ0 − ẏ0‖}(eDt − 1 − Dt). (38)

On X = R
2n let us consider a function f : X → X defined as follows

f (x0, ẋ0) = (x0, x(1)).

Clearly, f is the coordinate expression of the exponential map. Let L : X → X be
the linear map given by the matrix

L =
(
I 0
I I

)
(39)

with I the n × n identity matrix. Recalling that D ≤ 1 the inequalities (38) and (36)
can be rewritten for t = 1

‖ f (x0, ẋ0) − f (y0, ẏ0) − L((x0, ẋ0) − (y0, ẏ0))‖
≤ ‖(x0, ẋ0) − (y0, ẏ0)‖

(
eD − 1

D
− 1

)

for every (x0, ẋ0) and (y0, ẏ0) such that ‖(x0, ẋ0)‖ < δ and ‖(y0, ẏ0)‖ < δ.
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But Eq. (33) shows that D as a function of δ satisfies limδ→0 D(δ) = 0, thus f
is strongly differentiable at (0, 0) with strong differential L . Since any point p ∈ M
corresponds to zero coordinates for some chart compatible with the atlas, we have that
exp is differentiable at any point in the image of p �→ 0p.

Let us observe that if a strongly differentiable function f (x, y) is strongly differen-
tiable then keeping x fixedweobtain a function f (x, ·)which is strongly differentiable.
This fact follows easily from the definition of strong differentiability.

Furthermore, the composition of strongly differentiable functions is strongly dif-
ferentiable. As a consequence, the pointed exponential map expp := π2( f (0, ·)) is
strongly differentiable at the origin. FromEq. (39)we read that the Jacobian is given by
the n×n identity matrix. Since it is invertible expp establishes a local Lipeomorphism.

2.3.1 Normal vector bundle case (Theorem 13)

Let us prove Theorem 13. Let p ∈ φ(S), let {sk; k = 1, . . . , l} be coordinates on S at
φ−1(p) and let xμ

0 (s) := φμ(s). The tangent vectors (∂k x
μ
0 )∂μ, k = 1, . . . , l, provide

a (Lipschitz) base for the tangent space at any point in a neighborhood of p. Applying
the Gram-Schmidt procedure to

(
∂1x

μ
0

)
∂μ, . . . ,

(
∂l x

μ
0

)
∂μ, ∂1, . . . , ∂n,

discarding the last found l null vectors, and keeping the last n − l non-trivial vectors,
we are left with a Lipschitz base of the normal space. Call this base eμ

k ∂μ, k =
1, . . . , n − l. By construction it is Lipschitz. Thanks to this base we can introduce a
chart of coordinates (s, y) ∈ R

l × R
n−l over ν(S), so as to represent each v ∈ ν(S),

v = (x0, ẋ0), as follows

xμ
0 (s, y) = xμ

0 (si ), (40)

ẋμ
0 (s, y) = y j eμ

j (s
i ). (41)

This system of equations gives the map between ν(S) and T M expressed through the
respective coordinate charts. A naive calculation would suggest that the Jacobian of
this transformation is given by the (n + n) × (l + (n − l)) matrix

J =
(

∂k x
μ
0 0

y j∂i e
μ
j eμ

j

)
.

However, since eμ
j is just Lipschitz the n × l block matrix y j∂i e

μ
j is not well-defined.

Nevertheless, this expression suggests that J should be as given for y = 0, namely on
φ(S), for in this case the ill defined block matrix vanishes.

Let us prove that for y = 0, J is the strong differential of themap (s, y) → (x0, ẋ0).
Let ε > 0. We need only to show that for y1, y2 sufficiently close to zero and for s1, s2
sufficiently close to s

‖x0(y2, s2) − x0(y1, s1) − (∂i x0)(s
i
2 − si1)‖ ≤ ε(‖s2 − s1‖ + ‖y2 − y1‖)
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‖ẋ0(y2, s2) − ẋ0(y1, s1) − e j (s)(y
j
2 − y j

1 )‖ ≤ ε(‖s2 − s1‖ + ‖y2 − y1‖)

The former inequality is a consequence of the fact that x0(s) is C1 hence strongly
differentiable. The latter inequality can be rewritten using Eq. (41)

‖y j
2 e j (s2) − y j

1 e j (s1) − e j (s)(y
j
2 − y j

1 )‖ ≤ ε(‖s2 − s1‖ + ‖y2 − y1‖)

which is a consequence of the Lipschitzness of eμ
j .

The map

(s, y) → (x0, ẋ0) → exp(x0, ẋ0) → π2(exp(x0, ẋ0))

being the composition of (1) a strongly differentiable map at y = 0, (2) a strongly
differentiable map at ẋ0 = 0, (3) the strongly differentiable projection map (x, y) →
y, and being such that ẋ0(s, 0) = 0, is strongly differentiable at y = 0, with strong
differential given by the n × n matrix Jπ2L J = (∂k x

μ
0 , eμ

j )(s) which is invertible
because its columns are linearly independent vectors. Thus the hypothesis of Leach’s
inverse function theorem are satisfied.

2.4 Convex neighborhoods (Theorem 4)

Let us prove that for sufficiently small δ, B̄(p, δ) is reversible strictly convex normal.
By the strong differentiability of exp there is an open neighborhood O � (p, p),

O ⊂ M × M , which is Lipeomorphic to an open neighborhood U of 0p ∈ T M .
Let δ > 0 be sufficiently small that B̄(p, δ)2 ⊂ O and δ satisfies Eqs. (27, 28). Let
q ∈ B(p, δ), and let

Nq = (exp−1 B(p, δ)2) ∩ π−1(q) = [exp−1({q} × B(p, δ))] ∩ π−1(q)

= exp−1
q B(p, δ).

Thefirst defining equality shows that this set is open in the topology ofπ−1(q) = TqM .
Furthermore, expq |Nq : Nq → B(p, δ) is injective because {q} × Nq ⊂ U and so is
exp |U . It is surjective, for if r ∈ B(p, δ) then (q, r) ∈ B(p, δ)2 ⊂ O , thus there is
some v ∈ TqM , v ∈ U , such that expq v = r . Finally, expq |Nq is Lipschitz because
so is exp |U , and exp−1

q |B(p,δ) is Lipschitz because so is exp−1 |B(p,δ)2 . Thus we have
proved that for each q ∈ B(p, δ), there is an open set Nq such that expq : Nq →
B(p, δ) is a Lipeomorphism. We stress that we have not yet shown that Nq is star-
shaped.

Analogously, for sufficiently small δ, for each q ∈ B(p, δ), there is an open set
Ñq(= ˜exp−1

q B(p, δ)) such that ˜expq : Ñq → B(p, δ) is a Lipeomorphism.

Our choice of δ allows us to prove the strict convexity of B̄(p, δ) for both the
spray and the reverse spray, and hence that each Nq and Ñq are star-shaped. The
key observation is that the continuous function defined on π−1(B̄(p, δ)) (“·” is the

123



606 E. Minguzzi

Euclidean scalar product in Rn induced by the chart)

z±(x, v) := ‖v‖2 + x · H(x,±v)

is positive if restricted to the unit tangent bundle B̄(p, δ) × Sn−1. Indeed,

z±(x, e) := 1 + x · H(x,±e) ≥ 1 − δM > 0

where the last inequality is a consequence of Eq. (27). Let us consider a geodesic
segment contained in B̄(p, δ). Any geodesic x(t) is C2,1 thus ‖x‖2(t) is C2,1 and

d2‖x‖2
dt2

= 2

(
‖ẋ‖2 + x · d

2x

dt2

)
= 2

(
‖ẋ‖2 + x · H(x, ẋ)

)

= 2z+
(
x,

ẋ

‖ẋ‖
)

‖ẋ‖2 > 0,

where we used the fact that by definition a geodesic is regular, i.e. ẋ �= 0.
Analogously, if we consider a geodesic for the reverse spray

d2‖x‖2
dt2

= 2

(
‖ẋ‖2 + x · d

2x

dt2

)
= 2

(
‖ẋ‖2 + x · H(x,−ẋ)

)

= 2z−
(
x,

ẋ

‖ẋ‖
)

‖ẋ‖2 > 0.

As a consequence ‖x‖2(t) takes its maximum value at the boundary of its interval
of definition, that is, in correspondence of the endpoints of the geodesic segment
which, therefore, must be contained in B̄(p, δ). Furthermore, if its endpoints are at
the boundary of the ball then its interior points stay in B(p, δ) because the inequality
is strict. Thus C := B̄(p, δ) is reversible strictly convex normal. The fact that exp
establishes aLipeomorphismbetween an open subset of TC and B(p, δ)2 is immediate
from the inclusion B(p, δ)2 ⊂ O . Analogously, the same result holds for ˜exp. The
proof of Theorem 4 is complete.

2.5 Role of the coordinate affine structure and position vector

We shall need the following result on the behavior of the position vector on a convex
neighborhood.

Theorem 17 Under the assumptions of Theorem 4, for every ε > 0 we have for any
sufficiently small δ that C = B(p, δ) not only satisfies the conclusions of Theorem 4
but also that for every q1, q2, q ′

1, q
′
2, q ∈ C we have, interpreting the minus sign as

that given by the affine structure induced by the coordinate chart

‖[P(q ′
1, q

′
2) − (q ′

2 − q ′
1)] − [P(q1, q2) − (q2 − q1)]‖ ≤ ε max{‖q ′

1 − q1‖, ‖q ′
2 − q2‖},

‖P(q, q2) − P(q, q1) − (q2 − q1)‖ ≤ ε‖q2 − q1‖, (42)
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‖P(q1, q2) − (q2 − q1)‖ ≤ ε‖q2 − q1‖, (43)

‖P(q1, q2)‖ ≤ ε. (44)

In the connection case, if the coordinate chart is chosen so as to make Γ
μ
αβ(p) vanish,

then δ can be also chosen such that

‖P(q1, q2) + P(q2, q1)‖ ≤ ε‖q2 − q1‖2. (45)

This section will be devoted to the proof of this result.
Our coordinate system {xμ} in a neighborhood U of p induces an affine structure

which allows us to compare tangent vectors at different points of U . Let us consider
the geodesic x(t) such that its initial condition (x0, ẋ0) satisfy Eq. (26). We ask if,
keeping x0 fixed, the map ẋ0 �→ ẋ(1) is injective (observe that ẋ(1) = P(x0, x(1)) =
P(x0, expx0 ẋ0).

Lemma 3 Let ‖(x0, ẋ0)‖ ≤ δ. For fixed base point x0, the map ẋ0 �→ ẋ(1) is strongly
differentiable at the origin, the strong differential being the n × n identity matrix I .
The map (x0, ẋ0) �→ (x0, ẋ(1)) is also strongly differentiable wherever ẋ0 = 0, the
strong differential being the matrix

(
I 0
0 I

)
.

Thus for sufficiently small δ both maps are injective (and bi-Lipschitz) with inverse
strongly differentiable wherever ẋ(1) = 0.

Proof Let us consider the exponential map of the vectors ẋ0, ẏ0 with base point x0
(thus y0 = x0). By Eq. (37) setting t = 1

‖ẋ(1) − ẏ(1) − (ẋ0 − ẏ0)‖ ≤ ‖ẋ0 − ẏ0‖(eD − 1).

Since D(δ) → 0 for δ → 0, the map ẋ0 �→ ẋ(1) is strongly differentiable at the
origin, with strong differential the identity matrix.

As for the map (x0, ẋ0) �→ (x0, ẋ(1)) it suffices to include in the previous analysis
the trivial inequality

‖x0 − y0 − (x0 − y0)‖ ≤ ‖x0 − y0‖(eD − 1),

and recall that onRn ⊕R
n we use the normmax{‖ ‖, ‖ ‖}. The last claim follows from

Leach’s inverse function theorem. ��
Proposition 3 Let p ∈ M, and let {xμ} be a chart in a neighborhood U of p. Let
P(r, q) be the position vector of q with respect to r . There is an open convex neighbor-
hoodC � p, such that for every q2, q1 ∈ C, themap (q1, q2) �→ P(q1, q2)−(q2−q1),
interpreted with the affine structure induced by {xμ}, is strongly differentiable on the
diagonal q1 = q2, with zero strong differential.
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Proof LetC be a convexneighborhoodof p such that exp establishes aLipeomorphism
between an open subset of TC and C × C . Let xμ : C �→ R

n be (C2,1) coordinates
on C , such that xμ(p) = 0.

We proved that exp is strongly differentiable on the zero section of TC with dif-
ferential L on a suitable trivialization [Eq. (39)], thus by Leach’s inverse function
theorem, exp−1 is strongly differentiable on the diagonal of C × C with differential
L−1. Stated in anotherway, themap in coordinates given by (q1, q2) �→ (q1, exp−1

q1 q2)

is strongly differentiable on the diagonal with differential L−1.
Lemma 3 proves that the coordinate map (q1, v) �→ P(q1, expq1 v) is strongly

differentiable at the origin with strong differential the identity , thus the coordinate
map (q1, q2) �→ (q1, P(q1, q2)) is strongly differentiable on the diagonal with strong
differential

L−1 =
(
I 0

−I I

)
.

This is the same strong differential of the map (q1, q2) �→ (q1, q2 − q1) where the
differencemakes sense using the affine structure induced by the coordinate chart. Thus
the map (q1, q2) �→ (q1, P(q1, q2) − (q2 − q1)) has vanishing strong differential on
the diagonal of C × C which implies that the map (q1, q2) �→ P(q1, q2) − (q2 − q1)
has vanishing strong differential on the diagonal of C × C . ��

In particular the map (q1, q2) �→ P(q1, q2) − (q2 − q1) is strongly differentiable
at (p, p) thus for every ε > 0 the constant δ > 0 and hence the convex neighborhood
C = B(p, δ) can be chosen such that for every q1, q2, q ′

1, q
′
2 ∈ C

‖[P(q ′
1, q

′
2) − (q ′

2 − q ′
1)]−[P(q1, q2)−(q2 − q1)]‖ ≤ ε max{‖q ′

1−q1‖, ‖q ′
2 − q2‖}.

Thus for every q1, q2, q ∈ C (set q ′
1 → q, q ′

2 → q2, q2 → q1, q1 → q)

‖P(q, q2) − P(q, q1) − (q2 − q1)‖ ≤ ε‖q2 − q1‖,

and (set q = q1)
‖P(q1, q2) − (q2 − q1)‖ ≤ ε‖q2 − q1‖. (46)

Thus ‖P(q1, q2)‖ ≤ (1+ε)‖q2−q1‖ and the diameter ofC can be chosen sufficiently
small that ‖P(q1, q2)‖ ≤ ε.

Suppose now that the spray is a connection (hence reversible) and assume to have
chosen the coordinate system in such a way that for every every normalized vector
e, Hμ(p, e) = 0. This is always possible through an invertible quadratic coordinate
change, so that the new coordinate system is still C2,1. By continuity C can be chosen
sufficiently small that on C , ‖H‖ := supx∈C sup‖e‖=1 ‖H(x, e)‖ ≤ ε.

Let x : [0, 1] → C , x(0) = q ′
1, x(1) = q1, be a geodesic. Let q2, q ′

2 = x(t),
t ∈ [0, 1] then the above 4-points inequality gives

‖P(x(0), x(t)) − P(x(1), x(t)) − (x(1) − x(0))‖ ≤ ε‖x(1) − x(0)‖.
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We observe that P(x(0), x(t)) = t ẋ(t) and P(x(1), x(t)) = −(1 − t)ẋ(t) thus for
every t ∈ [0, 1]

‖ẋ(t) − (x(1) − x(0))‖ ≤ ε‖x(1) − x(0)‖.

We have P(x(0), x(1)) = ẋ(1) and P(x(1), x(0)) = −ẋ(0) thus setting r(t) =
ẋ(t) − (x(1) − x(0)),

‖P(x(0), x(1)) + P(x(1), x(0))‖ = ‖ẋ(1) − ẋ(0)‖ = ‖
∫ 1

0
H(x(s), ẋ(s))ds‖

≤
∫ 1

0
‖H(x(s), ˆ̇x(s))‖ ‖ẋ(s)‖2ds ≤ ε

∫ 1

0
‖ẋ(s)‖2ds

≤ ε[
∫ 1

0
‖r(s)‖2ds +

∫ 1

0
‖x(1) − x(0)‖2ds + 2[x(1) − x(0)] ·

∫ 1

0
r(s)ds]

≤ ε(1 + ε2)‖x(1) − x(0)‖2,

thus a redefinition of ε gives the the last inequality of Theorem 17.

2.6 Local lipeomorphisms (Theorems 3 and 13)

Let ϕ(v, t) = γ ′
v(t) be the geodesic flow on T M . We have, exp v = (π(v), π(γv(1))).

If ϕ(v, 1) is well defined then, by the continuity of the geodesic flow, so is ϕ(w, 1) for
w near v. Thus Ω is open and, analogously, so is Ωp.

Themap exp is locallyLipschitzwherever it is defined becauseπ is locallyLipschitz
and if v ∈ Ω , ϕ(v, 1) is Lipschitz for w near v by the local Lipschitzness of the
geodesic flow (that is by the dependence on initial conditions of solutions to the
geodesic equation, see Sect. 2.2). Analogously, expp is locally Lipschitz on Ωp.

We have shown that for each p there is a convex normal relatively compact open
neighborhood Cp, such that exp provides a Lipeomorphism between the star-shaped
relatively compact open set exp−1 C2

p and C
2
p.

Let {exp−1 C2
pi } be a locally finite covering of the image of the zero section Z of

T M , and let N = ∪pi exp
−1 C2

pi . Observe that ifw ∈ N thenw ∈ exp−1 C2
pi for some

i and so it cannot be expw = π(w) unless w ∈ Z by the injectivity of exp on Cp. By
construction for every compact set K ⊂ M , we have that π−1(K ) ∩ N̄ is compact.

We want to show that there is an open subset E ⊂ N , containing Z such that exp |E
is injective and hence a Lipeomorphism on its image. Let Ki , Ki ⊂ IntKi+1 ⊂ M , be
a sequence of compact sets such that ∪i Ki = M , and let N̄ j ⊂ N , N̄ j+1 ⊂ N j , be
open neighborhoods of Z such that for every compact set K , π−1(K )∩ N̄ j is compact
and ∩ j N̄ j = Z . Clearly exp is injective on Z . By induction, suppose that there is an
increasing map σ defined on {1, 2, . . . , k} such that the map exp is injective on the set
(E0 := Z )

Ek :=Z ∪
k⋃

i=1

π−1(IntKi ) ∩ Nσ(i).
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and hence E j for j ≤ k. Then we can define σ(k + 1) such that the same property
holds with k replaced by k + 1. For if not we could find sequence v j , w j ∈ Ek ∪
(π−1(IntKk+1) ∩ N j ), v j �= w j , such that for every j , exp v j = expw j . On the first
component the last equality reads π(v j ) = π(w j ). However, by injectivity of exp on
Ek , v j , w j do not both belong to Ek thus passing to a subsequence we can assume
without loss of generality that v j ∈ π−1(IntKk+1) ∩ N j . Observe that v j belongs
to the compact set π−1(Kk+1) ∩ N̄ , and passing to the limit we obtain that up to
subsequences v j converges to

v ∈ ∩ j [π−1(Kk+1) ∩ N̄ j ] ⊂ π−1(Kk+1) ∩ Z .

In particular, π(w j ) = π(v j ) converges to some point of Kk+1, thus for sufficiently
large j , w j is contained in a compact set π−1(Kk+2) ∩ N̄1 ⊂ N and so converges up
to subsequences to some vector w ∈ N . Using the continuity of π we obtain π(v) =
π(w). By the continuity of exp, exp v = expw, and using v ∈ Z , π(v) = expw. Thus
π(w) = expw, and since w ∈ N we have by the observation above that w ∈ Z , thus
w = v = 0π(v). Let C be a convex normal neighborhood of r := π(v), (v = 0r ) then
exp−1 C2 is a neighborhood of v ∈ TC and the vectors v j andw j for sufficiently large
j enter it which contradicts the injectivity of exp on exp−1 C2. Finally, E = ∪ j E j

gives the searched open set.
The proof in the normal bundle case is analogous. We have to start from a

sequence pi ∈ φ(S) such that Cpi is a locally finite covering of φ(S), define
N = ∪pi exp

−1 Cpi ⊂ ν(S) and proceed as in [51, Prop. 26, Chap. 7] to prove
the injectivity of expν(S) on an open subset E ⊂ N .

3 Proofs II: Pseudo-Finsler sprays and connections

In the next section we prove Gauss’ Lemma for sprays which come from a pseudo-
Finsler metric L .

3.1 Gauss’ Lemma (Theorem 5)

Let us prove Eq. (13). Since exp−1
p is Lipschitz, D2

p is Lipschitz. By Theorem 1 the
function 2gP(p,q)(P(p, q), ·) where P(p, q) := γ ′

exp−1
p q

(1), is Lipschitz in q. By

Theorem 16 we need only to show that the differential of D2
p exists and coincides with

the previous expression almost everywhere on N .
However, we know that exp is differentiable almost everywhere over the star-shaped

open set exp−1 N ⊂ TpM , and hence, byFubini’s theorem, that it is almost everywhere
differentiable on almost every radial line passing through the origin (the expression
a.e. here refers to the (n − 1)-dimensional Lebesgue measure of a Euclidean sphere
contained in exp−1 N ). It suffices to take q on the exponential map of one of these
geodesics (Lipeomorphisms preserve zero measure sets [22, Sect. 2.4]).

Let w ∈ TqM and let σ : [−a, a] → N be a (C2,1) geodesic segment such
that σ ′(0) = w. Let x (s) : [0, 1] → N , t �→ x (s)(t), be the unique geodesic such
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Convex neighborhoods for Lipschitz connections and sprays 611

that x (s)(0) = p, x (s)(1) = σ(s). Let v(s) = exp−1
p σ(s), since exp−1

p is Lipschitz
v : [−a, a] → TpM is Lipschitz. In particular S = {u ∈ TpM : u = tv(s), t ∈
[0, 1], s ∈ [−a, a]} is a Lipschitz submanifold of TpM , thus by Theorem 1 x(t, s) :=
x (s)(t) = expp(tv(s)) is Lipschitz in (t, s). Furthermore, still by Theorem 1

(*): for almost every s, for every t ∈ [0, 1], x(t, ·) is differentiable at s and
the derivative ∂2x(t, s) is locally Lipschitz in t , locally uniformly with respect
to those s where it is defined. Finally, for any such s we have that for almost
every t ∈ [0, 1], the mixed partial derivatives ∂1∂2x(t, s), ∂2∂1x(t, s) are locally
bounded and coincide.

The quantity L(x (s)(t), x (s)
t (t)) is independent of t hence coincident with L(p, v(s)).

The function v(s) being Lipschitz is differentiable almost everywhere. Let s be such
that v′(s) exists and (*) holds

1

2
∂σ ′(s)D

2
p = d

ds
L(p, v(s)) = ∂

∂s
L(x(t, s), xt (t, s)) = xμ

s
∂L

∂xμ
+ ∂xμ

t

∂s

∂L

∂xμ
t

= ∂

∂t

(
xμ
s

∂L

∂xμ
t

)
− xμ

s

(
∂

∂t

∂L

∂xμ
t

− ∂L

∂xμ

)
+

(
∂xμ

t

∂s
− ∂xμ

s

∂t

)
∂L

∂xμ
t

where t can be chosen arbitrarily. By (*) for almost every t the last term vanishes.
Moreover, the second termof the right-hand side vanishes because x (s)(t) is a geodesic,
hence it solves the Euler-Lagrange equation for the Lagrangian L . Integrating in t over
the interval [0, 1]we obtain, taking into account that the left-hand side does not depend
on t and using Eq. (7)

1

2
∂σ ′(s)D

2
p = gxt (1,s)(xt (1, s), σ

′(s)) − gxt (0,s)(xt (0, s), xs(0, s))

= gγ ′
v(s)(1)

(γ ′
v(s)(1), σ

′(s)), (47)

where we used the fact that since x(0, s) = p, it is xs(0, s) = 0. Evaluated at s = 0
the previous expression proves Eq. (13) and hence the first claim of the theorem.

Let α : [0, a) → N , t �→ α(t), be an integral curve of P . Let us differentiate D2
p

along it

dD2
p(α(t))

dt
= 2gP(α(t))(P(α(t)), α̇(t))=2gP(α(t))(P(α(t)), P(α(t)))=2D2

p(α(t)).

Then D2
p(α(t)) = D2

p(α(0)) exp(2t), and since exp−1 N is star-shaped the −t-time
flow maps (D2

p)
−1(s) to (D2

p)
−1(se−2t ) for t > 0. Since P is Lipschitz, by the

mentioned result on the dependence of solutions to first order ODE on the initial
conditions, the flow map is Lipschitz, and since it is injective and can be inverted it is
actually a Lipeomorphism between (D2

p)
−1(s) and its image on (D2

p)
−1(se−2t ).

Finally, suppose that expp is differentiable at v ∈ TpM\0.We observe that γ ′
v(1) =

(d expp)vv. Let w ∈ Tv(TpM) ∼ TpM and define v(s) := v + sw and σ(s) :=
expp(v + sw), so that by the differentiability assumption σ ′(s) = (d expp)vw. Due to
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the choice of curve σ(s) we have D2
p(σ (s)) = 2L(p, exp−1

p (σ (s))) = 2L(p, v + sw)

thus from Eq. (7)

1

2

dD2
p(σ (s))

ds
|s=0 = gv(v,w)

while from Eq. (47)

1

2

dD2
p(σ (s))

ds
|s=0 = g(d expp)vv((d expp)vv, (d expp)vw).

3.2 Local properties of geodesics in pseudo-Finsler geometry (Theorem 6)

Let σ : [0, 1] → N be an AC-curve starting from p and ending at q ∈ N .
Let us consider the Finsler case. By continuity there is a last value ŝ ≥ 0, such that

Dp(σ (ŝ)) = 0 (possibly ŝ = 0 or ŝ = 1).
The length of the geodesic connecting p to q is Dp(q) and is positive if and only

if q �= p. The statement of the theorem is trivial for q = p thus let us assume q �= p
(so that ŝ �= 1). Since D2

p is C1,1, Dp is C1,1 in the region N\{p}. Thus Dp(σ (s))
being the composition of a locally Lipschitz and an absolutely continuous function is
absolutely continuous. We have for s ≥ ŝ

Dp(σ (s)) =
∫ s

ŝ

dDp(σ (s))

ds
ds =

∫ s

ŝ

1

Dp(σ (s))
gP(p,σ (s))(P(p, σ (s)), σ ′(s)) ds

=
∫ s

ŝ
gP̂(p,σ (s))(P̂(p, σ (s)), σ ′(s)) ds

≤
∫ s

ŝ

√
gσ ′(s)(σ ′(s), σ ′(s)) ds ≤ l[σ ],

where P̂ := P/
√
gP(P, P). In the last stepwe used the analog of theCauchy-Schwarz

inequality for Finsler geometry [5, Theor. 1.2.2]. For s = 1 the above inequality
proves that the length of σ is no smaller than that of the geodesic connecting its
endpoints. If they are equal then for almost every s ∈ [0, 1], we have the equality
gP̂(p,σ (s))(P̂(p, σ (s)), σ ′(s)) = √

gσ ′(s)(σ ′(s), σ ′(s)), thus, by the equality case in
the Finslerian Cauchy-Schwarz inequality we have that for almost every s ∈ [0, 1],
σ ′ ∝ P(p, σ (s)). If we introduce spherical normal coordinates (r, θ1, ..., θn−1), as
this coordinate chart is Lipschitz related to those of M , σ is still absolutely continuous
in this chart. Thus since σ ′ ∝ ∂r almost everywhere, the angular coordinates cannot
change over σ , for otherwise since θi (σ (s)) is the integral of its own derivative one
would gets that σ ′ is not radial in a set of non-vanishingmeasure, a contradiction. Thus
the image of σ coincides with the image of an integral curve of P and hence coincides
with the image of the geodesic η(r) connecting p = σ(0) with q = σ(1). Since
the coordinates of the spherical normal chart are Lipschitz functions, the composition
r(s) is absolutely continuous. By definition r is an affine parameter over the geodesic
which has the same image of σ . The map is necessarily increasing, for if r(s2) ≤ r(s1)
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for s1 < s2, then we would have r ′ < 0 (by definition of AC-curve r ′ �= 0 almost
everywhere) in a subset of measure different from zero on [s1, s2], and it would be
easy to obtain a shorter curve cutting a piece of domain from σ , a contradiction to the
length minimization assumption.

Let us consider now the Lorentzian–Finsler case with σ causal and future directed.
We recall that the analog to the reverse Cauchy–Schwarz inequality for Finsler space-
times reads [47]:

Let v1, v2 be causal and future directed then

− gv1(v1, v2) ≥ √−gv1(v1, v1)
√−gv2(v2, v2), (48)

with equality if and only if v1 and v2 are proportional.

Suppose that for some s̃, D2
p(s̃) < 0. The Lorentzian–Finsler length of the geodesic

connecting p to q is: DL
p (q) := (−D2

p(q))1/2. Since D2
p is C1,1, DL

p is C1,1 in the
region D2

p < 0. Thus DL(σ (s)) being the composition of a locally Lipschitz and an
absolutely continuous function is absolutely continuous.We know that D2

p(s̃) < 0 and
by continuity the same inequality holds in an interval [s̃, s] provided s is sufficiently
close to s̃. We have

DL
p (σ (s)) − DL

p (σ (s̃)) =
∫ s

s̃

dDL
p (σ (s))

ds
ds

= −
∫ s

s̃

1

DL
p (σ (t))

gP(p,σ (s))(P(p, σ (s)), σ ′(s)) ds

=−
∫ s

s̃
gP̂(p,σ (s))(P̂(p, σ (s)), σ ′(s)) ds ≥

∫ s

ŝ

√
−gσ ′(s)(σ ′(s), σ ′(s)) ds

≥ l[σ ], (49)

where P̂ := P/
√−gP (P, P). In the last inequality we used the above Finslerian

reverse Cauchy–Schwarz inequality.
The equality so obtained proves that once σ enters a region with D2

p < 0 (the
chronological future of p) it remains in that region.

Now let η : [−ε, 0] → N , η(0) = p, be a small future directed timelike geodesic
contained in a reversible convex normal neighborhood of p, C ⊂ N . For sufficiently
small s, σ(s) ∈ C , and the curve obtained concatenating η with σ which connects
η(−ε) toσ(s) startswith a timelike geodesic, hence it enters the chronological future of
η(−ε), and hence, by the above argument there is a future directed timelike geodesic
ν(ε) connecting η(−ε) with σ(s). Letting ε → 0, and using the continuity of the
exponential map ˜exp for the reverse spray at σ(s) we infer the existence of a geodesic
connecting p to σ(s), which by the continuity gv(v, v) at Tσ(s)M must be future
directed causal. As s is arbitrary we have shown that in a maximal closed interval
[0, b] ⊂ [0, 1], b > 0, we have D2

p(σ (s)) ≤ 0.
Let us prove that if for a ∈ (0, b], D2

p(σ (a)) = 0 then σ |[0,a] is a lightlike geodesic
up to parametrizations and hence that D2

p = 0 over [0, a].
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Observe that D2
p is Lipschitz thus D

2
p(σ (s)) is absolutely continuous

D2
p(σ (a)) =

∫ a

0

dD2
p(σ (s))

ds
ds = 2

∫ a

0
gP(p,σ (s))(P(p, σ (s)), σ ′(s)) ds.

Since on the region D2
p ≤ 0, we have gP(p,σ (s))(P(p, σ (s)), σ ′(s)) ≤ 0 for almost

every s (by theFinslerian reverseCauchy-Schwarz inequality sinceσ ′ is future directed
causal almost everywhere), thus we can have D2

p(σ (a)) = 0 only if σ ′ ∝ P for almost
every s in [0, a]. Introducing a Euclidean scalar product on TpM , associated spherical
normal coordinates over N , and arguing as above for the Finsler case we obtain that
σ |[0,a] is an integral curve of P , hence a lightlike geodesic issued from p.

From now on let a be the maximum value of s for which D2
p(σ (s)) = 0.

It remains only to prove that b = 1. Suppose not then a = b otherwise
D2

p(b) < 0 which would imply the same inequality also in (b, 1], a contradic-
tion to b < 1. Set p′ = σ(b) and take a reversible convex normal neighborhood
C ′ � p′, C ′ ⊂ N . Arguing as above proves that for any sufficiently small δ, p′ is
connected to σ(b + δ) by a future directed causal geodesic η : [0, 1] → C ′. This
geodesic cannot be the prolongation of the lightlike geodesic σ[0,b] for we would get
D2

p(σ (b+αδ)) ≤ 0, α ∈ [0, 1], a contradiction to the maximality of b. Thus the scalar
product gP(p,η(t))(P(p, η(t)), η′(t)) is negative for t = 0 and hence in a neighborhood
of t = 0. Now observe that D2

p is Lipschitz thus D2
p(η(t)) is absolutely continuous,

and for sufficiently small t

D2
p(η(t)) = D2

p(σ (b)) +
∫ t

0

dD2
p(η(t))

dt
dt

= 2
∫ t

0
gP(p,η(t))(P(p, η(t)), η′(t)) dt < 0.

As the concatenation of σ|[0,b] with η is a causal AC-curve and on it D2
p becomes

negative at some point, and it remains so, we have at the endpoint D2
p(σ (b + δ)) =

D2
p(η(1)) < 0. As δ is arbitrarily we get a contradiction to the maximality of b. The

contradiction proves that b = 1.
If σ is a lightlike geodesic up to parametrization, then clearly its Lorentzian-Finsler

length vanishes and the inequality DL
p (σ (1)) ≥ l(σ ) is satisfied. Suppose that σ is

not a lightlike geodesic up to parametrizations then a < 1, and its Lorentzian-Finsler
length is given just by the contribution of σ[a,1]. Let s̃ ∈ [a, 1] so that D2

p(σ (s̃)) < 0.
By (49)

DL
p (σ (1)) ≥ l(σ[s̃,1])

and taking the limit s̃ → a we obtain DL
p (σ (1)) ≥ l(σ ). This proves that σ has a

Lorentzian-Finsler length no larger than that of the geodesic connecting its endpoints.
Now, suppose by contradiction that they have the same Lorentzian-Finsler length

and that σ is not a causal geodesic up to parametrizations. Then necessarily a < 1,
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for otherwise it would be a lightlike geodesic. But then from (49), for s̃ > a,

DL
p (σ (1)) ≥ DL

p (σ (s̃) + l(σ[s̃,1]) ≥ l(σ[0,s̃]) + l(σ[s̃,1]) = l(σ ).

Thus the equality implies that the first inequality is actually an equality which implies
that gP(p,σ (s))(P(p, σ (s)), σ ′(s)) = 0 for almost every s ∈ [s̃, 1], and hence, by the
arbitrariness of s̃, σ ′ ∝ P for almost every s ∈ [a, 1]. Introducing again spherical
normal coordinates and arguing as above proves that the image of σ |[a,1] is an integral
curve of P (and hence the prolongation of σ |[0,a] if a �= 0) thus it is the image of a
geodesic.

Finally, suppose that the image of σ coincideswith that of a causal geodesic η. Since
the coordinates of the spherical normal chart are Lipschitz functions, the composition
r(s) is absolutely continuous. By definition r is an affine parameter over the geodesic
η. The map r(s) is necessarily increasing, for if r(s2) ≤ r(s1) for s1 < s2, then we
would have r ′ ≤ 0 and hence in a subset of measure different from zero on [s1, s2],
which would imply that d

ds σ = ( d
dr η)r ′ is not future directed causal in a set of measure

different from zero, a contradiction to the definition of future directed causalAC-curve.

3.3 Strong convexity of squared Riemannian distance (Theorem 8)

Let C be a convex neighborhood of p as in Theorems 4 and 17 where ε ∈ (0, 1) and
where the coordinate chart is chosen so that Γ μ

αβ(p) = 0.
Let us consider the Riemannian case. From Eq. (42) using the the Cauchy-Schwarz

inequality

|P(q, q2) · (q2 − q1) − P(q, q1) · (q2 − q1) − (q2 − q1)
2| ≤ ε‖q2 − q1‖2. (50)

Let gq be the matrix of g at q. Since g is C1 it is strongly differentiable and by the
choice of coordinate system its strong derivative vanishes at p. Thus C can be chosen
sufficiently small that for every q1, q2 ∈ C

‖gq2 − gq1‖ ≤ ε‖q2 − q1‖

Moreover, C can be chosen sufficiently small that once expressed in the coordinate
chart ‖g − I‖ ≤ ε on C .

Thus if D2
q is the squared distance function from q, using also Eqs. (42), (43) and

(44) we are able to prove Eq. (14)

1

2

∣∣∣
[
dD2

q(q2) − dD2
q(q1)

]
(q2 − q1) − 2(q2 − q1)

2
∣∣∣

= |gq2(P(q, q2), (q2 − q1)) − gq1(P(q, q1), (q2 − q1)) − (q2 − q1)
2|

= |gq2(P(q, q2) − P(q, q1), (q2 − q1)) − (gq1 − gq2)(P(q, q1),

× (q2 − q1)) − (q2 − q1)
2|

≤ |[P(q, q2) − P(q, q1)] · (q2 − q1) − (q2 − q1)
2| + ε‖P(q, q2) − P(q, q1)‖
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‖q2 − q1‖ + ε‖P(q, q2)‖ ‖q2 − q1‖2
≤ 2ε(1 + ε)‖q2 − q1‖2,

which proves that D2
q is strongly convex with respect to the affine structure induced

by the coordinate chart.
Let us give a geodesic version. This timewe shall need to use Eq. (45). Also observe

that from Eq. (43) we have

‖P(q1, q2) − (q2 − q1)‖ ≤ ε‖q2 − q1‖ ≤ ε‖P(q1, q2) − (q2 − q1)‖ + ε‖P(q1, q2)‖,

and hence

‖P(q1, q2) − (q2 − q1)‖ ≤ ε

1 − ε
‖P(q1, q2)‖,

and

‖q2 − q1‖ ≤ 1

1 − ε
‖P(q1, q2)‖. (51)

Similarly, let g be a metric such that at any point of C , ‖g − I‖ ≤ ε, and let v be any
vector. Then

|(g − I )(v, v)| ≤ εv · v = ε|(I − g)(v, v) + g(v, v)| ≤ ε|(g − I )(v, v)| + εg(v, v),

from which we obtain

|(g − I )(v, v)| ≤ ε

1 − ε
|g(v, v)|,

and

|v · v| ≤ |(I − g)(v, v)| + |g(v, v)| ≤ 1

1 − ε
|g(v, v)|.

Let x : [0, 1] → C be a geodesic and let q1 := x(0), q2 := x(1). We are ready to
prove Eq. (15).

1

2
| d
dt

D(q, x(t))2|t=1 − d

dt
D(q, x(t))2|t=0 − 2D(q1, q2)

2|
= |gq2(P(q, q2), P(q1, q2)) + gq1(P(q, q1), P(q2, q1))

− gq1(P(q2, q1), P(q2, q1))|
≤ |gq1(P(q, q2), P(q1, q2)) + gq1(P(q, q1), P(q2, q1))

− gq1(P(q2, q1), P(q2, q1))| + ε2(1 + ε)‖q2 − q1‖2
≤ |gq1(P(q, q2),−P(q2, q1)) + gq1(P(q, q1), P(q2, q1))

− gq1(P(q2, q1), P(q2, q1))| + 2(1 + ε)ε2‖q2 − q1‖2
≤ |gq1(P(q, q1) − P(q, q2), P(q2, q1)) − gq1(q1 − q2, P(q2, q1))|
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+ (2(1 + ε)ε2 + ε(1 + ε)2)‖q2 − q1‖2
≤ |gq1(P(q, q1) − P(q, q2) − (q1 − q2), P(q2, q1))|

+ (2(1 + ε)ε2 + ε(1 + ε)2)‖q2 − q1‖2

≤2ε(1 + ε)(1 + 2ε)‖q2−q1‖2≤2ε
(1 + ε)(1 + 2ε)

(1 − ε)2
‖P(q1, q2)‖2

≤ 2ε
(1 + ε)(1 + 2ε)

(1 − ε)3
gq2(P(q1, q2), P(q1, q2)) ≤ 2ε

(1 + ε)(1 + 2ε)

(1 − ε)3
D(q1, q2)

2.

A reparametrization of x with arc-length and a redefinition of ε gives Eq. (15).
The statement of Theorem 8 concerning the strong convexity of D2

q is immediate
from the triangle inequality and from the equivalences recalled in Sect. 1.5.

3.4 Splitting of the metric at a given radius (Theorem 9)

On the coordinate ball let us introduce radial coordinates (ρ, θ1, . . . , θn−1). Each ball
(Dp)

−1([0, r ]) is convex with respect to the affine structure induced by the coordinate
chart (x1, . . . , xn), thus the radial lines issued from p intersect the boundary of the
ball only once. Let r = Dp, there is therefore a function ρ(r, θ) establishing the
dependence of the radial coordinate on the angular ones. We known that r(q(ρ, θ))

is C1,1, and Eq. (43) and ‖g − I‖ ≤ ε imply that g(P(p, q), (q − p)) �= 0, namely
∂r/∂ρ �= 0.By the usual implicit function theoremρ(r, θ) isC1,1, thus the components
of g in coordinates (r, θ1, . . . , θn−1) are locally Lipschitz. In particular, for any given
r > 0 the map which sends Sn−1 (i.e. θ ) to D−1

p (r) is C1,1 thus differentiable.
Taking r = cnst. in gi j (r, θ) shows that the metric induced on each hypersurface

D−1
p (r) is locally Lipschitz.
The function r is C1,1 and by Theorem 5 ∇r is the normalized geodesic field

orthogonal to the level sets of constant r . Thus g−1(dr, dr) = g(∇r,∇r) = 1 and Eq.
(16)

g−1 = (∂r + Ai (r, θ)∂i )
2 + (h−1

r )i j∂i ⊗ ∂ j

holds for some Lipschitz components Ai , (h−1
r )i j . Its inverse is

g = dr2 + (hr )i j (dθi − Aidr)(dθ j − A jdr),

thus hr is the metric induced on the level set D−1
p (r).

Let us fix r̄ so that D−1
p (r̄) ⊂ C . We know that {θi } provides a C1,1 chart over

D−1
p (r̄). Let us rename these coordinates {αi } and let us extend them in a neighborhood

of D−1
p (r̄) solving the differential equation ∂θi/∂r = Ai (r, θ), θi (r̄ , α) = αi . Since

Ai is Lipschitz the solution θ(r, α) is Lipschitz in α and C1,1 in r [31, Ex. 1.2, Chap.
2] [13, Prop. 1.10.1] [38, Cor. 1.6]. Thus g can be brought to a direct sum form almost
everywhere where the Jacobian ∂θ/∂α exists. This Jacobian exists at r = r̄ and equals
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the identity matrix, thus

h′
i j (r̄ , α) = hks(r̄ , θ(r̄ , α))J ki J

s
j = hi j (r̄ , θ(r̄ , α)) = hi j (r̄ , α).

This equality proves that the components h′
i j (r̄ , ·) exist and are Lipschitz in α.

Of course, since the geodesic flow is Lipschitz we could deduce immediately that
normal spherical coordinates are Lipschitz and hence that g can be brought to a direct
sum form almost everywhere, but we wanted to construct a coordinate system for
which the direct sum form was valid everywhere at a given radius.

3.5 Some local results on the strong concavity of the squared Lorentzian distance
(Theorems 10, 11, Corollary 2)

Proof (Proof of Theorem 10) Let C be a convex neighborhood of p as in Theorems
4 and 17 where ε ∈ (0, 1/3) and the coordinate system is such that gαβ(p) = ηαβ ,
Γ

μ
αβ(p) = 0. The metric defined by

r(v1, v2) = g(v1, v2) + 2(∂0 · v1)(∂0 · v2) (52)

is positive definite at p and hence C can be chosen sufficiently small that it is positive
definite everywhere inC . Observe that at p the metric r once expressed in components
coincides with the identity matrix. Thus C can be chosen sufficiently small that

‖r − I‖ ≤ ε.

From Eqs. (42, 43)

‖P(q, q1) − P(q, q2) − P(q2, q1)‖ ≤ 2ε‖q2 − q1‖. (53)

Let x : [0, 1] → C be a geodesic, let q1 := x(0) and q2 := x(1), and let

V = P(q, q1) − P(q, q2) − P(q2, q1).

We have

|gq1(V, P(q2, q1))| = |r(V, P(q2, q1)) − 2(∂0 · V )(∂0 · P(q2, q1))|
≤ ‖V ‖ ‖P(q2, q1)‖ [‖r‖ + 2|] ≤ ‖V ‖ ‖P(q2, q1)‖ (3 + ε)

≤ 2ε(1 + ε)(3 + ε)‖q2 − q1‖2

Since gq isC1,1 in q it is strongly differentiable at p with zero strong differential, thus
C can be chosen sufficiently small that for every q1, q2 ∈ C ,

‖gq1‖ ≤ 1 + ε, ‖gq2 − gq1‖ ≤ ε‖q2 − q1‖. (54)
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Thus

1

2

∣∣∣∣ ddt D
2
q(x(t))

∣∣∣∣
t=1

− d

dt
D2
q(x(t))|t=0 − 2D2

q1(q2)|
= |gq2(P(q, q2), P(q1, q2)) + gq1(P(q, q1), P(q2, q1))

− gq1(P(q2, q1), P(q2, q1))|
≤ |gq1(P(q, q2), P(q1, q2)) + gq1(P(q, q1), P(q2, q1))

− gq1(P(q2, q1), P(q2, q1))| + ε2(1 + ε)‖q2 − q1‖2
≤ |gq1(P(q, q2),−P(q2, q1)) + gq1(P(q, q1), P(q2, q1))

− gq1(P(q2, q1), P(q2, q1))| + 2(1 + ε)ε2‖q2 − q1‖2
≤ |gq1(V, P(q2, q1))| + 2(1 + ε)ε2‖q2 − q1‖2
≤ 2ε(1 + ε)(3 + 2ε)‖q2 − q1‖2

A redefinition of ε proves Eq. (17). ��
Proof (Proof of Theorem 11) It is sufficient to prove Eq. (18) for ε < 1/9. Let us
parametrize γ with respect to g-arc length (i.e. proper time), g(γ̇ , γ̇ ) = −1. As a first
step let us introduce, through a quadratic locally invertible coordinate transformation,
a coordinate system such that γ̇ (0) = ∂0, gαβ(p) = ηαβ and Γ

μ
αβ(p) = 0, so that the

hypothesis of Theorem 10 apply.
Let us consider the spacelike subspace of Tγ (t)M , given by

S(t) :=Ker g(γ̇ (t), ·).

Let L(t) be the subspace of Tγ (t)M spanned by {∂i , i ≥ 1}. For t = 0, S(0) = L(0),
thus by continuity there is a neighborhood of 0, such that for t belonging to this
neighborhood S(t) makes with L(t) an (Euclidean) angle smaller than 1/16 rad. Thus
C can be taken sufficiently small that this property holds for every t ∈ γ −1(C).

Let x : [0, 1] → C be a geodesic such that x(0) and x(1) belong to the same
level set of (D2

q)
−1(c), c < 0, for some q ∈ C . By Theorem 6 x cannot be future

directed causal otherwise D2
q(x(1)) > D2

q(x(0)), and it cannot be past directed causal
otherwise D2

q(x(1)) < D2
q(x(0)), thus x is spacelike. Let a, b ∈ [0, 1], a < b, then

y(t) = x((b− a)t + a) is such that y(0) = x(a) and y(1) = x(b). Let us use Eq. (51)
in Eq. (17) for the geodesic y

| d
dt

D2
q(y(t))|t=1− d

dt
D2
q(y(t))|t=0−2D2(x(a), x(b))| ≤ ε

(1 − ε)2
‖P(x(a), x(b))‖2.

(55)
Now we have to impose some constraint to x(a) and x(b) so as to obtain an inequality
of the form

‖P(x(a), x(b))‖2 ≤ σ(ε)gx(b)(P(x(a), x(b)), P(x(a), x(b)))

where εσ (ε) → 0 for ε → 0.
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We recall that given two Lorentzian metrics g1, g2 on a differentiable manifold,
g1 < g2 means that at each point the timelike cone of g2 contains the causal cone of
g1. Let me consider the metric

η+:= − 1 + 2
√

ε

1 − 2
√

ε
(dx0)2 + (dx)2

which satisfies g < η+ at p. By continuity we can choose C so small that it holds
anywhere in C .

Suppose that v ∈ TC is a spacelike vector for η+, that is η+(v, v) ≥ 0, then a little
algebra shows that this condition can be rewritten

v · v ≤ 1√
ε
(−(1 + √

ε)(v0)2 + (1 − √
ε)(v)2).

Now observe that at p for every v ∈ TpC , ‖v‖ = 1,

−(1 + √
ε)(v0)2 + (1 − √

ε)(v)2 < gp(v, v) = −(v0)2 + (v)2,

thus by continuity the same holds at any point in a neighborhood of p, and we can
choose C sufficiently small that for every v ∈ TC , and q ∈ C

(−(1 + √
ε)(v0)2 + (1 − √

ε)(v)2) ≤ gq(v, v).

As a consequence, for every q ∈ C and for every v ∈ TC such that η+(v, v) ≥ 0

v · v ≤ 1√
ε
gq(v, v). (56)

Let q = γ (tq), r = γ (tr ), tq , tr ∈ I , tq �= tr .
In Sect. 2.4 we proved that O := B̄(r, δ) is strictly convex normal for any suf-

ficiently small δ, and in Sect. 2.1 through Eq. (31) we proved that the Euclidean
velocities ẋ(t), t ∈ [0, 1] of any geodesic x : [0, 1] → Ō are bounded by a constant
V (δ) which goes to zero for δ → 0. Since Γ

μ
αβ is bounded in a neighborhood of r , the

geodesic equation implies that there is M > 0 such that dvμ

dt ≤ M‖v‖2, which is the
same as saying that the (Euclidean) radius of curvature is greater than 1/M and hence
ẋ can vary in an subinterval of [0, 1] of an angle of at most V (δ)M . Thus if we take δ

sufficiently small we can make the variation of angle on the tangent to any geodesic
x : [0, 1] → Ō to be bounded by 1

8 rad.
We have already shown in Theorem 5 that D2

q is C1,1 on C with a differential at r
given by 2g(P(q, r), ·). Since the differential is continuous, D2

q is strongly differen-

tiable thus for every β we can write for sufficiently small δ > 0, for q1, q2 ∈ Ō

|D2
q(q2) − D2

q(q1) − 2g(P(q, r), q2 − q1)| ≤ β
√−g(P(q, r), P(q, r)) ‖q2 − q1‖.
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If q1 and q2 belong to the same level set, recalling that

γ̇ (tr ) = P(q, r)/
√−g(P(q, r), P(q, r))

we obtain

|gr (γ̇ (tr ), q2 − q1)| ≤ β ‖q2 − q1‖.

As β → 0, the direction of q2 − q1 is constrained to approach S(tr ). As the space of
directions is a sphere and hence compact there is a value of β and a corresponding O
such that whenever q1, q2 ∈ Ō belong to the same level set of Dq , q2 −q1 makes with
S(tr ) an (Euclidean) angle smaller than 1/16 rad.

Since ‖P(q1, q2) − (q2 − q1)‖ ≤ ε‖q2 − q1‖ and ε < 1/9, the vector P(q1, q2)
makes with q2 −q1 an Euclidean angle smaller than 2 arcsin(ε/2) < 1/8 rad (because
ε < 1/9). Thus P(q1, q2) makes with S(tr ) an (Euclidean) angle smaller than 3

16
rad, and with L(tr ) an (Euclidean) angle smaller than 2

8 rad. If x(a) and x(b) are
any two points in the geodesic x joining q1 to q2 then P(x(a), x(b)) makes an angle
with P(q1, q2) of at most 1

8 rad, thus it makes an angle with L(tr ) smaller than 3
8 rad.

Moreover,

arctan

([
1 − 2

√
ε

1 + 2
√

ε

]1/2)
> arctan

([
1 − 2/3

1 + 2/3

]1/2)
>

3

8
rad

thus P(x(a), x(b)) is η+-spacelike (we knew already that it was g-spacelike). Since
P(x(a), x(b)) is η+-spacelike we have using Eqs. (55) and (56)

|∇(b−a)ẋ(b)D
2
q − ∇(b−a)ẋ(a)D

2
q − 2D2(x(a), x(b))|

≤
√

ε

(1 − ε)2
gx(b)(P(x(a), x(b)), P(x(a), x(b))) =

√
ε

(1 − ε)2
D2(x(a), x(b)),

which a redefinition of ε, and a redefinition of parametrization such that (b − a) →
D(x(a), x(b)) (namely the g-arc length parametrization) brings to the form of Eq.
(18).

The statement of concerning the strong convexity of D2
q ◦ x is immediate from the

equivalences recalled in Sect. 1.5.
Let us prove the the strict convexity of (D2

q)
−1((−∞, c)) ∩ O . Suppose that c < 0

is such that G := (D2
q)

−1((−∞, c)) ∩ O �= ∅, otherwise there is nothing to prove.

Let x : [a, b] → C be a geodesic such that x(a), x(b) ∈ Ḡ, then x(a), x(b) ∈ Ō ,
and since O is strictly geodesically convex x is contained in O but for the endpoints.
Since D2

q : C × C → R is continuous, x(a), x(b) ≤ c and we have to show that for
every t ∈ (a, b), D2

q(x(t)) < c.
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Supposenot, then there is some tmax ∈ (a, b) such that D2
q(x(tmax )) is themaximum

of D2
q(x(·)) over [a, b] and D2

q(x(tmax )) ≥ c. In particular,

d(D2
p ◦ x)

dt
|t=tmax = ∇ẋ(tmax )D

2
q(x(tmax )) = 0.

However, by Eq. (18) no two values of t can attain this maximum, thus in any
neighborhood E of tmax we can find t1, t2 ∈ E\{tmax }, t1 < tmax < t2 such that
D2
q(x(t1)) = D2

q(x(t2)) < D2
q(x(tmax )), thus we can apply once again the equation

following Eq. (18) using these two values as endpoints of the spacelike geodesic. But
that equation implies that D2

q(x(tmax )) < D2
q(x(t2)), a contradiction. ��

Lemma 4 Let p ∈ M and let γ : I → M, t �→ γ (t), be a timelike geodesic such
that p = γ (0). The convex normal set C � p can be taken sufficiently small that once
I is redefined to be the connected component of γ −1(C) containing 0, the following
property holds. We can find q1 = γ (t1), and q2 = γ (t2) with t1 < 0 < t2, and a
strictly convex normal set O � p, such that introduced the constants c1 := D2

q1(p)

and c2 := D2
q2(p), we have that, for any c

′
1 > c1 sufficiently close to c1 and for any

c′
2 > c2 sufficiently close to c2,

S(c′
1, c

′
2) = (D2

q1)
−1((−∞, c′

1)) ∩ (D2
q2)

−1((−∞, c′
2)) ∩ O

is strictly convex normal and globally hyperbolic.

Proof By Theorem 11 we can find a strictly convex relatively compact set C � p
with the property of that theorem. In particular, let q1 = γ (t1), q1 ∈ C , t1 < 0,
and let q2 = γ (t2), q2 ∈ C , t2 > 0. There is a strictly convex normal set O1 � p,
Ō1 ⊂ I+

C (q1), such that D2
q1 : C × C → R is strongly convex over the geodesics

segments in O1 connecting two points in its level surfaces. Similarly there is a strictly
convex set O2, Ō2 ⊂ I−

C (q2), with an analogous property with respect to q2. Let
O = O1 ∩ O2.

Let us introduce the closed sets

A(c′
1, c

′
2) = (D2

q1)
−1((−∞, c′

1]) ∩ (D2
q2)

−1((−∞, c′
2]) ∩ Ō.

The set A(c1, c2) contains just p for otherwise therewould be a different timelike curve
made of two geodesic pieces of total Lorentzian length equal with that of γ |[t1,t2], a
contradiction to Theorem 6. Since the intersection of a family of non-empty compact
sets is non-empty, for sufficiently large i the set A(c1+1/ i, c2+1/ i)must be disjoint
from ∂O .

Thus for c′
1 ≤ c1+1/ i and c′

2 ≤ c2+1/ i , S(c′
1, c

′
2) is the component of the open set

(D2
q1)

−1((−∞, c′
1))∩ (D2

q2)
−1((−∞, c′

2)) contained in O and its closure is contained
in O . As D2

q1 is decreasing over future directed causal curves and D2
q1 is increasing

over future directed causal curves, no causal curve inC can leave and reenter S(c′
1, c

′
2),

in particular since C is causally simple and relatively compact, S(c′
1, c

′
2) is globally

hyperbolic.
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The set S(c′
1, c

′
2) is strictly convex normal because it is the intersection of the

strictly convex normal set (D2
q1)

−1((−∞, c′
1)) ∩ O1 and the strictly convex normal

set (D2
q2)

−1((−∞, c′
2)) ∩ O2. ��

Proof (Proof of Corollary 2) Just take Ci = S(c1 + 1/(k + i), c2 + 1/(k + i)) for
sufficiently large k and use the results of Lemma 4 (see also its proof). ��
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