Monatsh Math (2015) 176:241-253
DOI 10.1007/s00605-014-0697-0

Subgroups generated by rational functions
in finite fields

Domingo Gomez-Pérez - Igor E. Shparlinski

Received: 29 September 2013 / Accepted: 2 October 2014 / Published online: 29 October 2014
© European Union 2014

Abstract For a large prime p, a rational function ¢ € F,(X) over the finite field IF,
of p elements, and integers u and H > 1, we obtain a lower bound on the number
consecutive values ¥ (x), x =u + 1, ..., u + H that belong to a given multiplicative
subgroup of F),.
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Multiplicative subgroups
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1 Introduction

For a prime p, let[F, denote the finite field with p elements, which we always assume
to be represented by the set {0, ..., p — 1}.
Given a rational function

X
(X)) = SRR Fp(X)

g(X)
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242 D. Gémez-Pérez, 1. E. Shparlinski

where f, g € IF,[X] are relatively prime polynomials, and an ‘interesting’ setS C I,
it is natural to ask how the value set

Y(S) ={y(x):xeS, gl) #0}

is distributed. For instance, given another ‘interesting’ set 7, our goal is to obtain
nontrivial bounds on the size of the intersection

Ny( S, T)=#W (S NT).

In particular, we are interested in the cases when Ny, (S, 7) achieves the trivial upper
bound

Ny (S, T) < min{#S, #7T).

Typical examples of such sets S and 7 are given by intervals Z of consecutive
integers and multiplicative subgroups G of IF’I‘,. For large intervals and subgroups, a
standard application of bounds of exponential and multiplicative character sums leads
to asymptotic formulas for the relevant values of Ny, (S, T), see [7,11,19]. Thus only
the case of small intervals and groups is of interest.

For a polynomial f € F,[X] and two intervals Z = {u + 1,...,u + H} and
J ={v+1,...,v+ H} of H consecutive integers, various bounds on the cardinality
of the intersection f(Z) N J are given in [7,11]. To present some of these results, for
positive integers d, k and H, we denote by J; x(H) the number of solutions to the
system of equations

XX =X+ xy, v=1,....d,

in positive integers xi, ..., xox < H.Then by [11, Theorem 1], for any f € F,[X]
of degree d > 2 and two intervals 7 and J of H < p consecutive integers, we have

Ny (T, J) < H(H /p)/2@+o() | gi=@=D/2%(@r+o(1),

as H — oo, where «(d) is the smallest integer « such that for k > « there exists a
constant C(d, k) depending only on k and d and such that

Jax(H) < C(d, k)H*—d@d+D/2+o(l)

holds as H — o0, see also [7] for some improvements and results for related problems.
In [7,11] the bounds of Wooley [22,23] are used that give the presently best known
estimates on k (d) (at least for a large d), see also [24] for further progress in estimating
k(d).

Itis easy to see that the argument of the proof of [11, Theorem 1] allows to consider
intervals of Z and J of different lengths as well and for intervals

IT={u+1,...,u+H} and J={v+1,...,v+ K}
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Rational functions in finite fields 243

with 1 < H, K < p it leads to the bound
NA(T. T) < pl+o() ((K/p)l/ZK(d) n (K/Hd)l/ZK(d))’

see also a more general result of Kerr [15, Theorem 3.1] that applies to multivariate
polynomials and to congruences modulo a composite number.

Furthermore, let Ky (H) be the smallest K for which there are intervals 7 =
{fu+1,...,u+H}and J ={v+1,...,v+ K} for which Ny, (Z, J) = #Z. That is,
Ky, (H) is the length of the shortest interval, which may contain H consecutive values
of y € F,(X) of degree d.

Defining «*(d) in the same way as k (d), however with respect to the more precise
bound

Jax(H) < C(d, kyHH D12

[that is, without o(1) in the exponent] we can easily derive that for any polynomial
f € Fp[X]of degree d,
Ky(H) = c(d)H, M

for some constant c(d) > 0 that depends only on d. To see that the bound (1) is optimal
it is enough to take £(X) = X< and u = 0. Note that the proof of (1) depends only
on the existence of k*(d) rather than on its specific bounds. However, we recall that
Wooley [22, Theorem 1.2] shows that for some constant S(d, k) > 0 depending only
on d and k we have

Jd,k(H) ~ G(d, k)HZk—d(d+l)/2

for any fixed d > 3 and k > d?> + d + 1. In particular, «*(d) < d*> +d + 1.

Here we concentrate on estimating Ny (Z, G) for an interval Z of H consecutive
integers and a multiplicative subgroup G < IF*[‘, of order 7. This question has been
mentioned in [11, Section 4] as an open problem.

We remark that for linear polynomials f the result of [4, Corollary 34] have a
natural interpretation as a lower bound on the order of a subgroup G < I, for which
Ny(Z,G) = #1. In particular, we infer from [4, Corollary 34] that for any linear
polynomials f(X) = aX+b € F,[X]and fixed integer v = 1, 2, .. ., foraninterval 7
of H < pl/ -1 consecutive integers and a subgroup G, the equality N ¢ (Z, G) = #1
implies #G > HV+o(),

We also remark that the results of [5, Section 5] have a similar interpretation for the
identity N¢(Z, G) = #1 with linear polynomials, however apply to almost all primes
p (rather than to all primes).

Furthermore, a result of Bourgain [3, Theorem 2] gives a nontrivial bound on the
intersection of an interval centered at 0, that is, of the form Z = {0, 1, ..., &=H} and
aco-setay (witha € ) of a multiplicative group G € F7, provided that H < pl—¢
and #G > go(¢), for some constant go(e) depending only on an arbitrary ¢ > 0.

We note that several bounds on # (£ (G) N G) for a multiplicative subgroup G C IF;*7
are given in [19], but they apply only to polynomials f defined over Z and are not
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244 D. Gémez-Pérez, 1. E. Shparlinski

uniform with respect to the height (that is, the size of the coefficients) of f. Thus
the question of estimating N (G, G) remains open. On the other hand, a number
of results about points on curves and algebraic varieties with coordinates from small
subgroups, in particular, in relation to the Poonen Conjecture, have been given in [6,8—
10,17,18,20,21].

Werecall that the notations U = O(V),U < VandV > U are all equivalent to the
statement that the inequality |U| < ¢ V holds with some constant ¢ > 0. Throughout
the paper, any implied constants in these symbols may occasionally depend, where
obvious, on d = deg f and e = deg g, but are absolute otherwise.

2 Preparations
2.1 Absolute irreducibility of some polynomials

As usual, we use Fp to denote the algebraic closure of IF;, and X, Y to denote indeter-
minate variables. We also use FP(X), FP(Y), FP(X, Y) to denote the corresponding
fields of rational functions over F .

We recall that the degree of a rational function in the variables X, Y

_s(X,Y)
T X, Y)

F(X,Y) eFp(X,Y), ged(s(X,Y),1(X,Y) =1,
is deg F = max{deg s, degt}. B
It is also known that if R(X) € [F,(X) is a rational function then

deg(Ro F) =deg Rdeg F, 2)

where o denotes the composition.
We use the following result of Bodin [1, Theorem 5.3] adapted to our purposes.
Also, see [16] for results in fields of zero characteristic.

Lemmal Lets(X,Y),1(X,Y) € F,[X, Y] be polynomials such that there does not
exist a rational function R(X) € FI,(X) with deg R > 1 and a bivariate rational
function G(X, Y) € Fp[X, Y] such that,

s(X,Y)

F(X,Y) = T

= R(G(X, Y)).

The @mber of elements X\ such that the polynomial s(X,Y) — At (X, Y) is reducible
over Fp[ X, Y] is at most (deg F)2.

We say that a rational function f € FP(X ) is a perfect power of another rational
function if and only if f(X) = (g(X))" for some rational function g(X) € Fp (X)
and integer n > 2. Because Fp is an algebraic closed field, it is trivial to see that if
f(X) is a perfect power, then af (X) is also a perfect power for any a € F p- We need
the following easy technical lemma.
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Rational functions in finite fields 245

Lemma 2 Let Pi(X), Q1(X) € FP[X] and P,(Y), Q2(Y) € FP[Y] be two pairs of
relatively prime polynomials. Then the following bivariate polynomial

Frs(X,Y) =rP1(X)Q2(Y) = s Q1(X) P2(Y),

is not divisible by any univariate polynomial for all r, s € F;,

Proof Suppose that this polynomial is divisible by an univariate polynomial d(X).
Take any root o € IF), of the polynomial d and substitute X = « in F}. ;(X, Y), getting

rP(a) Q2(Y) = sQ1(a) P2 (Y) = 0.

Here, we have two different possibilities:

e If rPi(a) =0, then Q(x) = 0, and we get a contradiction,
e In other case, gcd(Q2(Y), P>(Y)) # 1, contradicting our hypothesis.

This finishes the proof. O
Now, we prove the following result about irreducibility.

Lemma 3 Given relatively prime polynomials f, g € FP[X land if a rational function
f(X)/g(X) e FP(X) of degree D > 2 is not a perfect power then f(X)g(Y) —
©Mf(Y)g(X) is reducible over F,,[X, Y] for at most 4D? values of A € F;.

Proof First we describe the idea of the proof. Our aim is to show that the condition of
Lemma 1 holds for the polynomial f(X)g(Y) —Af(Y)g(X). Indeed, we show that if

f(X)e¥)

= R(G(X,Y)), 3
g(X)f(¥) (GULTD @

with a rational function R € F p(X) of degree deg R > 2 and a bivariate rational
function G(X,Y) € ]F,,(X Y), then there exists another R e IF,,(X) and G(X Y) e
Fp(X.Y)

J(X)g)

= (R(GX,"))"
gX)f) (R(G( )

for an appropriate integer m > 2. Comparing coefficients, it is easy to arrive at the
conclusion that f(X)/g(X) is a perfect power.

Without loss of generality, we suppose R(0) = 0. Indeed, we can take any root of
R(X) and replace R(X) with R(X 4+ «) and G(X, Y) with G(X,Y) — «.

So, indeed we have

X [Tia (X =)

R(X) = .
0 HT:l(X_sj)
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246 D. Gémez-Pérez, 1. E. Shparlinski

Writing G(X,Y) = G1(X,Y)/G2(X, Y) in its lowest terms and by hypothesis, we
have that the fraction on the right of this inequality,

fXe(¥) _ G, N
gX)f(Y)  Ga(X. Y)Vom
LGX N [[i(G1(X, Y) — ri(Ga(X. Y))
[T/=1(G1(X.Y) = 5,Ga(X. Y))

’

where
N = max{k, m}
is in its lowest terms. This means that G1(X,Y) = Pi{(X)P>(Y) and G,(X,Y) =

Sl_l(Pl(X)Pz(Y) — 01(X)02(Y)), where P, P, Q1, Q2 are divisors of f or g.
Because gcd(G1(X, Y), G2(X, Y)) = 1, we have that

ged(Pr(X), Q1(X)) = ged(P2(Y), Q2(Y)) = 1.

Lemma 2 implies that m = k as otherwise G»(X, Y) is divisible by an univariate
polynomial. This implies,

fXe¥) _ GiX.T) [[I(G1(X, Y) —riGa(X, Y))
gX) f(¥) [T721(G1(X, Y) = 5;,G2(X, )

Now, suppose that there exists another value
sef{r,....rm,852,...,8m}, s F#0,s1.
Then, the following polynomial
G1(X. V) = 5Ga(X, ¥) = (1= s57") PLCOP2Y) 457 Q1(X0) 0a(Y)

is divisible by an univariate polynomial which contradicts Lemma 2. So, this means
that R(X) can be written in the following form,

X m
R(X):(X—sl) )

and this concludes the proof. O

Notice that the condition that f(X)/g(X) is not a perfect power of a polynomial is
necessary, indeed if f(X) = (h(X))" and g(X) = 1 with f(X), h(X) € IF,[X] then
f(X) = A" f(Y) is divisible by A(X) — Lh(Y) for any A € Fl,.
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Rational functions in finite fields 247

2.2 Integral points on affine curves

We need the following estimate of Bombieri and Pila [2] on the number of integral
points on polynomial curves.

Lemma 4 Let C be a plane absolutely irreducible curve of degree n > 2 and let H >
exp(n6). Then the number of integral points on C inside of the square [0, H] x [0, H]

is at most H'/" exp(12+/nlog H loglog H).

2.3 Small values of linear functions

We need a result about small values of residues modulo p of several linear functions.
Such a result has been derived in [12, Lemma 3.2] from the Dirichlet pigeon-hole
principle. Here use a slightly more precise and explicit form of this result which is
derived in [13] from the Minkowski theorem.

First we recall some standard notions of the theory of geometric lattices.

Let by, ..., b, be r linearly independent vectors in R®. The set

L={z:z=cbi+ ---+¢b,, ci1,...,¢, €7}

is called an r-dimensional lattice in R® with a basis {by, ..., b,}.
To each lattice £ one can naturally associate its volume

vol £ = (det (B'B))"/?,

where B is the s x r matrix whose columns are formed by the vectors by, ..., b, and
B! is the transposition of B. It is well known that vol £ does not depend on the choice
of the basis {by, ..., b;}, we refer to [14] for a background on lattices.

For a vector u, let
lulleo = max{|uyl, ..., lusl}
denote its infinity norm of u = (uy, ..., us) € R®.
The famous Minkowski theorem, see [14, Theorem 5.3.6], gives an upper bound on

the size of the shortest nonzero vector in any r-dimensional lattice £ in terms of its
volume.

Lemma 5 For any r-dimensional lattice L we have
min {[|z]leo: z € £\ {0}} < (vol L)V .

For an integer a we use (a) p o denote the smallest by absolute value residue of a
modulo p, that is

a), = min|a — kp|.
(a), kEZI P
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The following result is essentially contained in [13, Theorem 2]. We include here a
short proof.

Lemma 6 For any real numbers Vi, ..., Vs with
p>Vi,...,Vi>1 and Vy...Vy > p*!
and integers by, . . ., by, there exists an integer v with gcd(v, p) = 1 such that
(biv), <V, i=1,...,5s.

Proof Without loss of the generality, we can take b1 = 1. We introduce the following
notation,

v=][]v &
i=1

and consider the lattice £ generated by the columns of the following matrix

bsV/ Vg 0o ... 0 pV/Vs
bs1V/Vs_1 0 ...pV/Vs_1 0
B=| A
byV/Vo pV/Va... 0 0
V/W 0 0 0

Clearly the volume of L is
V & pV
volL = — =yl <y
v ]j 7 P! <

by (4) and the conditions on the size of the product V... V. Consider a nonzero
vector with the minimum infinity norm inside £. By the definition of £, this vector is
a linear combination of the columns of B with integer coefficients, that is, it can be
written in the following way

a1V (c1ba+cap)V (c1bs +csp)V
_ e, , Cly...,Cs €Z.
Vi V2 Vs
By Lemma 5 and the bound on the volume of £, the following inequality holds,

cV
Vi

(c1ba +c2p)V
V)

R

(c1bs +csp)V H “v.

max
| ;

From here, it is trivial to check that if we choose v = ¢, then

o (), = (e, < Vi,
o (Whi), ={cibi), < Vi, i=2....s,

which finishes the proof. O

@ Springer



Rational functions in finite fields 249

3 Main results

Theorem 7 Let ¢ (X) = f(X)/g(X) where f, g € F,[X] relatively prime polyno-
mials of degree d and e respectively with d + e¢ > 1. We define

¢ =min{d, e}, m = max{d, e}
and set

k:(£+1)(£m—£2+m2+m) and s = 2ml + 2m — €2,

Assume that \ is not a perfect power of another rational function over Fp. Then for
any interval T of H consecutive integers and a subgroup G of IF; of order T, we have

Ny(Z,G) < (1+ H p~"yHTToDT1/2,

where

1 k 1
1-9:_7 IO:—’ T = PR
2s 2s 200 +m)

and the implied constant depends on d and e.

Proof Clearly we can assume that
H = cp?/Cr= 8

for some constant ¢ > 0 which may depend on d and e as otherwise one easily verifies
that

and hence the desired bound is weaker than the trivial estimate
Ny(Z,G) « min{H, T} < H'/>T'/2,

Making the transformation X — X + u, we can assume that Z = {1, ..., H}. Let
1<x;<---<x, <Hbealr = Ny(,G) values of x € 7 with (x) € G.

Let A be the set of exceptional values of A € F,, described in Lemma 3. We see that
there are only at most Am3r pairs (x;, x;), 1 <1i, j <r,for which ¥ (x;)/¥(x;) € A.
Indeed, if x; is fixed, then ¥ (x;) can take at most 4m? values of the form AP (x)),
with A € A,

Furthermore, each value Ay (x;) can be taken by ¥ (x;) for at most D possible
valuesofi =1,...,r.
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250 D. Gémez-Pérez, 1. E. Shparlinski

We now assume that » > 8m? as otherwise there is nothing to prove. Therefore,
there is A € G \ A such that

Y (x) =Ap(y) (mod p) (6)

for at least

r2 —d4m3r r2

T~ oT D
pairs (x, y) withx,y € {1, ..., H}.
Let
X8 = Af (g0 =D > bi XY
i=0 j=0
Let

H={G j):i,j=0,....m, i+ j>1min{i, j} <{}.

Clearly the noncostant terms b; ; X'yJ of f(X)g(Y)—Arf(Y)g(X) are supported only
on the subscripts (i, j) € H. We have

HH=2m+ DU+ D) —C+1)>—1=5s

We now apply Lemma 6 with s = #H and the vector (b,-, j) (. )eH"
We also define the quantities U and V; ;, (i, j) € H by the relations

Vi H =U, (,j)eH,
thus

H Vi,j — 2175—1-

(i,))eH
By Lemma 6 there is an integer v with gcd(v, p) = 1 such that
(bijv), < Vi
for every (i, j) € H.
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We have
m L A
S+ n=2> D+ =D D+ )
(i,))eH i=0 j=0 i=0 j=0

m 1
=22((£+1)i+ w; 1)) —Z((e+1)i+ w; 1))
i=0 i=0

22(_(£+1)m(m+1)+£(e+1)(m+1))

2 2
e+ eE+1)7?
2 2

k.

Certainly it is easy to evaluate V; ;, (i, j) € H explicitly, however it is enough for
us to note that we have

USH—]( — zps—l.

Hence
U :21/Sp171/SHk/S. (8)

We also assume that the constant ¢ in (5) is small enough so the condition

1 -1
(ifl]))E}EXH{V,,J} UH  <p

is satisfied.
Let F(X,Y) € Z[X] and G(X, Y) € Z[X] be polynomials with coefficients in the

interval [—p/2, p/2], obtained by reducing vf (X)g(Y) and vAf (¥Y)g(X) modulo p,
respectively. Clearly (6) implies

F(x,y)=G(x,y) (mod p). ©)

Furthermore, since for x, y € {1, ..., H}, we see from (8) and the trivial estimate on
the constant coefficients [that is, | F(0)], |G(0)| < p/2] that

IF(,y) =G, )| < U+ p < p' "V HY 4 p,
which together with (9) implies that
F(x,y)=G(x,y) +zp (10)
for some integer z < p~ /S H*/S 4 1.
Clearly, for any integer z the reducibility of F(X,Y) — G(X,Y) — pz over C

implies the reducibility of F (X, Y) — G(X, Y) over F p» or equivalently f(X)g(Y) —
Af(Y)g(X) over Fl,, which is impossible because A & A.
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252 D. Gémez-Pérez, 1. E. Shparlinski

Because F(X,Y) —G(X,Y)— pz € C[X, Y] is irreducible over C and has degree
d, we derive from Lemma 4 that for every z the Eq. (10) has at most H!/(@+e)+o(D)
solutions. Thus the congruence (6) has at most O (Hl/(d+e)+"(l) (p_l/sHk/s + 1))
solutions. This, together with (7), yields the inequality

2
ZF_T < HV/@+erro) (p—l/sHk/s_i_l)’

and concludes the proof. O

Clearly, in the case when e = 0, that is, i = f is a polynomial of degree d > 2,
the bound of Theorem 7 takes form

Ny(Z.0) < (1 + H(d+1)/4p—1/4d) F1/2d+o) 172

4 Comments

Clearly Theorem 7 also provides a bound for the case where rational function ¥ = ¢*,
with ¢ € IFj,(X). This comes from the fact that

Y(x) e G = ¢(x) € Go,

where Gy is a multiplicative subgroup of F,, of order bounded by s7. However the
resulting bound depends now on the degrees of the polynomials associated with ¢
rather than that of .

Another consequence from Theorem 7 is the following: given an interval Z and a
subgroup G C %, satisfying Ny (Z, G) = #Z then

#g > min{(#I)2—21+0(1)’ (#I)I—Zp—ZT-H)(l)le?}

where the implied constant depends only on d and e. However, we believe that this
bound is very unlikely to be tight.
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