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Abstract For a large prime p, a rational function ψ ∈ Fp(X) over the finite field Fp

of p elements, and integers u and H ≥ 1, we obtain a lower bound on the number
consecutive values ψ(x), x = u + 1, . . . , u + H that belong to a given multiplicative
subgroup of F

∗
p.
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Multiplicative subgroups
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1 Introduction

For a prime p, let Fp denote the finite field with p elements, which we always assume
to be represented by the set {0, . . . , p − 1}.

Given a rational function

ψ(X) = f (X)

g(X)
∈ Fp(X)
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242 D. Gómez-Pérez, I. E. Shparlinski

where f, g ∈ Fp[X ] are relatively prime polynomials, and an ‘interesting’ set S ⊆ Fp,
it is natural to ask how the value set

ψ(S) = {ψ(x): x ∈ S, g(x) �= 0}

is distributed. For instance, given another ‘interesting’ set T , our goal is to obtain
nontrivial bounds on the size of the intersection

Nψ(S, T ) = # (ψ(S) ∩ T ) .

In particular, we are interested in the cases when Nψ(S, T ) achieves the trivial upper
bound

Nψ(S, T ) ≤ min{#S, #T }.

Typical examples of such sets S and T are given by intervals I of consecutive
integers and multiplicative subgroups G of F

∗
p. For large intervals and subgroups, a

standard application of bounds of exponential and multiplicative character sums leads
to asymptotic formulas for the relevant values of Nψ(S, T ), see [7,11,19]. Thus only
the case of small intervals and groups is of interest.

For a polynomial f ∈ Fp[X ] and two intervals I = {u + 1, . . . , u + H} and
J = {v+1, . . . , v+ H} of H consecutive integers, various bounds on the cardinality
of the intersection f (I)∩ J are given in [7,11]. To present some of these results, for
positive integers d, k and H , we denote by Jd,k(H) the number of solutions to the
system of equations

xν1 + · · · + xνk = xνk+1 + · · · + xν2k, ν = 1, . . . , d,

in positive integers x1, . . . , x2k ≤ H . Then by [11, Theorem 1], for any f ∈ Fp[X ]
of degree d ≥ 2 and two intervals I and J of H < p consecutive integers, we have

N f (I,J ) ≤ H(H/p)1/2κ(d)+o(1) + H1−(d−1)/2κ(d)+o(1),

as H → ∞, where κ(d) is the smallest integer κ such that for k ≥ κ there exists a
constant C(d, k) depending only on k and d and such that

Jd,k(H) ≤ C(d, k)H2k−d(d+1)/2+o(1)

holds as H → ∞, see also [7] for some improvements and results for related problems.
In [7,11] the bounds of Wooley [22,23] are used that give the presently best known
estimates on κ(d) (at least for a large d), see also [24] for further progress in estimating
κ(d).

It is easy to see that the argument of the proof of [11, Theorem 1] allows to consider
intervals of I and J of different lengths as well and for intervals

I = {u + 1, . . . , u + H} and J = {v + 1, . . . , v + K }
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Rational functions in finite fields 243

with 1 ≤ H, K < p it leads to the bound

N f (I,J ) ≤ H1+o(1)
(
(K/p)1/2κ(d) + (K/Hd)1/2κ(d)

)
,

see also a more general result of Kerr [15, Theorem 3.1] that applies to multivariate
polynomials and to congruences modulo a composite number.

Furthermore, let Kψ(H) be the smallest K for which there are intervals I =
{u + 1, . . . , u + H} and J = {v+ 1, . . . , v+ K } for which Nψ(I,J ) = #I. That is,
Kψ(H) is the length of the shortest interval, which may contain H consecutive values
of ψ ∈ Fp(X) of degree d.

Defining κ∗(d) in the same way as κ(d), however with respect to the more precise
bound

Jd,k(H) ≤ C(d, k)H2k−d(d+1)/2

[that is, without o(1) in the exponent] we can easily derive that for any polynomial
f ∈ Fp[X ] of degree d,

K f (H) ≥ c(d)Hd , (1)

for some constant c(d) > 0 that depends only on d. To see that the bound (1) is optimal
it is enough to take f (X) = Xd and u = 0. Note that the proof of (1) depends only
on the existence of κ∗(d) rather than on its specific bounds. However, we recall that
Wooley [22, Theorem 1.2] shows that for some constant S(d, k) > 0 depending only
on d and k we have

Jd,k(H) ∼ S(d, k)H2k−d(d+1)/2

for any fixed d ≥ 3 and k ≥ d2 + d + 1. In particular, κ∗(d) ≤ d2 + d + 1.
Here we concentrate on estimating Nψ(I,G) for an interval I of H consecutive

integers and a multiplicative subgroup G ⊆ F
∗
p of order T . This question has been

mentioned in [11, Section 4] as an open problem.
We remark that for linear polynomials f the result of [4, Corollary 34] have a

natural interpretation as a lower bound on the order of a subgroup G ⊆ F
∗
p for which

N f (I,G) = #I. In particular, we infer from [4, Corollary 34] that for any linear
polynomials f (X) = aX +b ∈ Fp[X ] and fixed integer ν = 1, 2, . . ., for an interval I
of H ≤ p1/(ν2−1) consecutive integers and a subgroup G, the equality N f (I,G) = #I
implies #G ≥ H ν+o(1).

We also remark that the results of [5, Section 5] have a similar interpretation for the
identity N f (I,G) = #I with linear polynomials, however apply to almost all primes
p (rather than to all primes).

Furthermore, a result of Bourgain [3, Theorem 2] gives a nontrivial bound on the
intersection of an interval centered at 0, that is, of the form I = {0,±1, . . . ,±H} and
a co-set aG (with a ∈ F

∗
p) of a multiplicative group G ⊆ F

∗
p, provided that H < p1−ε

and #G ≥ g0(ε), for some constant g0(ε) depending only on an arbitrary ε > 0.
We note that several bounds on # ( f (G) ∩ G) for a multiplicative subgroup G ⊆ F

∗
p

are given in [19], but they apply only to polynomials f defined over Z and are not
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uniform with respect to the height (that is, the size of the coefficients) of f . Thus
the question of estimating N f (G,G) remains open. On the other hand, a number
of results about points on curves and algebraic varieties with coordinates from small
subgroups, in particular, in relation to the Poonen Conjecture, have been given in [6,8–
10,17,18,20,21].

We recall that the notations U = O(V ), U � V and V 
 U are all equivalent to the
statement that the inequality |U | ≤ c V holds with some constant c > 0. Throughout
the paper, any implied constants in these symbols may occasionally depend, where
obvious, on d = deg f and e = deg g, but are absolute otherwise.

2 Preparations

2.1 Absolute irreducibility of some polynomials

As usual, we use Fp to denote the algebraic closure of Fp and X,Y to denote indeter-
minate variables. We also use Fp(X), Fp(Y ), Fp(X,Y ) to denote the corresponding
fields of rational functions over Fp.

We recall that the degree of a rational function in the variables X,Y

F(X,Y ) = s(X,Y )

t (X,Y )
∈ Fp(X,Y ), gcd(s(X,Y ), t (X,Y )) = 1,

is deg F = max{deg s, deg t}.
It is also known that if R(X) ∈ Fp(X) is a rational function then

deg(R ◦ F) = deg R deg F, (2)

where ◦ denotes the composition.
We use the following result of Bodin [1, Theorem 5.3] adapted to our purposes.

Also, see [16] for results in fields of zero characteristic.

Lemma 1 Let s(X, Y ), t (X,Y ) ∈ Fp[X,Y ] be polynomials such that there does not
exist a rational function R(X) ∈ Fp(X) with deg R > 1 and a bivariate rational
function G(X,Y ) ∈ Fp[X,Y ] such that,

F(X,Y ) = s(X,Y )

t (X,Y )
= R(G(X,Y )).

The number of elements λ such that the polynomial s(X,Y ) − λt (X,Y ) is reducible
over Fp[X,Y ] is at most (deg F)2.

We say that a rational function f ∈ Fp(X) is a perfect power of another rational
function if and only if f (X) = (g(X))n for some rational function g(X) ∈ Fp(X)
and integer n ≥ 2. Because Fp is an algebraic closed field, it is trivial to see that if
f (X) is a perfect power, then a f (X) is also a perfect power for any a ∈ Fp. We need
the following easy technical lemma.

123



Rational functions in finite fields 245

Lemma 2 Let P1(X), Q1(X) ∈ Fp[X ] and P2(Y ), Q2(Y ) ∈ Fp[Y ] be two pairs of
relatively prime polynomials. Then the following bivariate polynomial

Fr,s(X,Y ) = r P1(X)Q2(Y )− s Q1(X)P2(Y ),

is not divisible by any univariate polynomial for all r, s ∈ F
∗
p,

Proof Suppose that this polynomial is divisible by an univariate polynomial d(X).
Take any root α ∈ Fp of the polynomial d and substitute X = α in Fr,s(X,Y ), getting

r P1(α)Q2(Y )− s Q1(α)P2(Y ) = 0.

Here, we have two different possibilities:

• If r P1(α) = 0, then Q1(α) = 0, and we get a contradiction,
• In other case, gcd(Q2(Y ), P2(Y )) �= 1, contradicting our hypothesis.

This finishes the proof. ��
Now, we prove the following result about irreducibility.

Lemma 3 Given relatively prime polynomials f, g ∈ Fp[X ] and if a rational function
f (X)/g(X) ∈ Fp(X) of degree D ≥ 2 is not a perfect power then f (X)g(Y ) −
λ f (Y )g(X) is reducible over Fp[X,Y ] for at most 4D2 values of λ ∈ F

∗
p.

Proof First we describe the idea of the proof. Our aim is to show that the condition of
Lemma 1 holds for the polynomial f (X)g(Y )− λ f (Y )g(X). Indeed, we show that if

f (X)g(Y )

g(X) f (Y )
= R(G(X,Y )), (3)

with a rational function R ∈ Fp(X) of degree deg R ≥ 2 and a bivariate rational
function G(X,Y ) ∈ Fp(X,Y ), then there exists another R̃ ∈ Fp(X) and G̃(X,Y ) ∈
Fp(X,Y )

f (X)g(Y )

g(X) f (Y )
= (

R̃
(
G̃(X,Y )

))m
,

for an appropriate integer m ≥ 2. Comparing coefficients, it is easy to arrive at the
conclusion that f (X)/g(X) is a perfect power.

Without loss of generality, we suppose R(0) = 0. Indeed, we can take any root of
R(X) and replace R(X) with R(X + α) and G(X,Y ) with G(X,Y )− α.

So, indeed we have

R(X) = a
X

∏k
i=2(X − ri )∏m

j=1(X − s j )
.
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Writing G(X,Y ) = G1(X,Y )/G2(X,Y ) in its lowest terms and by hypothesis, we
have that the fraction on the right of this inequality,

f (X)g(Y )

g(X) f (Y )
= a

G2(X,Y )N−k

G2(X,Y )N−m

×G1(X,Y )
∏k

i=2(G1(X,Y )− ri (G2(X,Y ))∏m
j=1(G1(X,Y )− s j G2(X,Y ))

,

where

N = max{k,m}

is in its lowest terms. This means that G1(X,Y ) = P1(X)P2(Y ) and G2(X,Y ) =
s−1

1 (P1(X)P2(Y ) − Q1(X)Q2(Y )), where P1, P2, Q1, Q2 are divisors of f or g.
Because gcd(G1(X,Y ),G2(X,Y )) = 1, we have that

gcd(P1(X), Q1(X)) = gcd(P2(Y ), Q2(Y )) = 1.

Lemma 2 implies that m = k as otherwise G2(X,Y ) is divisible by an univariate
polynomial. This implies,

f (X)g(Y )

g(X) f (Y )
= a

G1(X,Y )
∏m

i=2(G1(X,Y )− ri G2(X,Y ))∏m
j=1(G1(X,Y )− s j G2(X,Y ))

.

Now, suppose that there exists another value

s ∈ {r2, . . . , rm, s2, . . . , sm}, s �= 0, s1.

Then, the following polynomial

G1(X,Y )− sG2(X,Y ) =
(

1 − ss−1
1

)
P1(X)P2(Y )+ s−1

1 Q1(X)Q2(Y )

is divisible by an univariate polynomial which contradicts Lemma 2. So, this means
that R(X) can be written in the following form,

R(X) =
(

X

X − s1

)m

,

and this concludes the proof. ��
Notice that the condition that f (X)/g(X) is not a perfect power of a polynomial is

necessary, indeed if f (X) = (h(X))n and g(X) = 1 with f (X), h(X) ∈ Fp[X ] then
f (X)− λn f (Y ) is divisible by h(X)− λh(Y ) for any λ ∈ Fp.
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Rational functions in finite fields 247

2.2 Integral points on affine curves

We need the following estimate of Bombieri and Pila [2] on the number of integral
points on polynomial curves.

Lemma 4 Let C be a plane absolutely irreducible curve of degree n ≥ 2 and let H ≥
exp(n6). Then the number of integral points on C inside of the square [0, H ] × [0, H ]
is at most H1/n exp(12

√
n log H log log H).

2.3 Small values of linear functions

We need a result about small values of residues modulo p of several linear functions.
Such a result has been derived in [12, Lemma 3.2] from the Dirichlet pigeon-hole
principle. Here use a slightly more precise and explicit form of this result which is
derived in [13] from the Minkowski theorem.

First we recall some standard notions of the theory of geometric lattices.
Let b1, . . . ,br be r linearly independent vectors in R

s . The set

L = {z : z = c1b1 + · · · + cr br , c1, . . . , cr ∈ Z}

is called an r-dimensional lattice in R
s with a basis {b1, . . . ,br }.

To each lattice L one can naturally associate its volume

vol L = (
det

(
Bt B

))1/2
,

where B is the s × r matrix whose columns are formed by the vectors b1, . . . ,br and
Bt is the transposition of B. It is well known that vol L does not depend on the choice
of the basis {b1, . . . ,br }, we refer to [14] for a background on lattices.

For a vector u, let

‖u‖∞ = max{|u1|, . . . , |us |}

denote its infinity norm of u = (u1, . . . , us) ∈ R
s .

The famous Minkowski theorem, see [14, Theorem 5.3.6], gives an upper bound on
the size of the shortest nonzero vector in any r -dimensional lattice L in terms of its
volume.

Lemma 5 For any r-dimensional lattice L we have

min {‖z‖∞ : z ∈ L \ {0}} ≤ (vol L)1/r .

For an integer a we use 〈a〉p to denote the smallest by absolute value residue of a
modulo p, that is

〈a〉p = min
k∈Z

|a − kp|.
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The following result is essentially contained in [13, Theorem 2]. We include here a
short proof.

Lemma 6 For any real numbers V1, . . . , Vs with

p > V1, . . . , Vs ≥ 1 and V1 . . . Vs > ps−1

and integers b1, . . . , bs, there exists an integer v with gcd(v, p) = 1 such that

〈biv〉p ≤ Vi , i = 1, . . . , s.

Proof Without loss of the generality, we can take b1 = 1. We introduce the following
notation,

V =
s∏

i=1

Vi (4)

and consider the lattice L generated by the columns of the following matrix

B =

⎛
⎜⎜⎜⎜⎜⎝

bs V/Vs 0 . . . 0 pV/Vs

bs−1V/Vs−1 0 . . . pV/Vs−1 0
...

...
...

...
...

b2V/V2 pV/V2 . . . 0 0
V/V1 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎠
.

Clearly the volume of L is

vol L = V

V1

s∏
j=2

pV

Vj
= V s−1 ps−1 ≤ V s

by (4) and the conditions on the size of the product V1 . . . Vs . Consider a nonzero
vector with the minimum infinity norm inside L. By the definition of L, this vector is
a linear combination of the columns of B with integer coefficients, that is, it can be
written in the following way

(
c1V

V1
,
(c1b2 + c2 p)V

V2
, . . . ,

(c1bs + cs p)V

Vs

)
, c1, . . . , cs ∈ Z.

By Lemma 5 and the bound on the volume of L, the following inequality holds,

max

{∣∣∣∣
c1V

V1

∣∣∣∣ ,
∣∣∣∣
(c1b2 + c2 p)V

V2

∣∣∣∣ , . . . ,
∣∣∣∣
(c1bs + cs p)V

Vs

∣∣∣∣
}

≤ V .

From here, it is trivial to check that if we choose v = c1, then

• 〈v〉p = 〈c1〉p ≤ V1,
• 〈vbi 〉p = 〈c1bi 〉p ≤ Vi , i = 2, . . . , s,

which finishes the proof. ��
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3 Main results

Theorem 7 Let ψ(X) = f (X)/g(X) where f, g ∈ Fp[X ] relatively prime polyno-
mials of degree d and e respectively with d + e ≥ 1. We define

� = min{d, e}, m = max{d, e}

and set

k = (�+ 1)
(
�m − �2 + m2 + m

)
and s = 2m�+ 2m − �2.

Assume that ψ is not a perfect power of another rational function over Fp. Then for
any interval I of H consecutive integers and a subgroup G of F

∗
p of order T , we have

Nψ(I,G) � (1 + Hρ p−ϑ)H τ+o(1)T 1/2,

where

ϑ = 1

2s
, ρ = k

2s
, τ = 1

2(�+ m)
,

and the implied constant depends on d and e.

Proof Clearly we can assume that

H ≤ cp2ϑ/(2ρ−1) (5)

for some constant c > 0 which may depend on d and e as otherwise one easily verifies
that

Hρ+τ p−ϑ ≥ Hρ p−ϑ 
 H1/2,

and hence the desired bound is weaker than the trivial estimate

Nψ(I,G) � min{H, T } ≤ H1/2T 1/2.

Making the transformation X �→ X + u, we can assume that I = {1, . . . , H}. Let
1 ≤ x1 < · · · < xr ≤ H be all r = Nψ(I,G) values of x ∈ I with ψ(x) ∈ G.

Let� be the set of exceptional values of λ ∈ Fp described in Lemma 3. We see that
there are only at most 4m3r pairs (xi , x j ), 1 ≤ i, j ≤ r , for which ψ(xi )/ψ(x j ) ∈ �.
Indeed, if x j is fixed, then ψ(xi ) can take at most 4m2 values of the form λψ(x j ),
with λ ∈ �,

Furthermore, each value λψ(x j ) can be taken by ψ(xi ) for at most D possible
values of i = 1, . . . , r .
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We now assume that r > 8m3 as otherwise there is nothing to prove. Therefore,
there is λ ∈ G \� such that

ψ(x) ≡ λψ(y) (mod p) (6)

for at least
r2 − 4m3r

T
≥ r2

2T
(7)

pairs (x, y) with x, y ∈ {1, . . . , H}.
Let

f (X)g(Y )− λ f (Y )g(X) =
m∑

i=0

m∑
j=0

bi, j X i Y j .

Let

H = {(i, j): i, j = 0, . . . ,m, i + j ≥ 1,min{i, j} ≤ �}.

Clearly the noncostant terms bi, j X i Y j of f (X)g(Y )−λ f (Y )g(X) are supported only
on the subscripts (i, j) ∈ H. We have

#H = 2(m + 1)(�+ 1)− (�+ 1)2 − 1 = s

We now apply Lemma 6 with s = #H and the vector
(
bi, j

)
(i, j)∈H.

We also define the quantities U and Vi, j , (i, j) ∈ H by the relations

Vi, j H i+ j = U, (i, j) ∈ H,

thus

∏
(i, j)∈H

Vi, j = 2ps−1.

By Lemma 6 there is an integer v with gcd(v, p) = 1 such that

〈
bi, jv

〉
p ≤ Vi, j

for every (i, j) ∈ H.
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We have

∑
(i, j)∈H

(i + j) = 2
m∑

i=0

�∑
j=0

(i + j)−
�∑

i=0

�∑
j=0

(i + j)

= 2
m∑

i=0

(
(�+ 1)i + �(�+ 1)

2

)
−

�∑
i=0

(
(�+ 1)i + �(�+ 1)

2

)

= 2

(
(�+ 1)m(m + 1)

2
+ �(�+ 1)(m + 1)

2

)

−�(�+ 1)2

2
− �(�+ 1)2

2
= k.

Certainly it is easy to evaluate Vi, j , (i, j) ∈ H explicitly, however it is enough for
us to note that we have

U s H−k = 2ps−1.

Hence
U = 21/s p1−1/s Hk/s . (8)

We also assume that the constant c in (5) is small enough so the condition

max
(i, j)∈H

{
Vi, j

} = U H−1 < p

is satisfied.
Let F(X,Y ) ∈ Z[X ] and G(X,Y ) ∈ Z[X ] be polynomials with coefficients in the

interval [−p/2, p/2], obtained by reducing v f (X)g(Y ) and vλ f (Y )g(X) modulo p,
respectively. Clearly (6) implies

F(x, y) ≡ G(x, y) (mod p). (9)

Furthermore, since for x, y ∈ {1, . . . , H}, we see from (8) and the trivial estimate on
the constant coefficients [that is, |F(0)|, |G(0)| ≤ p/2] that

|F(x, y)− G(x, y)| � U + p � p1−1/s Hk/s + p,

which together with (9) implies that

F(x, y) = G(x, y)+ zp (10)

for some integer z � p−1/s Hk/s + 1.
Clearly, for any integer z the reducibility of F(X,Y ) − G(X,Y ) − pz over C

implies the reducibility of F(X,Y )− G(X,Y ) over Fp, or equivalently f (X)g(Y )−
λ f (Y )g(X) over Fp, which is impossible because λ �∈ �.
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Because F(X,Y )− G(X,Y )− pz ∈ C[X,Y ] is irreducible over C and has degree
d, we derive from Lemma 4 that for every z the Eq. (10) has at most H1/(d+e)+o(1)

solutions. Thus the congruence (6) has at most O
(
H1/(d+e)+o(1)

(
p−1/s Hk/s + 1

))
solutions. This, together with (7), yields the inequality

r2

2T
� H1/(d+e)+o(1)

(
p−1/s Hk/s + 1

)
,

and concludes the proof. ��
Clearly, in the case when e = 0, that is, ψ = f is a polynomial of degree d ≥ 2,

the bound of Theorem 7 takes form

Nψ(I,G) �
(

1 + H (d+1)/4 p−1/4d
)

H1/2d+o(1)T 1/2.

4 Comments

Clearly Theorem 7 also provides a bound for the case where rational functionψ = ϕs ,
with ϕ ∈ Fp(X). This comes from the fact that

ψ(x) ∈ G �⇒ ϕ(x) ∈ G0,

where G0 is a multiplicative subgroup of Fp of order bounded by sT . However the
resulting bound depends now on the degrees of the polynomials associated with ϕ
rather than that of ψ .

Another consequence from Theorem 7 is the following: given an interval I and a
subgroup G ⊆ F

∗
p, satisfying Nψ(I,G) = #I then

#G 
 min{(#I)2−2τ+o(1), (#I)1−2ρ−2τ+o(1) p2ϑ }

where the implied constant depends only on d and e. However, we believe that this
bound is very unlikely to be tight.
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