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Abstract In this paper we construct proper biharmonic submanifolds into various
types of ellipsoids. We also prove, in this context, some useful composition properties
which can be used to produce large families of new proper biharmonic immersions.
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1 Introduction

Harmonic maps are critical points of the energy functional

E(ϕ) = 1

2

∫
M

|dϕ|2dvg, (1.1)
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590 S. Montaldo, A. Ratto

where ϕ : (M, g) → (N , h) is a smooth map between two Riemannian manifolds
M and N . In analytical terms, the condition of harmonicity is equivalent to the fact
that the map ϕ is a solution of the Euler–Lagrange equation associated to the energy
functional (1.1), i.e.

trace ∇dϕ = 0. (1.2)

The left member of (1.2) is a vector field along the map ϕ, or, equivalently, a section
of the pull-back bundle ϕ−1(T N ): it is called tension field and denoted τ(ϕ).

A related topic of growing interest deals with the study of the so-called biharmonic
maps: these maps, which provide a natural generalisation of harmonic maps, are the
critical points of the bienergy functional (as suggested by Eells–Lemaire [10])

E2(ϕ) = 1

2

∫
M

|τ(ϕ)|2 dvg.

In [11] G. Jiang derived the first variation and the second variation formulas for the
bienergy. In particular, he showed that the Euler–Lagrange equation associated to
E2(ϕ) is

τ2(ϕ) = −J (τ (ϕ)) = −�τ(ϕ) − trace RN (dϕ, τ(ϕ))dϕ = 0, (1.3)

where J denotes (formally) the Jacobi operator of ϕ, � is the rough Laplacian on
sections of ϕ−1(T N ) that, for a local orthonormal frame {ei }m

i=1 on M , is defined by

� = −
m∑

i=1

{
∇ϕ

ei
∇ϕ

ei
− ∇ϕ

∇M
ei

ei

}
, (1.4)

and
RN (X, Y ) = ∇X∇Y − ∇Y ∇X − ∇[X,Y ]

is the curvature operator on (N , h). We point out that (1.3) is a it fourth order semi-
linear elliptic system of differential equations. We also note that any harmonic map
is an absolute minimum of the bienergy, and so it is trivially biharmonic. Therefore,
a general working plan is to study the existence of biharmonic maps which are not
harmonic: these shall be referred to as it proper biharmonic maps. We refer to [12] for
existence results and general properties of biharmonic maps.

An immersed submanifold into a Riemannian manifold (N , h) is called a bihar-
monic submanifold if the immersion is a biharmonic map. In a purely geometric con-
text, Chen [8] defined biharmonic submanifolds M ⊂ R

n of the Euclidean space as
those with harmonic mean curvature vector field, that is �H = (�H1, . . . ,�Hn) = 0,
where H = (H1, . . . , Hn) is the mean curvature vector as seen in R

n and � is the
Beltrami–Laplace operator on M . It is important to point out that, if we apply the
definition of biharmonic maps to immersions into the Euclidean space, we recover
Chen’s notion of biharmonic submanifolds. In this sense, our work can be regarded in
the spirit of a generalization of Chen’s biharmonic submanifolds.
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Biharmonic submanifolds into ellipsoids 591

A general result of Jiang [11] tells us that a compact, orientable, biharmonic sub-
manifold M into a manifold N such that RiemN ≤ 0 is necessarily minimal. More-
over, Oniciuc [15], proved that also CMC biharmonic isometric immersions into a
manifold N with RiemN ≤ 0 are necessarily minimal. In fact, it is still open the
Chen’s conjecture: biharmonic submanifolds into a non-positive constant sectional
curvature manifold are minimal. The Chen’s conjecture was generalized in [7] for
biharmonic submanifolds into a Riemannian manifold with non-positive sectional
curvature, although Ou and Tang found in [14] a counterexample. These facts have
pushed research towards the investigation of biharmonic submanifolds of the Euclid-
ean sphere (see [1–7] for an overview of the main results in this context). A further
step is the study of biharmonic submanifolds into Euclidean ellipsoids, because these
manifolds are geometrically rich and interestingly do not have constant sectional cur-
vature: in [13] we obtained a complete classification of proper biharmonic curves into
3-dimensional ellipsoids and, more generally, into any non-degenerate quadric. In this
paper, we shall focus on proper biharmonic submanifolds of dimension ≥2.

2 Biharmonic submanifolds into ellipsoids

We begin with the study of biharmonic submanifolds into Euclidean ellipsoids
Q p+q+1(c, d) defined as follows:

Q p+q+1(c, d) =
{
(x, y) ∈ R

p+1 × R
q+1 = R

n : |x |2
c2 + |y|2

d2 = 1

}
,

where c, d are fixed positive constants. The symmetry of Q p+q+1(c, d) makes it
natural to look for biharmonic generalized Clifford’s tori. More precisely, we shall
study isometric immersions of the following type:

i : S p(a) × Sq(b) −→ Q p+q+1(c, d)

(x1, . . . , x p+1, y1, . . . , yq+1) �−→ (x1, . . . , x p+1, y1, . . . , yq+1),

(2.1)

where i denotes the inclusion and the radii a, b must satisfy the following condition:

a2

c2 + b2

d2 = 1. (2.2)

In this context, we shall prove the following result:

Theorem 2.1 Let i : S p(a) × Sq(b) → Q p+q+1(c, d) be an isometric immersion
as in (2.1). If

a2 = c2 p

p + q
; b2 = d2 q

p + q
(2.3)

then the immersion is minimal. If (2.3) does not hold and

a2 = c2 c

c + d
; b2 = d2 d

c + d
, (2.4)
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592 S. Montaldo, A. Ratto

then the immersion is proper biharmonic.

Remark 2.2 We observe that, interestingly, if c = p and d = q, then we have gener-
alized minimal Clifford’s tori, but we do not have proper biharmonic submanifolds of
the type (2.1). We also point out that, according to Theorem 2.1, the ellipsoid Q3(c, d)

(p = q = 1, c 	= d) admits a proper biharmonic torus, while in S3 there exists no
genus 1 proper biharmonic submanifold (see [7]).

Proof We shall work essentially by using coordinates in R
n , suitably restricted to the

ellipsoid or to the torus, according to necessity. In particular, the splitting

(x, y) = (x1, . . . , x p+1, y1, . . . , yq+1)

will be used in an obvious way, without further comments. The symbol 〈, 〉 will denote
the Euclidean scalar product (whether in R

p+1, R
q+1 or R

n will be clear from the
context). We shall use a superscript Q for objects concerning the ellipsoid, while the
letter T will appear for reference to the torus T = S p(a) × Sq(b).

We shall need to know the algebraic conditions which ensure that a given vector
field is tangent either to the torus or to the ellipsoid. More specifically, a vector field

W = (X, Y ),

where

X =
p+1∑
i=1

Xi ∂

∂xi
and Y =

q+1∑
j=1

Y j ∂

∂y j
,

is tangent to Q p+q+1(c, d) if and only if

p+1∑
i=1

1

c2 xi Xi +
q+1∑
j=1

1

d2 y j Y j = 0.

In the same order of ideas, W is tangent to the torus T if and only if

p+1∑
i=1

xi Xi = 0 =
q+1∑
j=1

y j Y j . (2.5)

To end preliminaries, we observe that the vector field

ηQ = η
Q
1

|ηQ
1 | , (2.6)

where

η
Q
1 =

(
1

c2 x1, . . . ,
1

c2 x p+1,
1

d2 y1, . . . ,
1

d2 yq+1

)
,
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Biharmonic submanifolds into ellipsoids 593

represents a unit normal vector field on the ellipsoid Q p+q+1(c, d). Note, for future
use, that the equality

|ηQ
1 |2 = a2

c4 + b2

d4 (2.7)

holds on T . Similarly, the vector

ηT = ηT
1

|ηT
1 | , (2.8)

where

ηT
1 =

(
c2

a2 x1, . . . ,
c2

a2 x p+1, − d2

b2 y1, . . . , − d2

b2 yq+1

)
, (2.9)

represents a unit normal vector on the torus T viewed as a submanifold of the ellipsoid
Q p+q+1(c, d). We also note that

|ηT
1 |2 = c4

a2 + d4

b2 (2.10)

on T . In order to compute the tension and the bitension fields, it is convenient to
make explicit the formulas which will enable us to calculate the relevant covariant
derivatives. More precisely, following, for instance [9], we know that

∇Q
W1

W2 = ∇R
n

W1
W2 − B Q(W1, W2), (2.11)

where B Q(W1, W2) denotes the second fundamental form of the ellipsoid Q p+q+1

(c, d) into R
n . We now need to do some work to make (2.11) more explicit:

B Q(W1, W2) = −〈∇R
n

W1
ηQ, W2〉ηQ

= −〈W1

(
1

|ηQ
1 |

)
η

Q
1 + 1

|ηQ
1 |∇

R
n

W1
η

Q
1 , W2〉ηQ

= −〈 1

|ηQ
1 |∇

R
n

W1
η

Q
1 , W2〉ηQ . (2.12)

Next, we compute

∇R
n

W1
η

Q
1 = 1

c2

p+1∑
i=1

Xi
1

∂

∂xi
+ 1

d2

q+1∑
j=1

Y j
1

∂

∂y j
. (2.13)

Finally, using (2.13) into (2.12), we obtain:

B Q(W1, W2) = − 1

|ηQ
1 |

[
1

c2 〈X1, X2〉 + 1

d2 〈Y1, Y2〉
]

ηQ, (2.14)
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594 S. Montaldo, A. Ratto

which in (2.11) yields:

∇Q
W1

W2 = ∇R
n

W1
W2 + 1

|ηQ
1 |

[
1

c2 〈X1, X2〉 + 1

d2 〈Y1, Y2〉
]

ηQ .

Now, we are in the right position to proceed to the computation of the tension field τ

of our immersion (2.1). Indeed, by definition,

τ = trace BT (·, ·), (2.15)

where

BT (W1, W2) = −〈∇Q
W1

ηT , W2〉ηT

= − 1

|ηT
1 |2 〈∇Q

W1
ηT

1 , W2〉ηT
1

= − 1

|ηT
1 |2 〈∇R

n

W1
ηT

1 , W2〉ηT
1

= − 1

|ηT
1 |2

[
c2

a2 〈X1, X2〉 − d2

b2 〈Y1, Y2〉
]

ηT
1 . (2.16)

Let now Xi , i = 1, . . . , p and Y j , j = 1, . . . , q, be local orthonormal bases of S p(a)

and Sq(b), respectively. By using (2.16) in (2.15) we find:

τ =
p∑

i=1

BT ((Xi , 0), (Xi , 0)) +
q∑

i=1

BT (
(0, Y j ), (0, Y j )

)

= − 1

|ηT
1 |2

[
p c2

a2 − q d2

b2

]
ηT

1

= λ ηT
1 , (2.17)

where, taking into account (2.10), we have set

λ = −
[

c4

a2 + d4

b2

]−1 [
p c2

a2 − qd2

b2

]
.

In particular, using (2.2), it is now immediate to conclude that (2.3) is equivalent to
the minimality of the immersion.

Next, we proceed to the computation of the bitension field τ2. To this purpose, we
must apply (1.3) in the case that ϕ = i . We begin with the computation of �τ . It
is convenient to choose a geodesic local orthonormal frame obtained from geodesic
local orthonormal frames on each factor of the torus. Under this assumption the terms
∇T

ei
ei in the formula (1.4) vanish (note that this simplification is acceptable because
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Biharmonic submanifolds into ellipsoids 595

we shall not need to compute covariant derivatives of higher order). So the expression
for the rough Laplacian (1.4) in our context reduces to:

�τ = −
⎡
⎣

p∑
i=1

∇Q
Xi

(
∇Q

Xi
τ
)

+
q∑

j=1

∇Q
Y j

(
∇Q

Y j
τ
)⎤
⎦ , (2.18)

where, to simplify notation, we have written Xi for (Xi , 0) and Y j for (0, Y j ) . Using
(2.11), (2.9) and (2.17) we find:

∇Q
Xi

τ = λ∇Q
Xi

ηT
1

= λ∇R
n

Xi
ηT

1 + λ

|ηQ
1 |2

[
1

c2 〈Xi , η
T
1 〉 + 1

d2 〈0, ηT
1 〉

]
η

Q
1

= λ
c2

a2 Xi + λ

|ηQ
1 |2 [ 0 ] η

Q
1

= λ
c2

a2 Xi . (2.19)

Next, using first (2.19),

∇Q
Xi

(
∇Q

Xi
τ
)

= λ
c2

a2 ∇Q
Xi

Xi

= λ
c2

a2

[
∇T

Xi
Xi + BT (Xi , Xi )

]

= − λ
c2

a2

1

|ηT
1 |2

[
c2

a2 〈Xi , Xi 〉
]

ηT
1 , (2.20)

where, in order to obtain the last equality, we have used the fact that our orthonormal
frame is geodesic and also (2.16). Now, a very similar computation leads us to

∇Q
Y j

(
∇Q

Y j
τ
)

= − λ
d2

b2

1

|ηT
1 |2

[
d2

b2 〈Y j , Y j 〉
]

ηT
1 . (2.21)

Putting together (2.18), (2.20) and (2.21) we obtain

�τ = μ ηT
1 , (2.22)

where, taking into account (2.10), we have defined the constant μ as follows:

μ = λ

|ηT
1 |2

[
p c4

a4 + q d4

b4

]
(2.23)

(note that, if (2.3) does not hold, then λ 	= 0, so that μ 	= 0 and the immersion is not
minimal).
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596 S. Montaldo, A. Ratto

By way of summary, the previous computations have led us to the following con-
clusion:

τ2 = −
[
μηT

1 + trace RQ(d i, τ ) d i
]
. (2.24)

We have to investigate for which values (if any) of a, b the bitension τ2 vanishes. In
order to deal in an efficient way with the curvature tensor, we shall study the vanishing
of normal and tangential components separately. In particular, we shall prove that the
normal component of τ2 is identically zero if and only if (2.4) holds. The proof of
the theorem will then be completed by the verification that the tangential part of τ2
vanishes for all values of a and b. So, let us first study whether, for suitable values of
a and b, we can have

〈τ2, ηT
1 〉 = 0. (2.25)

From (2.24) and (2.23) we have:

−〈τ2, ηT
1 〉 = λ

[ (
p c4

a4 + q d4

b4

)
+

p∑
i=1

〈RQ(Xi , τ )Xi , η
T
1 〉

+
q∑

i=1

〈RQ(Y j , τ )Y j , η
T
1 〉

]
.

Next, we observe that

〈RQ(Xi , τ )Xi , η
T
1 〉 = − 〈RQ(Xi , τ )ηT

1 , Xi 〉
|ηT

1 |2 |ηT
1 |2 = K Q(Xi , η

T ) |ηT
1 |2, (2.26)

where K Q(Xi , η
T ) denotes sectional curvature, which (see [9]) can be expressed by

means of:

K Q(Xi , η
T ) = 〈B Q(Xi , Xi ), B Q(ηT , ηT )〉 − 〈B Q(Xi , η

T ), B Q(Xi , η
T )〉. (2.27)

By using (2.26) in (2.27) and performing a computation which, according to (2.14),
uses

B Q(Xi , Xi ) = − 1

|ηQ
1 |2

1

c2 〈Xi , Xi 〉 η
Q
1 ,

B Q(ηT
1 , ηT

1 ) = − 1

|ηQ
1 |2

(
c2

a2 + d2

b2

)
η

Q
1 ,

B Q(Xi , η
T ) = 0, (2.28)

we find:

〈RQ(Xi , η
T
1 )Xi , η

T
1 〉 = − 1

|ηQ
1 |2

1

c2 〈Xi , Xi 〉
(

c2

a2 + d2

b2

)
. (2.29)
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In a very similar fashion we also compute:

〈RQ(Y j , η
T
1 )Y j , η

T
1 〉 = − 1

|ηQ
1 |2

1

d2 〈Y j , Y j 〉
(

c2

a2 + d2

b2

)
. (2.30)

Putting together (2.29), (2.30) and (2.24) it is easy to obtain the following conclusion:

〈τ2, ηT
1 〉 = − λ

{[
p c4

a4 + q d4

b4

]
− 1

|ηQ
1 |2

[
c2

a2 + d2

b2

] [ p

c2 + q

d2

] }
. (2.31)

Now, using (2.7) and (2.2) in (2.31), it is not difficult to check that (2.25) holds if and
only if (2.4) is satisfied. At this stage, we can say that the proof of the theorem will
be completed if we show that

〈τ2, W 〉 = 0 (2.32)

for any vector field W which is tangent to the torus. Taking into account (2.24), we
see that (2.32) is equivalent to:

〈trace RQ(d i, τ ) d i , W 〉 = 0.

Because of (2.17), it is enough to show that

〈RQ(X, ηT
1 ) X, W 〉 = 0

holds if X, W are arbitrary vectors tangent to T . But, by the Gauss equation (see [9]),
we deduce:

〈RQ(X, ηT
1 ) X, W 〉 = 〈B Q(X, W ), B Q(ηT

1 , X)〉
−〈B Q(ηT

1 , W ), B Q(X, X)〉 = 0, (2.33)

where, for the last equality, we have used (2.28). �
Next, we study biharmonic submanifolds into Euclidean ellipsoids of revolution

Q p+1(c, d) defined as follows:

Q p+1(c, d) =
{
(x, y) ∈ R

p+1 × R = R
n : |x |2

c2 + y2

d2 = 1

}
,

where c, d are fixed positive constants. In this case, the symmetry of Q p+1(c, d)

makes it natural to look for biharmonic hyperspheres. More precisely, we shall study
isometric immersions of the following type:

i : S p(a) × {b} −→ Q p+1(c, d)

(x1, . . . , x p+1, b) �−→ (x1, . . . , x p+1, b),

(2.34)
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598 S. Montaldo, A. Ratto

where i denotes the inclusion and the constants a, b must again satisfy the condition

a2

c2 + b2

d2 = 1 (2.35)

(note that a is a radius, so it is positive, while the only request on b is: |b| < d).
In this context, we shall prove the following result:

Theorem 2.3 Let i : S p(a) × {b} → Q p+1(c, d) be an isometric immersion as in
(2.34). If

a2 = c2; b = 0 (2.36)

then the immersion is minimal (this is the case of the equator hypersphere). If

a = c

√
c

c + d
; b = ± d

√
d

c + d
, (2.37)

then the immersion is proper biharmonic.

Proof Again, we shall use a superscript Q for objects concerning the ellipsoid, while
the letter S will appear for reference to the hypersphere S = S p(a)×{b}. Essentially,
the proof follows the arguments of Theorem 2.1 and most of the calculations can be
performed by setting q = 0 in the formulas above: for this reason, we limit ourselves
to point out the relevant differences only. First, let us assume that b 	= 0 : normal
vectors η

Q
1 , ηQ , ηS

1 and ηS can be introduced precisely as in (2.6)–(2.10). We also
note that, since b 	= 0, (2.5) implies that a tangent vector to S must be of the form

W = (X, 0). (2.38)

Taking into account (2.38) we easily obtain

τ = λ ηS
1 ,

where

λ = −
[

c4

a2 + d4

b2

]−1 [
p c2

a2

]

(note that λ 	= 0, so that in this case the hypersphere is not minimal).

In the computation of �τ only the terms ∇Q
Xi

(
∇Q

Xi
τ
)

in (2.18) are relevant: this

fact leads us to the expression
�τ = μηS

1 , (2.39)

where now

μ = λ

|ηS
1 |2

[
p c4

a4

]
.
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Also the calculation involving the curvature terms follows the lines above and leads
us to

〈τ2, ηS
1 〉 = − λ

{[
p c4

a4

]
− 1

|ηQ
1 |2

[
c2

a2 + d2

b2

] [ p

c2

] }
. (2.40)

Now, inspection of (2.40) shows that (2.37) is equivalent to the vanishing of the normal
component of the bitension. Finally, an argument as above shows that the tangential
component of the bitension always vanishes, so ending the case b 	= 0.

In the case that b = 0 we observe that

ηS = (0, . . . , 1). (2.41)

Using (2.41) in (2.16) it is easy to conclude that, in this case, the second fundamental
form of S vanishes identically, so that the equator hypersphere is totally geodesic and
so minimal, a fact which ends the theorem. �

3 Composition properties

Our first result is:

Theorem 3.1 Let i : S p(a) → Q p+1(c, d) be a proper biharmonic immersion as in
Theorem 2.3, and let ϕ : Mm → S p(a) be a minimal immersion. Then i ◦ ϕ : Mm →
Q p+1(c, d) is a proper biharmonic immersion.

Proof Let Wi , i = 1, . . . , m, be a local orthonormal frame on Mm . To simplify
notation, for a tangent vector W to Mm , we write W for both dϕ(W ) and di (dϕ(W )).
The composition law for the tension field (see [10]), together with the minimality of
ϕ, gives:

τ(i ◦ ϕ) =
m∑

i=1

∇d i (Wi , Wi ) + τ(ϕ)

=
m∑

i=1

∇d i (Wi , Wi )

=
m∑

i=1

BS (Wi , Wi ) . (3.1)

Now, adapting the calculation of (2.16), we have:

BS (Wi , Wi ) = − c2

a2

1

|ηS
1 | 〈Wi , Wi 〉 ηS . (3.2)

Next, using (3.2) in (3.1), we obtain

τ(i ◦ ϕ) = − m
c2

a2

1

|ηS
1 | ηS . (3.3)
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In particular, we deduce from (3.3) that i ◦ ϕ is not minimal and we proceed to the
computation of the bitension. For convenience, we set ν = m c2

a2
1

|ηS
1 | .

Using (3.3) we have:

τ2(i ◦ ϕ) = −�Mτ(i ◦ ϕ) −
m∑

i=1

RQ(Wi , τ (i ◦ ϕ))Wi

= ν

[
�MηS +

m∑
i=1

RQ(Wi , η
S))Wi

]
. (3.4)

Next, we study separately the two terms in the right-hand side of (3.4). First, computing
as in (2.39) (with p replaced by m), we find

�MηS =
[

m

|ηS
1 |2

c4

a4

]
ηS . (3.5)

Second, using the Gauss equation as in (2.33), we obtain:

〈
m∑

i=1

RQ(Wi , η
S))Wi , η

S 〉 = − m
1

|ηS
1 |2

1

|ηQ
1 |2

1

c2

(
c2

a2 + d2

b2

)
, (3.6)

and

〈
m∑

i=1

RQ(Wi , η
S))Wi , W 〉 = 0 (3.7)

for all vector W which is tangent to S . Putting together (3.4)–(3.7) we conclude that
τ2(i ◦ ϕ) is parallel to ηS and vanishes if and only if

{[
c4

a4

]
− 1

|ηQ
1 |2

[
c2

a2 + d2

b2

] [
1

c2

] }
= 0. (3.8)

But (3.8) is equivalent to the two conditions (2.37) and (2.35), so that the proof is
completed. �
In a spirit similar to the previous theorem, we also obtain the following result:

Theorem 3.2 Let i : S p(a)×Sq(b) → Q p+q+1(c, d) be a proper biharmonic immer-
sion as in Theorem 2.1, and let ϕ1 : Mm1

1 → S p(a) , ϕ2 : Mm2
2 → Sq(b) be two

minimal immersions. Then i ◦ (ϕ1 × ϕ2) : Mm1
1 × Mm2

2 → Q p+q+1(c, d) is a proper
biharmonic immersion.

Proof The proof of this result is a straightforward variant of the arguments of Theorem
3.1 and so the details are omitted. �
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Remark 3.3 When c = d = 1 the composition properties described in Theorem 3.1
and Theorem 3.2 reduce to those first proved in [6]. It is important to note that all bihar-
monic submanifolds into the ellipsoids constructed using the composition properties
have parallel mean curvature vector field.
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4. Balmuş, A., Oniciuc, C.: Biharmonic submanifolds with parallel mean curvature vector field in spheres.
J. Math. Anal. Appl. 386, 619–630 (2012)
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