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Abstract In this paper we consider Banach space-valued functions with the compact
range. It is shown that if a Banach space-valued function F : [0, 1] → X is of bounded
variation with respect to the Minkowski functional ||.||F associated to the closed
absolutely convex hull CF of F([0, 1]), then F is differentiable almost everywhere on
[0, 1].
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1 Introduction and preliminaries

Throughout this paper X denotes a real Banach space with its norm ||.||. We denote
by B(x, ε) the open ball with center x and radius ε > 0 and by X∗ the topological
dual to X . If a function F : [0, 1] → X is given, then we denote by X F the vector
space spanned by the set CF and by ||.||F the Minkowski functional associated to
the closed absolutely convex hull CF of F([0, 1]) = {F(t) : t ∈ [0, 1]}. Thus,
||x ||F = inf{r > 0 : x ∈ r · CF }, for all x ∈ X F .

At first, we introduce the concept of the limit average range.
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344 S. B. Kaliaj

Definition 1.1 Let F : [0, 1] → X be a function and let t ∈ [0, 1]. We put

�F(t, h) = F(t + h) − F(t)

h
AF (t, δ) = {

�F(t, h) : 0 < |h| < δ
}

and

AF (t) =
⋂

δ>0

AF (t, δ),

where AF (t, δ) is the closure of AF (t, δ). The set AF (t) is said to be the average
range of F at the point t . Denote

diam(W ) = sup{||x − y|| : x, y ∈ W } (W ⊂ X).

We say that F has the limit average range at the point t , if AF (t) is a bounded set and
for each ε > 0 there exists δε > 0 such that

diam(AF (t, δε)) < diam(AF (t)) + ε.

Next, we recall the notion of differentiation, see Definition 7.3.2 in [8].

Definition 1.2 Let F : [0, 1] → X be a function and let t ∈ [0, 1]. The function F is
said to be differentiable at the point t if there is a vector x ∈ X such that

lim
h→0

||�F(t, h) − x || = 0.

By x = F ′(t) the derivative of F at t is denoted.

We denote by I the family of all non-degenerate closed subintervals of [0, 1], by λ

the Lebesgue measure and by L the family of all Lebesgue measurable subsets of [0, 1].
The intervals I, J ∈ I are said to be nonoverlapping if int(I )∩int(J ) = ∅, where int(I )
denotes the interior of I . We will identify an interval function F̃ : I → X with the point
function F(t) = F̃([0, t]), t ∈ [0, 1]; and conversely, we will identify a point function
F : [0, 1] → X with the interval function F̃([u, v]) = F(v) − F(u), [u, v] ∈ I.

Assume that an interval [a, b] ⊂ [0, 1] and a function F : [0, 1] → X are given.
A finite collection {Ii ∈ I : i = 1, 2, . . . , m} of pairwise nonoverlapping intervals is
said to be a partition of [a, b], if ∪m

i=1 Ii = [a, b]. We denote by �[a,b] the family of

all partitions of [a, b]. Let us define the total variation V (X F )
[a,b] F of F on [a, b], with

respect to the norm ||.||F , by equality

V (X F )
[a,b] F = sup

{
∑

I∈π

||F̃(I )||F : π ∈ �[a,b]

}

.

If c ∈ (a, b), then

V (X F )
[a,b] F = V (X F )

[a,c] F + V (X F )
[c,b] F. (1.1)
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Differentiability and bounded variation 345

The last equality was proven for real valued functions in [9] (p. 83), but the proof
works also for vector valued functions, it is enough to change the absolute value with
the norm ||.||F . If we have

V (X F )
[a,b] F < +∞,

then F is said to be of bounded variation on [a, b] with respect to ||.||F .
Functions of usual bounded variation from [0, 1] into a Banach space need not have

a single point of differentiability. A simple and well-known example is the function
F : [0, 1] → L1([0, 1]) defined by

F(t) = χ[0,t] for all t ∈ [0, 1],

where χ[0,t] is the characteristic function of [0, t]. The function F is of usual bounded
variation on [0, 1], but F is not differentiable at a single point of [0, 1]. This pathology
does not appear in the class of Banach spaces with the Radon–Nikodym property, see
the statement (3) in [3] (p. 217). A detailed study of Banach spaces possessing the
RNP is presented in books [1,2] and [3].

A function F : [0, 1] → X is said to be strongly absolutely continuous (sAC) if
for every ε > 0 there exists η > 0 such that for every finite collection {Ii ∈ I : i =
1, 2, . . . , m} of pairwise nonoverlapping intervals, we have

m∑

i=1

λ(Ii ) < η ⇒
m∑

i=1

||F̃(Ii )|| < ε. (1.2)

Replacing (1.2) by

m∑

i=1

λ(Ii ) < η ⇒
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

m∑

i=1

F̃(Ii )

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
< ε,

we obtain the definition of absolute continuity (AC).
We say that a function F : [0, 1] → X is Lipschitz at t ∈ [0, 1] if there exist ct > 0

and δt > 0 such that

|h| < δt and t + h ∈ [0, 1] ⇒ ||F(t + h) − F(t)|| ≤ ct · |h|.

2 The Differentiability of functions of bounded variation

The main result is Theorem 2.6. Let us start with some auxiliary statements. Lemma
2.1 together with Examples 2.2 and 2.3 highlights the local relation between the
differential and the limit average range.

Lemma 2.1 Let F : [0, 1] → X be a function and let t0 ∈ [0, 1]. Then, the following
statements are equivalent.
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346 S. B. Kaliaj

(i) F is differentiable at t0 with F ′(t0) = x0,
(ii) F has the limit average range at t0 and

AF (t0) = {x0}. (2.1)

Proof (i)⇒(ii) Assume that F is differentiable at t0.
Claim 1 The equality

AF (t0) = {F ′(t0)} (2.2)

holds.
First, we will show that F ′(t0) ∈ AF (t0). To see this, we choose a sequence (hk)

of real numbers such that

0 < |hk | <
1

k
for all k ∈ N.

Then

lim
k→∞ ||�F(t0, hk) − F ′(t0)|| = 0,

and since for each n ∈ N, we have

�F(t0, hk) ∈ AF

(
t0,

1

n

)
for all k ≥ n,

it follows that

F ′(t0) ∈
∞⋂

n=1

AF

(
t0,

1

n

)
=

⋂

δ>0

AF (t0, δ) = AF (t0).

Secondly, we will show that AF (t0) ⊂ {F ′(t0)}. Assume that x ∈ AF (t0) is given.
Then, for each n ∈ N, we have

B

(
x,

1

n

)⋂
AF

(
t0,

1

n

)
�= ∅.

Therefore, there is a sequence (h′
n) of real numbers such that

0 < |h′
n| <

1

n
and �F(t0, h′

n) ∈ B

(
x,

1

n

)
for all n ∈ N.

Hence

lim
n→∞ ||�F(t0, h′

n) − x || = 0,

and we infer that x = F ′(t0).
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Differentiability and bounded variation 347

Claim 2 Given ε > 0, there exists δε > 0 such that

diam(AF (t0, δε)) = diam(AF (t0, δε)) < diam(AF (t0)) + ε = ε. (2.3)

Indeed, since F is differentiable at t0 there is a δε > 0 such that

0 < |h| < δε ⇒ ||�F(t0, h) − x0|| <
ε

3
.

Hence, for each h′, h′′ ∈ R, we have

0 < |h′|, |h′′| < δε ⇒ ||�F(t0, h′) − �F(t0, h′′)|| <
2 · ε

3
.

The last result yields that (2.3) holds true.
Clearly, by (2.2) and (2.3), we obtain that F has the limit average range at t0 and

(2.1) holds true.
(ii)⇒(i) Assume that (ii) holds. Let ε > 0 be given and let δε corresponds to ε by

Definition 1.1. Then, since x0 ∈ AF (t, δ) for all δ > 0, we have

0 < |h| < δε ⇒ ||�F(t0, h) − x0|| < diam(AF (t0)) + ε = ε.

This means that F is differentiable at t0 and F ′(t0) = x0. ��
The following example shows that there is a function F : [−1, 1] → l p, p > 1,

that has not the limit average range at t = 0 and AF (0) = {(0)}. Hence, by Lemma
2.1, F is not differentiable at t = 0.

Example 2.2 Let F : [−1, 1] → l p be a function given as follows

F(t) =
{

(0, . . . , 0, . . .) if t �= 1
n

(0, . . . , 0, 1
n , 0, . . .) if t = 1

n

t ∈ [−1, 1] n = 1, 2, 3, . . .

Since

�F(0, h) =
{

(0, . . . , 0, . . .) if h �= 1
n

(0, . . . , 0, 1, 0, . . .) if h = 1
n

we have

diam(AF (0, δ)) = 2
1
p for all δ > 0. (2.4)

We claim that

AF (0) = {(0, . . . , 0, . . .)}. (2.5)
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348 S. B. Kaliaj

Let us consider an arbitrary element x0 ∈ AF (0). Since

AF (0) =
∞⋂

k=1

AF

(
0,

1

k

)
,

there is a sequence (hk) ⊂ R such that for each k ∈ N, we have

0 < |hk | <
1

k
and ||�F(0, hk) − x0||l p <

1

k
.

Therefore

lim
k→∞ ||�F(0, hk) − x0||l p = 0.

Hence

lim
k→∞ x∗(�F(0, hk)) = x∗(x0) for all x∗ ∈ (l p)

∗. (2.6)

Fix an arbitrary x∗ ∈ (l p)
∗. Since (l p)

∗ = lq , there is a sequence (an) ∈ lq such that

x∗(x) =
+∞∑

n=1

an · xn for all x = (xn) ∈ l p,

and since

x∗(�F(0, hk)) =
{

0 if hk �= 1
n

an if hk = 1
n

(n > k),

we obtain

lim
k→∞ x∗(�F(0, hk)) = 0.

Hence, by (2.6), it follows that

x∗(x0) = 0 for all x∗ ∈ (l p)
∗,

because x∗ was arbitrary. Therefore, we obtain by Hahn–Banach Theorem that

x0 = (0, . . . , 0, . . .)

and consequently (2.5) holds true.
Clearly, by (2.4) and (2.5), we obtain that F has not the limit average range at t = 0.
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Differentiability and bounded variation 349

By Lemma 2.1, if a function F : [0, 1] → X is differentiable at a point t ∈ [0, 1],
then F has the limit average range at this point, but the converse does not hold. The
next example shows that there is a function F : [−1, 1] → l∞ which has the limit
average range at t = 0, but F is not differentiable at this point.

Example 2.3 Let F : [−1, 1] → l∞ be a function given as follows

F(t) =
{

(0, . . . , 0, . . .) if t �= 1
n(

1
|n| , . . . ,

1
|n| , . . .

)
if t = 1

n
t ∈ [−1, 1] n = ±1,±2,±3, . . . .

Since

�F(0, h) =

⎧
⎪⎨

⎪⎩

(0, . . . , 0, . . .) if h �= 1
n

(1, . . . , 1, . . .) if h = 1
n , n > 0

(−1, . . . ,−1, . . .) if h = 1
n , n < 0

we have

AF (0, δ) = {(0), (+1), (−1)} for all δ > 0.

It follows that F has the limit average range at t = 0 and

AF (0) = {(0), (+1), (−1)}.

Note that

lim
n→+∞ ||�F

(
0,

1

n

)
− (1)||l∞ = 0 and lim

n→−∞

∥
∥
∥
∥�F

(
0,

1

n

)
− (−1)

∥
∥
∥
∥

l∞
= 0.

This means that the function F is not differentiable at t = 0.

Lemma 2.4 Let F : [0, 1] → X be a function. If F is sAC and has the limit average
range almost everywhere on [0, 1], then F is differentiable almost everywhere on
[0, 1].
Proof Since F has the limit average range almost everywhere on [0, 1], there exists
Z ⊂ [0, 1] with λ(Z) = 0 such that F has the limit average range at all t ∈ [0, 1]\Z .

Claim 1 We have

AF (t) �= ∅ for all t ∈ [0, 1]\Z (2.7)

To see this, fix an arbitrary t ∈ [0, 1]\Z and assume by contradiction that

⋂

δ>0

AF (t, δ) = ∅. (2.8)
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Then, by Definition 1.1, there is a decreasing sequence (δn) of real numbers such that
for each n ∈ N, we have

0 < δn <
1

n
and diam(AF (t, δn)) <

1

n
.

Define a sequence (�F(t, hn)) by choosing a �F(t, hn) ∈ AF (t, δn) for all n ∈ N.
Hence, we get that (�F(t, hn)) is a Cauchy sequence. Therefore, there is a x0 ∈ X
such that

lim
n→∞ �F(t, hn) = x0.

Since

�F(t, hk) ∈ AF (t, δn) for all k ≥ n and n ∈ N,

we obtain that x0 ∈ AF (t, δn), for all n ∈ N, and since

∞⋂

n=1

AF (t, δn) =
⋂

δ>0

AF (t, δ),

it follows that

x0 ∈
⋂

δ>0

AF (t, δ).

This contradicts (2.8) and consequently, AF (t) �= ∅. Since t was arbitrary, we obtain
that (2.7) holds true.

Now, we choose xt ∈ AF (t), for each t ∈ [0, 1]\Z , and define the function f :
[0, 1] → X as follows

f (t) =
{

xt t ∈ [0, 1]\Z
0 t ∈ Z

. (2.9)

Claim 2 The function f is Pettis integrable on [0, 1]. It is easy to see that

x∗(AF (t)) ⊂ Ax∗◦F (t) for all x∗ ∈ X∗ and t ∈ [0, 1]\Z . (2.10)

We also have that each x∗◦F is sAC. It follows that each function x∗◦F is differentiable
almost everywhere on [0, 1]. Thus, for each x∗ ∈ X∗ there exists Z (x∗) ⊂ [0, 1] with
λ(Z (x∗)) = 0 such that (x∗ ◦ F)′(t) exists for all t ∈ [0, 1]\Z (x∗). Hence, by Lemma
2.1, we obtain

{(x∗ ◦ F)′(t)} = Ax∗◦F (t) for all t ∈ [0, 1]\Z (x∗).
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The last equality together with (2.10) and (2.9) yields

(x∗ ◦ F)′(t) = (x∗ ◦ f )(t) for all t ∈ [0, 1]\(Z ∪ Z (x∗)).

This means that f is a scalar derivative of F on [0, 1], see Definition 2.1(b) in [6].
Then, since F is also AC, we obtain by Theorem 5.1 in [6] that f is Pettis integrable
on [0, 1] and

F̃(I ) = (P)

∫

I

f dλ for all I ∈ I.

Claim 3 The function f is strongly measurable. Since F is sAC the function F
is continuous on [0, 1], and because this the set {F(t) : t ∈ [0, 1]} ⊂ X is compact
and therefore separable. If Y ⊂ X is the closed linear subspace spanned by the set
{F(t) : t ∈ [0, 1]}, then Y is separable. Since �F(t, h) ∈ Y for all t ∈ [0, 1] and
h �= 0, we obtain by Definition 1.1 that AF (t) ⊂ Y for all t ∈ [0, 1]\Z . Thus, we
have f (t) ∈ Y for all t ∈ [0, 1]. This means that f is almost everywhere separable
valued. Hence by the Pettis measurability theorem, Theorem II.1.2 in [3], the function
f is strongly measurable.

Claim 4 The function f is Bochner integrable on [0, 1]. We set

ν(E) = (P)

∫

E

f dλ for all E ∈ L.

Let (Ek) be a sequence of disjoint members of L such that ∪+∞
k=1 Ek = [0, 1]. Since

ν(I ) = F̃(I ) for all I ∈ I (2.11)

and F is sAC we obtain by Caratheodory–Hahn–Kluvanek extension theorem in [5]
that ν is of bounded variation. Then

(L)

∫

∪n
k=1 Ek

|| f (t)||dλ ≤ |ν|([0, 1]) < +∞

for all n ∈ N. Hence, by the Monotone Convergence Theorem, the function || f (.)|| is
Lebesgue integrable on [0, 1]. Therefore, we obtain by Theorem II.2.2 in [3] that f is
Bochner integrable on [0, 1]. Since the Bochner and Pettis integrals coincide whenever
they coexist, we have

ν(E) = (B)

∫

E

f dλ for every E ∈ L.

The last result together with (2.11) and Theorem II.2.9 in [3] yields that F is differ-
entiable a.e. on [0, 1] and the proof is finished. ��
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Lemma 2.5 Let F : [0, 1] → X be a function and let t0 ∈ [0, 1]. If there is a δ0 > 0
such that AF (t0, δ0) is a compact set, then F has the limit average range at t0.

Proof Assume by contradiction that F has not the limit average range at t0. Then,
there exists ε0 > 0 and the sequences (δn), (h′

n), (h′′
n) such that limn→∞ δn = 0 and

for each n ∈ N, we have

(a) 0 < δn+1 < δn < δ0,
(b) 0 < |h′

n|, |h′′
n| < δn ,

(c) ||�F(t0, h′
n) − �F(t0, h′′

n)|| ≥ diam(AF (t0)) + ε0.

Since AF (t0, δ0) is a compact set, there exist subsequences (�F(t0, h′
nk

)) and
(�F(t0, h′′

nk
)) of sequences (�F(t0, h′

n)) and (�F(t0, h′′
n)), respectively, such that

lim
k→∞ �F(t0, h′

nk
) = x ′

0 and lim
k→∞ �F(t0, h′′

nk
) = x ′′

0

where

x ′
0, x ′′

0 ∈ AF (t0, δ0).

The last result together with (c) yields

||x ′
0 − x ′′

0 || ≥ diam(AF (t0)) + ε0. (2.12)

On the other hand, we have

x ′
0, x ′′

0 ∈
∞⋂

k=1

AF (t0, δnk ) = AF (t0)

and therefore

||x ′
0 − x ′′

0 || < diam(AF (t0)) + ε0. (2.13)

This contradicts (2.12). Consequently, the function F has the limit average range at t0
and the proof is finished. ��

Now, we are ready to present the main result.

Theorem 2.6 Let F : [0, 1] → X be a function with compact range. If F is of bounded
variation on [0, 1] with respect to ||.||F , then F is differentiable almost everywhere
on [0, 1].
Proof First of all, we claim that F has the limit average range almost everywhere
on [0, 1]. To see this, we define the function ϕ : [0, 1] → [0,+∞) by ϕ(0) = 0
and ϕ(t) = V (X F )

[0,t] F for all t ∈ (0, 1]. Since ϕ increases on [0, 1], ϕ is differentiable
almost everywhere on [0, 1]. Thus, there exists Zϕ ⊂ [0, 1] with λ(Zϕ) = 0 such that
ϕ′(t) exists at all t ∈ [0, 1]\Zϕ .
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Differentiability and bounded variation 353

Fix an arbitrary point t ∈ [0, 1] \ Zϕ . Then, given ε there exists δε > 0 such that

0 < |h| < δε ⇒ �ϕ(t, h) ∈ (ϕ′(t) − ε, ϕ′(t) + ε). (2.14)

Note that the inequality

||F(t + h) − F(t)||F ≤ |ϕ(t + h) − ϕ(t)|

implies

F(t + h) − F(t) ∈ (ϕ(t + h) − ϕ(t)) · CF .

It follows that

AF (t, δε) ⊂ Aϕ(t, δε) · CF

and since

Aϕ(t, δε) · CF ⊂ [ϕ′(t) − ε, ϕ′(t) + ε] · CF = C ′
F

we obtain

AF (t, δε) ⊂ C ′
F .

By the corollary of Theorem III.6.5 in [7] we have that CF is a compact set. Hence,
we obtain by Theorems 5.13 and 5.8 in [4] that C ′

F is also a compact set. Further,
AF (t, δε) is a compact set and therefore we obtain by Lemma 2.5 that F has the
limit average range at t . Since t was arbitrary F has the limit average range at all
t ∈ [0, 1]\Zϕ . We set

K = [0, 1]\Zϕ

and denote by L the set of all points t ∈ [0, 1] at which F is Lipschitz.
Claim 1 The function F is Lipschitz at all t ∈ K . Fix an arbitrary t ∈ K . By

Definition 1.1, given ε = 1 there exists δt > 0 such that

diam(AF (t, δt )) < diam(AF (t)) + 1,

and since AF (t) is a bounded set there exists rt > 0 such that

diam(AF (t, δt )) < rt + 1 = ct ,

whence

||F(t + h) − F(t)|| ≤ ct · |h| for all |h| < δt .
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This means that t is a Lipschitz point of F , and since t was arbitrary the function F is
Lipschitz at all t ∈ K . It follows that λ(L\K ) = 0 and λ([0, 1]\L) = 0.

Denote by Ln the set of all t ∈ L such that

|h| <
1

n
⇒ ||F(t + h) − F(t)|| ≤ n · |h| (n ∈ N). (2.15)

It is easy to see that each Ln is closed and L = ∪∞
n=1Ln . Fix an arbitrary Ln with

λ(Ln) > 0 and let

(0, 1) \ Ln =
∞⋃

k=1

(a(n)
k , b(n)

k ).

Define the function Fn : [0, 1] → X by Fn(t) = F(t) for all t ∈ Ln, Fn(0) =
F(0), Fn(1) = F(1) and

Fn(t) = F(a(n)
k ) + F(b(n)

k ) − F(a(n)
k )

b(n)
k − a(n)

k

· (t − a(n)
k ), (2.16)

for all t ∈ [a(n)
k , b(n)

k ] and k ∈ N.
Claim 2 There is a real number Mn ≥ 1 such that

||F(b(n)
k ) − F(a(n)

k )||
(b(n)

k − a(n)
k )

≤ Mn for all k ∈ N. (2.17)

Indeed, since
∑∞

k=1(b
(n)
k − a(n)

k ) ≤ 1, there exists N ∈ N such that
∑∞

k=N+1(b
(n)
k −

a(n)
k ) < 1

n . Hence, we obtain by (2.15) that

||F(b(n)
k ) − F(a(n)

k )||
(b(n)

k − a(n)
k )

≤ n for k = N + 1, N + 2, . . .

and therefore

0 ≤ Tn = sup

{
||F(b(n)

k ) − F(a(n)
k )||

(b(n)
k − a(n)

k )
: k ∈ N

}

< +∞.

Then, Mn = max{M (0)
n , 1} is the desired real number.

Claim 3 The function Fn is sAC. To see this, we assume that an arbitrary 0 < ε < 1
is given. Then, we choose η = ε

9·(Mn+n)
and consider a finite collection α of pairwise

nonoverlapping subintervals in I such that
∑

I∈α λ(I ) < η. Sort the intervals [u, v]
in α into three collections α1, α2 and α3 as follows
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(i) u ∈ Ln or v ∈ Ln

(ii) [u, v] ⊂ (a(n)
k , b(n)

k ),

(iii) u ∈ (a(n)
k , b(n)

k ) and v ∈ (a(n)

k′ , b(n)

k′ ), where k < k′.

In case (iii), we have

[u, v] = [u, b(n)
k ] ∪ [b(n)

k , a(n)

k′ ] ∪ [a(n)

k′ , v]

and therefore

[u, b(n)
k ], [b(n)

k , a(n)

k′ ], [a(n)

k′ , v] ∈ α1.

Then

∑

I∈α

||F̃n(I )|| ≤
∑

I∈α1

||F̃n(I )|| +
∑

I∈α2

||F̃n(I )|| +
∑

I∈α3

||F̃n(I )|| ≤

n ·
∑

I∈α1

λ(I ) + Mn ·
∑

I∈α2

λ(I ) +
∑

I∈α3

||F̃n(I )|| ≤

n · ε

9 · (Mn + n)
+Mn · ε

9 · (Mn + n)
+3 ·

(
n · ε

9 · (Mn + n)

)
<

ε

3
+ ε

3
+ ε

3
= ε.

(2.18)

This means that Fn is sAC.
It is easy to see that the distance function gn(t) = dist(t, Ln) is sAC. Therefore,

it is differentiable almost everywhere on [0, 1]. Thus, there exists Zn ⊂ [0, 1] with
λ(Zn) = 0 such that g′

n(t) exists at all t ∈ [0, 1]\Zn . In particular, we have g′
n(t) = 0

for all t ∈ Ln\Zn . If we set

Sn = Ln\(Zn ∪ Zϕ),

then for each t ∈ Sn we have that g′
n(t) = 0 and F has the limit average range at t .

Fix an arbitrary t0 ∈ Sn .
Claim 4 The equality

lim
h→0

Fn(t0 + h) − F(t0 + h)

h
= 0 (2.19)

holds true.
Since g′

n(t0) = 0, given 0 < ε < 1 there exists 0 < δ
(d)
ε < 1 such that for each

h ∈ R, we have

0 < |h| < δ(d)
ε ⇒ dist(t0 + h, Ln)

|h| <
ε

3 · n · Mn

123



356 S. B. Kaliaj

and therefore for each h ∈ R with 0 < |h| < δ
(d)
ε there exists h ∈ R such that

t0 + h ∈ Ln and
|h − h|

|h| <
ε

3 · n · Mn
. (2.20)

Fix an arbitrary h ∈ R with 0 < |h| < δ
(d)
ε . If (t0 + h) ∈ Ln then Fn(t0 + h)− F(t0 +

h) = 0. Otherwise t0 + h ∈ (a(n)
k , b(n)

k ), for some k ∈ N. Then, we choose h ∈ R so

that (2.20) is satisfied. We have t0 + h /∈ (a(n)
k , b(n)

k ). If t0 + h ≤ a(n)
k , then

∣
∣
∣
∣

∣
∣
∣
∣

Fn(t0 + h) − F(t0 + h)

h

∣
∣
∣
∣

∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

Fn(t0 + h) − Fn(a
(n)
k )

h

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

Fn(a
(n)
k ) − Fn(t0 + h)

h

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

Fn(t0 + h) − F(t0 + h)

h

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
= Aa + Ba + Ca, (2.21)

otherwise if t0 + h ≥ b(n)
k , we have

∣
∣
∣
∣

∣
∣
∣
∣

Fn(t0 + h) − F(t0 + h)

h

∣
∣
∣
∣

∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

Fn(t0 + h) − Fn(b(n)
k )

h

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

Fn(b
(n)
k ) − Fn(t0 + h)

h

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

Fn(t0 + h) − F(t0 + h)

h

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
= Ab + Bb + Cb. (2.22)

Let us evaluate the right hand side of the last inequality. By (2.16) we obtain

Ab =
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

Fn(t0 + h) − Fn(b(n)
k )

h

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ |t0 + h − b(n)

k |
|h| · Mn ≤ |h − h|

|h| · Mn <
ε

3
.

(2.23)

Since

|(t0 + h) − b(n)
k | ≤ |h − h| |h − h| <

1

n

and t0 + h ∈ Ln , we obtain by the definition of Ln that

Bb =
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

F(b(n)
k ) − F(t0 + h)

h

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ n · |t0 + h − b(n)

k |
|h| < n · |h − h|

|h| <
ε

3
,

(2.24)
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and

Cb =
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

F(t0 + h) − F(t0 + h)

h

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ n · |h − h|

|h| <
ε

3
. (2.25)

The inequalities (2.23), (2.24) and (2.25) together with (2.22) yield

∣
∣
∣
∣

∣
∣
∣
∣

Fn(t0 + h) − F(t0 + h)

h

∣
∣
∣
∣

∣
∣
∣
∣ <

ε

3
+ ε

3
+ ε

3
= ε. (2.26)

It is proved by the same manner as above that the last inequality holds also for the
case when t0 + h ≤ a(n)

k . Consequently, since h was arbitrary, the inequality (2.26)

holds whenever 0 < |h| < δ
(d)
ε . This means that (2.19) holds true.

Claim 5 The equality

AFn (t0) = AF (t0) (2.27)

holds. First, we will show

AFn (t0) ⊂ AF (t0, δ) for each δ > 0. (2.28)

To see this, we assume that an arbitrary x ∈ AFn (t0) and an arbitrary δ0 > 0 are given.
By (2.19), given an arbitrary ε > 0, there exists 0 < δε < δ0 such that for each h ∈ R,
we have

0 < |h| < δε ⇒
∣
∣
∣
∣

∣
∣
∣
∣

Fn(t0 + h) − F(t0 + h)

h

∣
∣
∣
∣

∣
∣
∣
∣ <

ε

2
.

Since x ∈ AFn (t0, δε), there is hε ∈ R such that

0 < |hε| < δε and ||x − �Fn(t0, hε)|| <
ε

2
,

and since

�F(t0, hε) = �Fn(t0, hε) + F(t0 + hε) − Fn(t0 + hε)

hε

,

we obtain

||x − �F(t0, hε)|| < ε.

Since ε was arbitrary, the last result yields that x ∈ AF (t0, δ0), and since x and δ0
have been taken arbitrarily it follows that (2.28) holds for all δ > 0.

Secondly, by the same manner as above, we get

AF (t0) ⊂ AFn (t0, δ) for all δ > 0. (2.29)
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Clearly, (2.28) together with (2.29) yields that (2.27) holds true.
Claim 6 Given ε > 0, there is a δε > 0 such that

diam(AFn (t0, δε)) = diam(AFn (t0, δε)) < diam(AF (t0)) + ε. (2.30)

Since F has the limit average range at the point t0 there is a δ
(1)
ε > 0 such that for

each h′, h′′ ∈ R, we have

0 < |h′|, |h′′| < δ(1)
ε ⇒ ||�F(t0, h′) − �F(t0, h′′)|| < diam(AF (t0)) + ε

4
.

(2.31)

By (2.19), there is a δ
(2)
ε > 0 such that for each h ∈ R, we have

0 < |h| < δ(2)
ε ⇒

∣
∣
∣
∣

∣
∣
∣
∣

Fn(t0 + h) − F(t0 + h)

h

∣
∣
∣
∣

∣
∣
∣
∣ <

ε

4
.

Choose δε = min{δ(1)
ε , δ

(2)
ε }. Then, for each h′, h′′ ∈ R such that 0 < |h′|, |h′′| < δε,

we have

||�Fn(t0, h′) − �Fn(t0, h′′)||
≤ ||�Fn(t0, h′) − �F(t0, h′)|| + ||�F(t0, h′) − �F(t0, h′′)||
+||�F(t0, h′′) − �Fn(t0, h′′)||
=

∣
∣
∣
∣

∣
∣
∣
∣

Fn(t0 + h′) − F(t0 + h′)
h′

∣
∣
∣
∣

∣
∣
∣
∣ + ||�F(t0, h′) − �F(t0, h′′)||

+
∣
∣
∣
∣

∣
∣
∣
∣

Fn(t0 + h′′) − F(t0 + h′′)
h′′

∣
∣
∣
∣

∣
∣
∣
∣

< diam(AF (t0)) + 3 · ε

4
.

Hence, we obtain

diam(AFn(t0, δε)) ≤ diam(AF (t0)) + 3 · ε

4
< diam(AF (t0)) + ε.

Therefore, we infer that (2.30) holds true.
Now, we obtain by (2.30) and (2.27) that Fn has the limit average range at t0 and

AFn (t0) = AF (t0). Since t0 has been taken arbitrarily, we have that Fn has the limit
average range at t and

AFn (t) = AF (t) for all t ∈ Sn . (2.32)

Claim 7 The function F is differentiable almost everywhere on Ln . Indeed, we
have that the function Fn has the limit average range at all t ∈ Sn , and since λ(Sn) =
λ(Ln), Fn has the limit average range almost everywhere on Ln . Clearly, the function
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Fn has the limit average range at all t ∈ (a(n)
k , b(n)

k ) and k ∈ N. Thus, the function Fn

has the limit average range almost everywhere on [0, 1], and since Fn is also sAC we
obtain by Lemma 2.4 that Fn is differentiable almost everywhere on [0, 1]. Then, there
is a subset Z Fn ⊂ [0, 1] with λ(Z Fn ) = 0 such that F ′

n(t) exists for all t ∈ [0, 1]\Z Fn .
Hence, we obtain by Lemma 2.1 that

{F ′
n(t)} = AFn (t) for all t ∈ [0, 1]\Z Fn .

The last equality together with (2.32) and Lemma 2.1 yields that F ′(t) exists and
F ′(t) = F ′

n(t) for all t ∈ Sn\Z Fn , and since

λ(Sn\Z Fn )) = λ(Sn) = λ(Ln),

the function F is differentiable almost everywhere on Ln .
Finally, since Ln has been taken arbitrarily, F is differentiable almost everywhere

on L = ∪∞
n=1Ln , and since λ(L) = λ([0, 1]), the function F is differentiable almost

everywhere on [0, 1] and the proof is finished. ��
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