The differentiability of Banach space-valued functions of bounded variation

Sokol Bush Kaliaj

Received: 5 January 2013 / Accepted: 9 July 2013 / Published online: 18 July 2013 © Springer-Verlag Wien 2013

Abstract In this paper we consider Banach space-valued functions with the compact range. It is shown that if a Banach space-valued function $F : [0, 1] \rightarrow X$ is of bounded variation with respect to the Minkowski functional $||.||_F$ associated to the closed absolutely convex hull C_F of $F([0, 1])$, then F is differentiable almost everywhere on [0, 1].

Keywords Banach space · Compact range · Differential · Bounded variation · Minkowski functional

Mathematics Subject Classification (2010) Primary 28B05 · 58C20 · 26A45 · 46B22; Secondary 46G10 · 46G05

1 Introduction and preliminaries

Throughout this paper *X* denotes a real Banach space with its norm ||.||. We denote by $B(x, \varepsilon)$ the open ball with center x and radius $\varepsilon > 0$ and by X^* the topological dual to *X*. If a function $F : [0, 1] \rightarrow X$ is given, then we denote by X_F the vector space spanned by the set C_F and by $\vert \vert . \vert \vert_F$ the Minkowski functional associated to the closed absolutely convex hull C_F of $F([0, 1]) = {F(t) : t \in [0, 1]}$. Thus, $||x||_F = \inf\{r > 0 : x \in r \cdot C_F\}$, for all $x \in X_F$.

At first, we introduce the concept of the limit average range.

S. B. Kaliaj (\boxtimes)

Communicated by G. Teschl.

Mathematics Department, Science Natural Faculty, University of Elbasan, Elbasan, Albania e-mail: sokol_bush@yahoo.co.uk

Definition 1.1 Let $F : [0, 1] \rightarrow X$ be a function and let $t \in [0, 1]$. We put

$$
\Delta F(t, h) = \frac{F(t+h) - F(t)}{h} \qquad A_F(t, \delta) = \left\{ \Delta F(t, h) : 0 < |h| < \delta \right\}
$$

and

$$
A_F(t) = \bigcap_{\delta > 0} \overline{A_F}(t, \delta),
$$

where $A_F(t, \delta)$ is the closure of $A_F(t, \delta)$. The set $A_F(t)$ is said to be *the average range* of *F* at the point *t*. Denote

$$
diam(W) = \sup\{||x - y|| : x, y \in W\} \quad (W \subset X).
$$

We say that *F* has *the limit average range* at the point t , if $A_F(t)$ is a bounded set and for each $\varepsilon > 0$ there exists $\delta_{\varepsilon} > 0$ such that

$$
diam(\overline{A_F}(t,\delta_{\varepsilon})) < diam(A_F(t)) + \varepsilon.
$$

Next, we recall the notion of differentiation, see Definition 7.3.2 in [\[8](#page-16-0)].

Definition 1.2 Let $F : [0, 1] \rightarrow X$ be a function and let $t \in [0, 1]$. The function F is said to be *differentiable at the point t* if there is a vector $x \in X$ such that

$$
\lim_{h \to 0} ||\Delta F(t, h) - x|| = 0.
$$

By $x = F'(t)$ the derivative of *F* at *t* is denoted.

We denote by *I* the family of all non-degenerate closed subintervals of [0, 1], by λ the Lebesgue measure and by $\mathcal L$ the family of all Lebesgue measurable subsets of [0, 1]. The intervals *I*, $J \in \mathcal{I}$ are said to be *nonoverlapping* if $\text{int}(I) \cap \text{int}(J) = \emptyset$, where $\text{int}(I)$ denotes the interior of *I*. We will identify an interval function $F: \mathcal{I} \to X$ with the point function $F(t) = F([0, t])$, $t \in [0, 1]$; and conversely, we will identify a point function *F* : [0, 1] → *X* with the interval function $F([u, v]) = F(v) - F(u)$, [*u*, *v*] ∈ *I*.

Assume that an interval $[a, b] \subset [0, 1]$ and a function $F : [0, 1] \rightarrow X$ are given. A finite collection $\{I_i \in \mathcal{I} : i = 1, 2, \ldots, m\}$ of pairwise nonoverlapping intervals is said to be *a partition of* [*a*, *b*], if $\bigcup_{i=1}^{m} I_i = [a, b]$. We denote by $\Pi_{[a, b]}$ the family of all partitions of [*a*, *b*]. Let us define *the total variation* $V_{[a,b]}^{(X_F)}F$ of *F* on [*a*, *b*], with respect to the norm $\left\| . \right\|_F$, by equality

$$
V_{[a,b]}^{(X_F)}F = \sup \left\{ \sum_{I \in \pi} ||\widetilde{F}(I)||_F : \pi \in \Pi_{[a,b]} \right\}.
$$

If $c \in (a, b)$, then

$$
V_{[a,b]}^{(X_F)}F = V_{[a,c]}^{(X_F)}F + V_{[c,b]}^{(X_F)}F.
$$
\n(1.1)

The last equality was proven for real valued functions in [\[9\]](#page-16-1) (p. 83), but the proof works also for vector valued functions, it is enough to change the absolute value with the norm $\left\| . \right\|_F$. If we have

$$
V_{[a,b]}^{(X_F)}F < +\infty,
$$

then *F* is said to be *of bounded variation on* [a, b] with respect to $||.||_F$.

Functions of usual bounded variation from [0, 1] into a Banach space need not have a single point of differentiability. A simple and well-known example is the function $F : [0, 1] \rightarrow L_1([0, 1])$ defined by

$$
F(t) = \chi_{[0,t]} \quad \text{for all} \quad t \in [0, 1],
$$

where $\chi_{[0,t]}$ is the characteristic function of [0, *t*]. The function *F* is of usual bounded variation on [0, 1], but F is not differentiable at a single point of [0, 1]. This pathology does not appear in the class of Banach spaces with the Radon–Nikodym property, see the statement (3) in [\[3\]](#page-16-2) (p. 217). A detailed study of Banach spaces possessing the RNP is presented in books $[1,2]$ $[1,2]$ $[1,2]$ $[1,2]$ and $[3]$ $[3]$.

A function $F : [0, 1] \rightarrow X$ is said to be *strongly absolutely continuous (sAC)* if for every $\varepsilon > 0$ there exists $\eta > 0$ such that for every finite collection ${I_i \in \mathcal{I} : i =}$ $1, 2, \ldots, m$ of pairwise nonoverlapping intervals, we have

$$
\sum_{i=1}^{m} \lambda(I_i) < \eta \Rightarrow \sum_{i=1}^{m} ||\widetilde{F}(I_i)|| < \varepsilon. \tag{1.2}
$$

Replacing [\(1.2\)](#page-2-0) by

$$
\sum_{i=1}^m \lambda(I_i) < \eta \Rightarrow \left\| \sum_{i=1}^m \widetilde{F}(I_i) \right\| < \varepsilon,
$$

we obtain the definition of *absolute continuity (AC)*.

We say that a function $F : [0, 1] \rightarrow X$ is *Lipschitz at* $t \in [0, 1]$ if there exist $c_t > 0$ and $\delta_t > 0$ such that

$$
|h| < \delta_t \text{ and } t + h \in [0, 1] \Rightarrow ||F(t + h) - F(t)|| \leq c_t \cdot |h|.
$$

2 The Differentiability of functions of bounded variation

The main result is Theorem [2.6.](#page-9-0) Let us start with some auxiliary statements. Lemma [2.1](#page-2-1) together with Examples [2.2](#page-4-0) and [2.3](#page-6-0) highlights the local relation between the differential and the limit average range.

Lemma 2.1 *Let* $F : [0, 1] \rightarrow X$ *be a function and let* $t_0 \in [0, 1]$ *. Then, the following statements are equivalent.*

- (i) *F* is differentiable at t_0 with $F'(t_0) = x_0$,
- (ii) F has the limit average range at t_0 and

$$
A_F(t_0) = \{x_0\}.\tag{2.1}
$$

Proof (i)⇒(ii) Assume that *F* is differentiable at t_0 . *Claim 1* The equality

$$
A_F(t_0) = \{F'(t_0)\}\tag{2.2}
$$

holds.

First, we will show that $F'(t_0) \in A_F(t_0)$. To see this, we choose a sequence (h_k) of real numbers such that

$$
0 < |h_k| < \frac{1}{k} \quad \text{for all} \quad k \in \mathbb{N}.
$$

Then

$$
\lim_{k\to\infty}||\Delta F(t_0,h_k)-F'(t_0)||=0,
$$

and since for each $n \in \mathbb{N}$, we have

$$
\Delta F(t_0, h_k) \in A_F\left(t_0, \frac{1}{n}\right) \text{ for all } k \ge n,
$$

it follows that

$$
F'(t_0) \in \bigcap_{n=1}^{\infty} \overline{A_F}\left(t_0, \frac{1}{n}\right) = \bigcap_{\delta > 0} \overline{A_F}(t_0, \delta) = A_F(t_0).
$$

Secondly, we will show that $A_F(t_0) \subset \{F'(t_0)\}\)$. Assume that $x \in A_F(t_0)$ is given. Then, for each $n \in \mathbb{N}$, we have

$$
B\left(x,\frac{1}{n}\right)\bigcap A_F\left(t_0,\frac{1}{n}\right)\neq\emptyset.
$$

Therefore, there is a sequence (h'_n) of real numbers such that

$$
0 < |h'_n| < \frac{1}{n} \quad \text{and} \quad \Delta F(t_0, h'_n) \in B\left(x, \frac{1}{n}\right) \quad \text{for all} \quad n \in \mathbb{N}.
$$

Hence

$$
\lim_{n \to \infty} ||\Delta F(t_0, h'_n) - x|| = 0,
$$

and we infer that $x = F'(t_0)$.

² Springer

Claim 2 Given $\varepsilon > 0$, there exists $\delta_{\varepsilon} > 0$ such that

$$
diam(\overline{A_F}(t_0, \delta_{\varepsilon})) = diam(A_F(t_0, \delta_{\varepsilon})) < diam(A_F(t_0)) + \varepsilon = \varepsilon.
$$
 (2.3)

Indeed, since *F* is differentiable at t_0 there is a $\delta_{\varepsilon} > 0$ such that

$$
0 < |h| < \delta_{\varepsilon} \Rightarrow ||\Delta F(t_0, h) - x_0|| < \frac{\varepsilon}{3}.
$$

Hence, for each h' , $h'' \in \mathbb{R}$, we have

$$
0<|h'|,|h''|<\delta_{\varepsilon}\Rightarrow||\Delta F(t_0,h')-\Delta F(t_0,h'')||<\frac{2\cdot \varepsilon}{3}.
$$

The last result yields that (2.3) holds true.

Clearly, by (2.2) and (2.3) , we obtain that *F* has the limit average range at t_0 and [\(2.1\)](#page-3-1) holds true.

(ii) \Rightarrow (i) Assume that (ii) holds. Let $\varepsilon > 0$ be given and let δ_{ε} corresponds to ε by Definition [1.1.](#page-0-0) Then, since $x_0 \in \overline{A_F}(t, \delta)$ for all $\delta > 0$, we have

$$
0 < |h| < \delta_{\varepsilon} \Rightarrow ||\Delta F(t_0, h) - x_0|| < diam(A_F(t_0)) + \varepsilon = \varepsilon.
$$

This means that *F* is differentiable at t_0 and $F'(t_0) = x_0$.

The following example shows that there is a function $F : [-1, 1] \rightarrow l_p, p > 1$, that has not the limit average range at $t = 0$ and $A_F(0) = \{(0)\}\)$. Hence, by Lemma [2.1,](#page-2-1) *F* is not differentiable at $t = 0$.

Example 2.2 Let $F : [-1, 1] \rightarrow l_p$ be a function given as follows

$$
F(t) = \begin{cases} (0, \ldots, 0, \ldots) & \text{if } t \neq \frac{1}{n} \\ (0, \ldots, 0, \frac{1}{n}, 0, \ldots) & \text{if } t = \frac{1}{n} \end{cases} \quad t \in [-1, 1] \quad n = 1, 2, 3, \ldots
$$

Since

$$
\Delta F(0, h) = \begin{cases} (0, \dots, 0, \dots) & \text{if } h \neq \frac{1}{n} \\ (0, \dots, 0, 1, 0, \dots) & \text{if } h = \frac{1}{n} \end{cases}
$$

we have

$$
diam(AF(0, \delta)) = 2^{\frac{1}{p}} \text{ for all } \delta > 0.
$$
 (2.4)

We claim that

$$
A_F(0) = \{(0, \ldots, 0, \ldots)\}.
$$
\n(2.5)

Let us consider an arbitrary element $x_0 \in A_F(0)$. Since

$$
A_F(0) = \bigcap_{k=1}^{\infty} \overline{A_F} \left(0, \frac{1}{k}\right),
$$

there is a sequence $(h_k) \subset \mathbb{R}$ such that for each $k \in \mathbb{N}$, we have

$$
0 < |h_k| < \frac{1}{k} \quad \text{and} \quad ||\Delta F(0, h_k) - x_0||_{l_p} < \frac{1}{k}.
$$

Therefore

$$
\lim_{k \to \infty} ||\Delta F(0, h_k) - x_0||_{l_p} = 0.
$$

Hence

$$
\lim_{k \to \infty} x^*(\Delta F(0, h_k)) = x^*(x_0) \text{ for all } x^* \in (l_p)^*.
$$
 (2.6)

Fix an arbitrary $x^* \in (l_p)^*$. Since $(l_p)^* = l_q$, there is a sequence $(a_n) \in l_q$ such that

$$
x^*(x) = \sum_{n=1}^{+\infty} a_n \cdot x_n \quad \text{for all} \quad x = (x_n) \in l_p,
$$

and since

$$
x^*(\Delta F(0, h_k)) = \begin{cases} 0 & \text{if } h_k \neq \frac{1}{n} \\ a_n & \text{if } h_k = \frac{1}{n} \end{cases} (n > k),
$$

we obtain

$$
\lim_{k \to \infty} x^*(\Delta F(0, h_k)) = 0.
$$

Hence, by (2.6) , it follows that

$$
x^*(x_0) = 0 \quad \text{for all} \quad x^* \in (l_p)^*,
$$

because *x*[∗] was arbitrary. Therefore, we obtain by Hahn–Banach Theorem that

$$
x_0=(0,\ldots,0,\ldots)
$$

and consequently [\(2.5\)](#page-4-2) holds true.

Clearly, by [\(2.4\)](#page-4-3) and [\(2.5\)](#page-4-2), we obtain that *F* has not the limit average range at $t = 0$.

By Lemma [2.1,](#page-2-1) if a function $F : [0, 1] \rightarrow X$ is differentiable at a point $t \in [0, 1]$, then *F* has the limit average range at this point, but the converse does not hold. The next example shows that there is a function $F : [-1, 1] \rightarrow l_{\infty}$ which has the limit average range at $t = 0$, but *F* is not differentiable at this point.

Example 2.3 Let $F : [-1, 1] \rightarrow l_{\infty}$ be a function given as follows

$$
F(t) = \begin{cases} (0, \ldots, 0, \ldots) & \text{if } t \neq \frac{1}{n} \\ \left(\frac{1}{|n|}, \ldots, \frac{1}{|n|}, \ldots\right) & \text{if } t = \frac{1}{n} \end{cases} \quad t \in [-1, 1] \quad n = \pm 1, \pm 2, \pm 3, \ldots.
$$

Since

$$
\Delta F(0, h) = \begin{cases}\n(0, \dots, 0, \dots) & \text{if } h \neq \frac{1}{n} \\
(1, \dots, 1, \dots) & \text{if } h = \frac{1}{n}, n > 0 \\
(-1, \dots, -1, \dots) & \text{if } h = \frac{1}{n}, n < 0\n\end{cases}
$$

we have

$$
A_F(0, \delta) = \{(0), (+1), (-1)\} \text{ for all } \delta > 0.
$$

It follows that *F* has the limit average range at $t = 0$ and

$$
A_F(0) = \{(0), (+1), (-1)\}.
$$

Note that

$$
\lim_{n \to +\infty} ||\Delta F\left(0, \frac{1}{n}\right) - (1)||_{l_{\infty}} = 0 \text{ and } \lim_{n \to -\infty} \left\| \Delta F\left(0, \frac{1}{n}\right) - (-1)\right\|_{l_{\infty}} = 0.
$$

This means that the function *F* is not differentiable at $t = 0$.

Lemma 2.4 *Let* $F : [0, 1] \rightarrow X$ *be a function. If* F *is sAC and has the limit average range almost everywhere on* [0, 1]*, then F is differentiable almost everywhere on* [0, 1]*.*

Proof Since *F* has the limit average range almost everywhere on [0, 1], there exists $Z \subset [0, 1]$ with $\lambda(Z) = 0$ such that *F* has the limit average range at all $t \in [0, 1] \setminus Z$. *Claim 1* We have

$$
A_F(t) \neq \emptyset \quad \text{for all} \quad t \in [0, 1] \setminus Z \tag{2.7}
$$

To see this, fix an arbitrary $t \in [0, 1]$ $\setminus Z$ and assume by contradiction that

$$
\bigcap_{\delta>0} \overline{A_F}(t,\delta) = \emptyset. \tag{2.8}
$$

Then, by Definition [1.1,](#page-0-0) there is a decreasing sequence (δ_n) of real numbers such that for each $n \in \mathbb{N}$, we have

$$
0 < \delta_n < \frac{1}{n} \quad \text{and} \quad \text{diam}(A_F(t, \delta_n)) < \frac{1}{n}.
$$

Define a sequence $(\Delta F(t, h_n))$ by choosing a $\Delta F(t, h_n) \in A_F(t, \delta_n)$ for all $n \in \mathbb{N}$. Hence, we get that $(\Delta F(t, h_n))$ is a Cauchy sequence. Therefore, there is a $x_0 \in X$ such that

$$
\lim_{n\to\infty}\Delta F(t,h_n)=x_0.
$$

Since

$$
\Delta F(t, h_k) \in A_F(t, \delta_n) \text{ for all } k \ge n \text{ and } n \in \mathbb{N},
$$

we obtain that $x_0 \in \overline{A_F}(t, \delta_n)$, for all $n \in \mathbb{N}$, and since

$$
\bigcap_{n=1}^{\infty} \overline{A_F}(t, \delta_n) = \bigcap_{\delta > 0} \overline{A_F}(t, \delta),
$$

it follows that

$$
x_0 \in \bigcap_{\delta > 0} \overline{A_F}(t, \delta).
$$

This contradicts [\(2.8\)](#page-6-1) and consequently, $A_F(t) \neq \emptyset$. Since *t* was arbitrary, we obtain that (2.7) holds true.

Now, we choose $x_t \in A_F(t)$, for each $t \in [0, 1] \setminus Z$, and define the function f : $[0, 1] \rightarrow X$ as follows

$$
f(t) = \begin{cases} x_t & t \in [0, 1] \setminus Z \\ 0 & t \in Z \end{cases} .
$$
 (2.9)

Claim 2 The function f is Pettis integrable on [0, 1]. It is easy to see that

$$
\overline{x^*(A_F(t))} \subset A_{x^* \circ F}(t) \quad \text{for all} \quad x^* \in X^* \quad \text{and} \quad t \in [0, 1] \setminus Z. \tag{2.10}
$$

We also have that each $x^* \circ F$ is sAC. It follows that each function $x^* \circ F$ is differentiable almost everywhere on [0, 1]. Thus, for each $x^* \in X^*$ there exists $Z^{(x^*)} \subset [0, 1]$ with $\lambda(Z^{(x^*)}) = 0$ such that $(x^* \circ F)'(t)$ exists for all $t \in [0, 1] \setminus Z^{(x^*)}$. Hence, by Lemma [2.1,](#page-2-1) we obtain

$$
\{(x^* \circ F)'(t)\} = A_{x^* \circ F}(t) \quad \text{for all} \quad t \in [0, 1] \setminus Z^{(x^*)}.
$$

The last equality together with (2.10) and (2.9) yields

$$
(x^* \circ F)'(t) = (x^* \circ f)(t)
$$
 for all $t \in [0, 1] \setminus (Z \cup Z^{(x^*)}).$

This means that f is a scalar derivative of F on [0, 1], see Definition 2.1(b) in [\[6](#page-16-5)]. Then, since *F* is also AC, we obtain by Theorem 5.1 in [\[6\]](#page-16-5) that *f* is Pettis integrable on [0, 1] and

$$
\widetilde{F}(I) = (P) \int\limits_I f d\lambda \quad \text{for all} \quad I \in \mathcal{I}.
$$

Claim 3 The function f is strongly measurable. Since F is sAC the function F is continuous on [0, 1], and because this the set ${F(t) : t \in [0, 1]} \subset X$ is compact and therefore separable. If $Y \subset X$ is the closed linear subspace spanned by the set ${F(t) : t \in [0, 1]}$, then *Y* is separable. Since $\Delta F(t, h) \in Y$ for all $t \in [0, 1]$ and *h* \neq 0, we obtain by Definition [1.1](#page-0-0) that *A_F*(*t*) ⊂ *Y* for all *t* ∈ [0, 1]*Z*. Thus, we have $f(t) \in Y$ for all $t \in [0, 1]$. This means that f is almost everywhere separable valued. Hence by the Pettis measurability theorem, Theorem II.1.2 in [\[3\]](#page-16-2), the function *f* is strongly measurable.

Claim 4 The function *f* is Bochner integrable on [0, 1]. We set

$$
\nu(E) = (P) \int\limits_E f d\lambda \quad \text{for all} \quad E \in \mathcal{L}.
$$

Let (E_k) be a sequence of disjoint members of $\mathcal L$ such that $\cup_{k=1}^{+\infty} E_k = [0, 1]$. Since

$$
\nu(I) = \overline{F}(I) \quad \text{for all} \quad I \in \mathcal{I} \tag{2.11}
$$

and F is sAC we obtain by Caratheodory–Hahn–Kluvanek extension theorem in [\[5\]](#page-16-6) that ν is of bounded variation. Then

$$
(L)\int\limits_{\cup_{k=1}^{n}E_{k}}||f(t)||d\lambda \leq |\nu|([0,1]) < +\infty
$$

for all $n \in \mathbb{N}$. Hence, by the Monotone Convergence Theorem, the function $||f(.)||$ is Lebesgue integrable on [0, 1]. Therefore, we obtain by Theorem II.2.2 in [\[3](#page-16-2)] that *f* is Bochner integrable on [0, 1]. Since the Bochner and Pettis integrals coincide whenever they coexist, we have

$$
\nu(E) = (B) \int\limits_E f d\lambda \quad \text{for every } E \in \mathcal{L}.
$$

The last result together with (2.11) and Theorem II.2.9 in [\[3\]](#page-16-2) yields that *F* is differentiable a.e. on [0, 1] and the proof is finished. \square **Lemma 2.5** *Let* $F : [0, 1] \rightarrow X$ *be a function and let* $t_0 \in [0, 1]$ *. If there is a* $\delta_0 > 0$ *such that* $A_F(t_0, \delta_0)$ *is a compact set, then* F has the limit average range at t₀.

Proof Assume by contradiction that F has not the limit average range at t_0 . Then, there exists $\varepsilon_0 > 0$ and the sequences (δ_n) , (h'_n) , (h''_n) such that $\lim_{n\to\infty} \delta_n = 0$ and for each $n \in \mathbb{N}$, we have

(a) $0 < \delta_{n+1} < \delta_n < \delta_0$, (b) $0 < |h'_n|, |h''_n| < \delta_n$, $|\Delta F(t_0, h'_n) - \Delta F(t_0, h''_n)| \geq diam(A_F(t_0)) + \varepsilon_0.$

Since $\overline{A_F}(t_0, \delta_0)$ is a compact set, there exist subsequences $(\Delta F(t_0, h'_{n_k}))$ and $(\Delta F(t_0, h''_{n_k}))$ of sequences $(\Delta F(t_0, h'_n))$ and $(\Delta F(t_0, h''_n))$, respectively, such that

$$
\lim_{k \to \infty} \Delta F(t_0, h'_{n_k}) = x'_0 \quad \text{and} \quad \lim_{k \to \infty} \Delta F(t_0, h''_{n_k}) = x''_0
$$

where

$$
x'_0, x''_0 \in \overline{A_F}(t_0, \delta_0).
$$

The last result together with (c) yields

$$
||x'_0 - x''_0|| \ge diam(A_F(t_0)) + \varepsilon_0. \tag{2.12}
$$

On the other hand, we have

$$
x'_0, x''_0 \in \bigcap_{k=1}^{\infty} \overline{A_F}(t_0, \delta_{n_k}) = A_F(t_0)
$$

and therefore

$$
||x'_0 - x''_0|| < diam(A_F(t_0)) + \varepsilon_0.
$$
\n(2.13)

This contradicts (2.12) . Consequently, the function *F* has the limit average range at t_0 and the proof is finished.

Now, we are ready to present the main result.

Theorem 2.6 *Let* $F : [0, 1] \rightarrow X$ *be a function with compact range. If* F *is of bounded variation on* [0, 1] *with respect to* ||.||*^F , then F is differentiable almost everywhere on* [0, 1]*.*

Proof First of all, we claim that *F* has the limit average range almost everywhere on [0, 1]. To see this, we define the function $\varphi : [0, 1] \to [0, +\infty)$ by $\varphi(0) = 0$ and $\varphi(t) = V_{[0,t]}^{(X_F)} F$ for all $t \in (0, 1]$. Since φ increases on [0, 1], φ is differentiable almost everywhere on [0, 1]. Thus, there exists $Z_{\varphi} \subset [0, 1]$ with $\lambda(Z_{\varphi}) = 0$ such that $\varphi'(t)$ exists at all $t \in [0, 1] \backslash Z_{\varphi}$.

Fix an arbitrary point $t \in [0, 1] \setminus Z_{\varphi}$. Then, given ε there exists $\delta_{\varepsilon} > 0$ such that

$$
0 < |h| < \delta_{\varepsilon} \Rightarrow \Delta \varphi(t, h) \in (\varphi'(t) - \varepsilon, \varphi'(t) + \varepsilon).
$$
 (2.14)

Note that the inequality

$$
||F(t + h) - F(t)||_F \le |\varphi(t + h) - \varphi(t)|
$$

implies

$$
F(t+h) - F(t) \in (\varphi(t+h) - \varphi(t)) \cdot C_F.
$$

It follows that

$$
A_F(t, \delta_{\varepsilon}) \subset A_{\varphi}(t, \delta_{\varepsilon}) \cdot C_F
$$

and since

$$
A_{\varphi}(t,\delta_{\varepsilon})\cdot C_F \subset [\varphi'(t)-\varepsilon,\varphi'(t)+\varepsilon]\cdot C_F = C'_F
$$

we obtain

$$
A_F(t,\delta_{\varepsilon})\subset C'_F.
$$

By the corollary of Theorem III.6.5 in [\[7\]](#page-16-7) we have that C_F is a compact set. Hence, we obtain by Theorems 5.13 and 5.8 in [\[4](#page-16-8)] that C_F is also a compact set. Further, $\overline{A_F}(t, \delta_{\varepsilon})$ is a compact set and therefore we obtain by Lemma [2.5](#page-9-2) that *F* has the limit average range at *t*. Since *t* was arbitrary *F* has the limit average range at all *t* ∈ [0, 1] $\{Z_{\varphi}$. We set

$$
K=[0,1]\backslash Z_{\varphi}
$$

and denote by *L* the set of all points $t \in [0, 1]$ at which *F* is Lipschitz.

Claim 1 The function *F* is Lipschitz at all $t \in K$. Fix an arbitrary $t \in K$. By Definition [1.1,](#page-0-0) given $\varepsilon = 1$ there exists $\delta_t > 0$ such that

$$
diam(\overline{A_F}(t,\delta_t)) < diam(A_F(t)) + 1,
$$

and since $A_F(t)$ is a bounded set there exists $r_t > 0$ such that

$$
diam(\overline{A_F}(t,\delta_t)) < r_t + 1 = c_t,
$$

whence

$$
||F(t+h) - F(t)|| \le c_t \cdot |h| \quad \text{for all} \quad |h| < \delta_t.
$$

This means that *t* is a Lipschitz point of F , and since t was arbitrary the function F is Lipschitz at all $t \in K$. It follows that $\lambda(L \setminus K) = 0$ and $\lambda([0, 1] \setminus L) = 0$.

Denote by L_n the set of all $t \in L$ such that

$$
|h| < \frac{1}{n} \Rightarrow ||F(t+h) - F(t)|| \le n \cdot |h| \quad (n \in \mathbb{N}).\tag{2.15}
$$

It is easy to see that each L_n is closed and $L = \bigcup_{n=1}^{\infty} L_n$. Fix an arbitrary L_n with $\lambda(L_n) > 0$ and let

$$
(0, 1) \setminus L_n = \bigcup_{k=1}^{\infty} (a_k^{(n)}, b_k^{(n)}).
$$

Define the function F_n : $[0, 1] \rightarrow X$ by $F_n(t) = F(t)$ for all $t \in L_n$, $F_n(0) =$ $F(0)$, $F_n(1) = F(1)$ and

$$
F_n(t) = F(a_k^{(n)}) + \frac{F(b_k^{(n)}) - F(a_k^{(n)})}{b_k^{(n)} - a_k^{(n)}} \cdot (t - a_k^{(n)}),
$$
\n(2.16)

for all $t \in [a_k^{(n)}, b_k^{(n)}]$ and $k \in \mathbb{N}$.

Claim 2 There is a real number $M_n \geq 1$ such that

$$
\frac{||F(b_k^{(n)}) - F(a_k^{(n)})||}{(b_k^{(n)} - a_k^{(n)})} \le M_n \quad \text{for all} \quad k \in \mathbb{N}.
$$
 (2.17)

Indeed, since $\sum_{k=1}^{\infty} (b_k^{(n)} - a_k^{(n)}) \le 1$, there exists $N \in \mathbb{N}$ such that $\sum_{k=N+1}^{\infty} (b_k^{(n)} - b_k^{(n)})$ $a_k^{(n)}$) $< \frac{1}{n}$. Hence, we obtain by [\(2.15\)](#page-11-0) that

$$
\frac{||F(b_k^{(n)}) - F(a_k^{(n)})||}{(b_k^{(n)} - a_k^{(n)})} \le n \quad \text{for } k = N + 1, N + 2, ...
$$

and therefore

$$
0 \leq T_n = \sup \left\{ \frac{||F(b_k^{(n)}) - F(a_k^{(n)})||}{(b_k^{(n)} - a_k^{(n)})} : k \in \mathbb{N} \right\} < +\infty.
$$

Then, $M_n = \max\{M_n^{(0)}, 1\}$ is the desired real number.

Claim 3 The function F_n is sAC. To see this, we assume that an arbitrary $0 < \varepsilon < 1$ is given. Then, we choose $\eta = \frac{\varepsilon}{9 \cdot (M_n + n)}$ and consider a finite collection α of pairwise nonoverlapping subintervals in *I* such that $\sum_{I \in \alpha} \lambda(I) < \eta$. Sort the intervals [*u*, *v*] in α into three collections α_1, α_2 and α_3 as follows

(i) $u \in L_n$ or $v \in L_n$ (ii) $[u, v] \subset (a_k^{(n)}, b_k^{(n)}),$ (iii) $u \in (a_k^{(n)}, b_k^{(n)})$ and $v \in (a_{k'}^{(n)}, b_{k'}^{(n)})$, where $k < k'$.

In case (iii), we have

$$
[u, v] = [u, b_k^{(n)}] \cup [b_k^{(n)}, a_{k'}^{(n)}] \cup [a_{k'}^{(n)}, v]
$$

and therefore

$$
[u, b_k^{(n)}], [b_k^{(n)}, a_{k'}^{(n)}], [a_{k'}^{(n)}, v] \in \alpha_1.
$$

Then

$$
\sum_{I \in \alpha} ||\widetilde{F_n}(I)|| \leq \sum_{I \in \alpha_1} ||\widetilde{F_n}(I)|| + \sum_{I \in \alpha_2} ||\widetilde{F_n}(I)|| + \sum_{I \in \alpha_3} ||\widetilde{F_n}(I)|| \leq
$$
\n
$$
n \cdot \sum_{I \in \alpha_1} \lambda(I) + M_n \cdot \sum_{I \in \alpha_2} \lambda(I) + \sum_{I \in \alpha_3} ||\widetilde{F_n}(I)|| \leq
$$
\n
$$
n \cdot \frac{\varepsilon}{9 \cdot (M_n + n)} + M_n \cdot \frac{\varepsilon}{9 \cdot (M_n + n)} + 3 \cdot \left(n \cdot \frac{\varepsilon}{9 \cdot (M_n + n)}\right) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.
$$
\n(2.18)

This means that F_n is sAC.

It is easy to see that the distance function $g_n(t) = \text{dist}(t, L_n)$ is sAC. Therefore, it is differentiable almost everywhere on [0, 1]. Thus, there exists $Z_n \subset [0, 1]$ with $\lambda(Z_n) = 0$ such that $g'_n(t)$ exists at all $t \in [0, 1] \setminus Z_n$. In particular, we have $g'_n(t) = 0$ for all $t \in L_n \backslash Z_n$. If we set

$$
S_n=L_n\backslash (Z_n\cup Z_\varphi),
$$

then for each $t \in S_n$ we have that $g'_n(t) = 0$ and *F* has the limit average range at *t*. Fix an arbitrary $t_0 \in S_n$.

Claim 4 The equality

$$
\lim_{h \to 0} \frac{F_n(t_0 + h) - F(t_0 + h)}{h} = 0
$$
\n(2.19)

holds true.

Since $g'_n(t_0) = 0$, given $0 < \varepsilon < 1$ there exists $0 < \delta_{\varepsilon}^{(d)} < 1$ such that for each $h \in \mathbb{R}$, we have

$$
0 < |h| < \delta_{\varepsilon}^{(d)} \Rightarrow \frac{\text{dist}(t_0 + h, L_n)}{|h|} < \frac{\varepsilon}{3 \cdot n \cdot M_n}
$$

 \mathcal{D} Springer

and therefore for each $h \in \mathbb{R}$ with $0 < |h| < \delta_{\varepsilon}^{(d)}$ there exists $\overline{h} \in \mathbb{R}$ such that

$$
t_0 + \overline{h} \in L_n
$$
 and $\frac{|h - \overline{h}|}{|h|} < \frac{\varepsilon}{3 \cdot n \cdot M_n}$. (2.20)

Fix an arbitrary $h \in \mathbb{R}$ with $0 < |h| < \delta_{\varepsilon}^{(d)}$. If $(t_0 + h) \in L_n$ then $F_n(t_0 + h) - F(t_0 + h)$ *h*) = 0. Otherwise *t*₀ + *h* ∈ ($a_k^{(n)}$, $b_k^{(n)}$), for some $k \in \mathbb{N}$. Then, we choose $\overline{h} \in \mathbb{R}$ so that [\(2.20\)](#page-13-0) is satisfied. We have $t_0 + \bar{h} \notin (a_k^{(n)}, b_k^{(n)})$. If $t_0 + \bar{h} \le a_k^{(n)}$, then

$$
\left\| \frac{F_n(t_0 + h) - F(t_0 + h)}{h} \right\|
$$

\n
$$
\leq \left\| \frac{F_n(t_0 + h) - F_n(a_k^{(n)})}{h} \right\| + \left\| \frac{F_n(a_k^{(n)}) - F_n(t_0 + \overline{h})}{h} \right\|
$$

\n
$$
+ \left\| \frac{F_n(t_0 + \overline{h}) - F(t_0 + h)}{h} \right\| = A_a + B_a + C_a,
$$
 (2.21)

otherwise if $t_0 + \overline{h} \ge b_k^{(n)}$, we have

$$
\left\| \frac{F_n(t_0 + h) - F(t_0 + h)}{h} \right\|
$$

\n
$$
\leq \left\| \frac{F_n(t_0 + h) - F_n(b_k^{(n)})}{h} \right\| + \left\| \frac{F_n(b_k^{(n)}) - F_n(t_0 + \overline{h})}{h} \right\|
$$

\n
$$
+ \left\| \frac{F_n(t_0 + \overline{h}) - F(t_0 + h)}{h} \right\| = A_b + B_b + C_b.
$$
 (2.22)

Let us evaluate the right hand side of the last inequality. By (2.16) we obtain

$$
A_b = \left| \left| \frac{F_n(t_0 + h) - F_n(b_k^{(n)})}{h} \right| \right| \le \frac{|t_0 + h - b_k^{(n)}|}{|h|} \cdot M_n \le \frac{|h - \overline{h}|}{|h|} \cdot M_n < \frac{\varepsilon}{3}.
$$
\n(2.23)

Since

$$
|(t_0+\overline{h})-b_k^{(n)}| \le |h-\overline{h}| \qquad |h-\overline{h}| < \frac{1}{n}
$$

and $t_0 + \overline{h} \in L_n$, we obtain by the definition of L_n that

$$
B_b = \left| \left| \frac{F(b_k^{(n)}) - F(t_0 + \overline{h})}{h} \right| \right| \le n \cdot \frac{|t_0 + \overline{h} - b_k^{(n)}|}{|h|} < n \cdot \frac{|\overline{h} - h|}{|h|} < \frac{\varepsilon}{3},\tag{2.24}
$$

² Springer

and

$$
C_b = \left| \left| \frac{F(t_0 + \overline{h}) - F(t_0 + h)}{h} \right| \right| \le n \cdot \frac{|\overline{h} - h|}{|h|} < \frac{\varepsilon}{3}.\tag{2.25}
$$

The inequalities (2.23) , (2.24) and (2.25) together with (2.22) yield

$$
\left| \left| \frac{F_n(t_0 + h) - F(t_0 + h)}{h} \right| \right| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon. \tag{2.26}
$$

It is proved by the same manner as above that the last inequality holds also for the case when $t_0 + \overline{h} \le a_k^{(n)}$. Consequently, since *h* was arbitrary, the inequality [\(2.26\)](#page-14-1) holds whenever $0 < |h| < \delta_{\varepsilon}^{(d)}$. This means that [\(2.19\)](#page-12-0) holds true.

Claim 5 The equality

$$
A_{F_n}(t_0) = A_F(t_0)
$$
\n(2.27)

holds. First, we will show

$$
A_{F_n}(t_0) \subset \overline{A_F}(t_0, \delta) \quad \text{for each} \quad \delta > 0. \tag{2.28}
$$

To see this, we assume that an arbitrary $x \in A_{F_n}(t_0)$ and an arbitrary $\delta_0 > 0$ are given. By [\(2.19\)](#page-12-0), given an arbitrary $\varepsilon > 0$, there exists $0 < \delta_{\varepsilon} < \delta_0$ such that for each $h \in \mathbb{R}$, we have

$$
0 < |h| < \delta_{\varepsilon} \Rightarrow \left| \left| \frac{F_n(t_0 + h) - F(t_0 + h)}{h} \right| \right| < \frac{\varepsilon}{2}.
$$

Since $x \in \overline{A_{F_n}}(t_0, \delta_{\varepsilon})$, there is $h_{\varepsilon} \in \mathbb{R}$ such that

$$
0 < |h_{\varepsilon}| < \delta_{\varepsilon} \quad \text{and} \quad ||x - \Delta F_n(t_0, h_{\varepsilon})|| < \frac{\varepsilon}{2},
$$

and since

$$
\Delta F(t_0, h_\varepsilon) = \Delta F_n(t_0, h_\varepsilon) + \frac{F(t_0 + h_\varepsilon) - F_n(t_0 + h_\varepsilon)}{h_\varepsilon},
$$

we obtain

$$
||x - \Delta F(t_0, h_\varepsilon)|| < \varepsilon.
$$

Since ε was arbitrary, the last result yields that $x \in \overline{A_F}(t_0, \delta_0)$, and since *x* and δ_0 have been taken arbitrarily it follows that [\(2.28\)](#page-14-2) holds for all $\delta > 0$.

Secondly, by the same manner as above, we get

$$
A_F(t_0) \subset \overline{A_{F_n}}(t_0, \delta) \quad \text{for all} \quad \delta > 0. \tag{2.29}
$$

² Springer

Clearly, [\(2.28\)](#page-14-2) together with [\(2.29\)](#page-14-3) yields that [\(2.27\)](#page-14-4) holds true.

Claim 6 Given $\varepsilon > 0$, there is a $\delta_{\varepsilon} > 0$ such that

$$
diam(A_{F_n}(t_0, \delta_{\varepsilon})) = diam(A_{F_n}(t_0, \delta_{\varepsilon})) < diam(A_F(t_0)) + \varepsilon.
$$
 (2.30)

Since *F* has the limit average range at the point t_0 there is a $\delta_{\varepsilon}^{(1)} > 0$ such that for each $h', h'' \in \mathbb{R}$, we have

$$
0 < |h'|, |h''| < \delta_{\varepsilon}^{(1)} \Rightarrow \left| \left| \Delta F(t_0, h') - \Delta F(t_0, h'') \right| \right| < diam(A_F(t_0)) + \frac{\varepsilon}{4}.\tag{2.31}
$$

By [\(2.19\)](#page-12-0), there is a $\delta_{\varepsilon}^{(2)} > 0$ such that for each $h \in \mathbb{R}$, we have

$$
0 < |h| < \delta_{\varepsilon}^{(2)} \Rightarrow \left| \left| \frac{F_n(t_0 + h) - F(t_0 + h)}{h} \right| \right| < \frac{\varepsilon}{4}.
$$

Choose $\delta_{\varepsilon} = \min\{\delta_{\varepsilon}^{(1)}, \delta_{\varepsilon}^{(2)}\}\)$. Then, for each $h', h'' \in \mathbb{R}$ such that $0 < |h'|, |h''| < \delta_{\varepsilon}$, we have

$$
||\Delta F_n(t_0, h') - \Delta F_n(t_0, h'')||
$$

\n
$$
\leq ||\Delta F_n(t_0, h') - \Delta F(t_0, h')|| + ||\Delta F(t_0, h') - \Delta F(t_0, h'')||
$$

\n
$$
+ ||\Delta F(t_0, h'') - \Delta F_n(t_0, h'')||
$$

\n
$$
= \left| \left| \frac{F_n(t_0 + h') - F(t_0 + h')}{h'} \right| \right| + ||\Delta F(t_0, h') - \Delta F(t_0, h'')||
$$

\n
$$
+ \left| \left| \frac{F_n(t_0 + h'') - F(t_0 + h'')}{h''} \right| \right|
$$

\n
$$
< diam(A_F(t_0)) + \frac{3 \cdot \varepsilon}{4}.
$$

Hence, we obtain

$$
diam(A_{Fn}(t_0, \delta_{\varepsilon})) \leq diam(A_F(t_0)) + \frac{3 \cdot \varepsilon}{4} < diam(A_F(t_0)) + \varepsilon.
$$

Therefore, we infer that [\(2.30\)](#page-15-0) holds true.

Now, we obtain by (2.30) and (2.27) that F_n has the limit average range at t_0 and $A_{F_n}(t_0) = A_F(t_0)$. Since t_0 has been taken arbitrarily, we have that F_n has the limit average range at *t* and

$$
A_{F_n}(t) = A_F(t) \quad \text{for all} \quad t \in S_n. \tag{2.32}
$$

Claim 7 The function *F* is differentiable almost everywhere on L_n . Indeed, we have that the function F_n has the limit average range at all $t \in S_n$, and since $\lambda(S_n)$ $\lambda(L_n)$, F_n has the limit average range almost everywhere on L_n . Clearly, the function

Fn has the limit average range at all $t \in (a_k^{(n)}, b_k^{(n)})$ and $k \in \mathbb{N}$. Thus, the function F_n has the limit average range almost everywhere on [0, 1], and since F_n is also sAC we obtain by Lemma [2.4](#page-6-3) that F_n is differentiable almost everywhere on [0, 1]. Then, there is a subset $Z_{F_n} \subset [0, 1]$ with $\lambda(Z_{F_n}) = 0$ such that $F'_n(t)$ exists for all $t \in [0, 1] \setminus Z_{F_n}$. Hence, we obtain by Lemma [2.1](#page-2-1) that

$$
\{F'_n(t)\} = A_{F_n}(t) \quad \text{for all} \quad t \in [0, 1] \setminus Z_{F_n}.
$$

The last equality together with (2.32) and Lemma [2.1](#page-2-1) yields that $F'(t)$ exists and $F'(t) = F'_n(t)$ for all $t \in S_n \setminus Z_{F_n}$, and since

$$
\lambda(S_n \backslash Z_{F_n})) = \lambda(S_n) = \lambda(L_n),
$$

the function F is differentiable almost everywhere on L_n .

Finally, since L_n has been taken arbitrarily, F is differentiable almost everywhere on $L = \bigcup_{n=1}^{\infty} L_n$, and since $\lambda(L) = \lambda([0, 1])$, the function *F* is differentiable almost everywhere on [0, 1] and the proof is finished. \square

References

- 1. Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis, vol. 1. Colloquium Publications 48, American Mathematical Society, USA (2000)
- 2. Bourgin, R.D.: Geometric aspects of convex sets with the Radon–Nikodym property. In: Lecture Notes in Mathematics, 993rd edn. Springer-Verlag, Berlin (1983)
- 3. Diestel, J., Uhl, J.J.: Vector measures. In: Mathematical surveys, vol. 15. American Mathematical Society, Providence, RI, USA (1977)
- 4. Kelley, J.L.: General Topology. D. Van Nostrand Company, Toronto/New York/London (1955)
- 5. Kluvanek, I.: The extension and closure of vector measure. Vector and operator valued measures and applications. In: Proceeding of the symposium at Alta in 1972, pp. 175–190. Academic Press, New York (1973)
- 6. Naralenkov, K.: On Denjoy type extensions of the Pettis integral. Czechoslov. Math. J. **60**(3), 737–750 (2010)
- 7. Robertson, A.P., Robertson, W.: Topological Vector Spaces. Cambridge University Press, Cambridge (1964)
- 8. Schwabik, Š., Guoju, Y.: Topics in Banach Space Integration, Series in Real Analysis, 10th edn. World Scientific, Hackensack (2005)
- 9. Yee, L.P., Vyborny, R.: Integral: An Easy Approach After Kurzweil and Henstock. Cambridge University Press, Cambridge (2000)