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Abstract Each solution of infinite order of the stationary Schrödinger equation
defined in a smooth cone and continuous in the closure can be represented in terms
of the modified Poisson integral and an infinite series vanishing continuously on the
boundary.
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1 Introduction and results

Let R and R+ be the set of all real numbers and the set of all positive real numbers,
respectively. We denote by Rn(n ≥ 2) the n-dimensional Euclidean space. A point in
Rn is denoted by P = (X, xn), X = (x1, x2, . . . , xn−1). The Euclidean distance of
two points P and Q in Rn is denoted by |P − Q|. Also |P − O| with the origin O
of Rn is simply denoted by |P|. The boundary and the closure of a set S in Rn are
denoted by ∂S and S, respectively.
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594 L. Qiao, Y. Ren

We introduce a system of spherical coordinates (r,�), � = (θ1, θ2, . . . , θn−1),

in Rn which are related to cartesian coordinates (X, xn) = (x1, x2, . . . , xn−1, xn) by
xn = r cos θ1.

For P ∈ Rn and r > 0, let B(P, r) denote the open ball with center at P and
radius r in Rn . Sr = ∂ B(O, r). The unit sphere and the upper half unit sphere in Rn

are denoted by Sn−1 and Sn−1+ , respectively. For simplicity, a point (1,�) on Sn−1

and the set {�; (1,�) ∈ �} for a set �, � ⊂ Sn−1, are often identified with � and
�, respectively. For two sets � ⊂ R+ and � ⊂ Sn−1, the set {(r,�) ∈ Rn; r ∈
�, (1,�) ∈ �} in Rn is simply denoted by � × �. In particular, the half space
R+ × Sn−1+ = {(X, xn) ∈ Rn; xn > 0} will be denoted by Tn .

By Cn(�), we denote the set R+ × � in Rn with the domain � on Sn−1. We call it
a cone. We denote the sets I × � and I × ∂� with an interval on R by Cn(�; I ) and
Sn(�; I ). By Sn(�; r) we denote Cn(�) ∩ Sr . By Sn(�) we denote Sn(�; (0,+∞))

which is ∂Cn(�) − {O}.
Furthermore, we denote by dσQ (resp. d Sr ) the (n − 1)-dimensional volume ele-

ments induced by the Euclidean metric on ∂Cn(�) (resp. Sr ) and by dw the elements
of the Euclidean volume in Rn .

Let Aa denote the class of nonnegative radial potentials a(P), i.e. 0 ≤ a(P) = a(r),
P = (r,�) ∈ Cn(�), such that a ∈ Lb

loc(Cn(�)) with some b > n/2 if n ≥ 4 and
with b = 2 if n = 2 or n = 3.

This article is devoted to the stationary Schrödinger equation

Schau(P) = −�u(P) + a(P)u(P) = 0 for P ∈ Cn(�),

where � is the Laplace operator and a ∈ Aa . These solutions are called a-harmonic
functions or generalized harmonic functions (g.h.f.s) associated with the operator
Scha . Note that they are classical harmonic functions in the case a = 0. Under these
assumptions the operator Scha can be extended in the usual way from the space
C∞

0 (Cn(�)) to an essentially self-adjoint operator on L2(Cn(�)) (see [11, Ch. 13]).
We will denote it Scha as well. This last one has a Green function G(�, a)(P, Q)

which is positive on Cn(�) and its inner normal derivative ∂G(�, a)(P, Q)/∂nQ ≥ 0,
where ∂/∂nQ denotes the differentiation at Q along the inward normal into Cn(�).
We denote this derivative P(�, a)(P, Q), which is called the Poisson a-kernel with
respect to Cn(�).

Let �∗ be a Laplace-Beltrami operator (spherical part of the Laplace) on � ⊂ Sn−1

and λ j ( j = 1, 2, 3 . . . , 0 < λ1 < λ2 ≤ λ3 ≤ . . .) be the eigenvalues of the eigenvalue
problem for �∗ on � (see, e.g., [12, p. 41])

�∗ϕ(�) + λϕ(�) = 0 in �,

ϕ(�) = 0 on ∂�.

Corresponding eigenfunctions are denoted by ϕ j (�). We set λ0 = 0, norm the eigen-
functions in L2(�) and ϕ1(�) > 0.

In order to ensure the existences of λ j ( j = 1, 2, 3, . . .). We put a rather strong
assumption on �: if n ≥ 3, then � is a C2,α-domain (0 < α < 1) on Sn−1 surrounded
by a finite number of mutually disjoint closed hypersurfaces (e.g. see [5, p. 88–89] for
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Integral representations for the solutions 595

the definition of C2,α-domain), ϕ j ∈ C2(�) ( j = 1, 2, 3, . . .) and ∂ϕ1/∂n > 0 on
∂� (here and below, ∂/∂n denotes differentiation along the interior normal).

Here well-known estimates (see, e.g., [2], and also [4, p. 120 and p. 126–128] imply
the following inequalities:

M1 j
2

n−1 ≤ λ j ( j = 1, 2, 3, . . .) (1.1)

and

|ϕ j (�)| ≤ M2 j
1
2 (� ∈ �, j = 1, 2, 3, . . .), (1.2)

where M1 and M2 are two positive constants.
Let Vj (r) and W j (r) stand, respectively, for the increasing and non-increasing, as

r → +∞, solutions of the equation

− Q′′(r) − n − 1

r
Q′(r) +

(
λ j

r2 + a(r)

)
Q(r) = 0, 0 < r < ∞, (1.3)

normalized under the condition Vj (1) = W j (1) = 1.
We will also consider the class Ba , consisting of the potentials a ∈ Aa such that

there exists the finite limit limr→∞ r2a(r) = k ∈ [0,∞), moreover, r−1|r2a(r)−k| ∈
L(1,∞). If a ∈ Ba , then the g.h.f.s are continuous (see [13]).

In the rest of paper, we assume that a ∈ Ba and we shall suppress this assumption
for simplicity. Meanwhile, we use the standard notations u+ = max{u, 0}, u− =
− min{u, 0} and [d] is the integer part of d, where d is a positive real number.

Denote

ι±j,k =
2 − n ±

√
(n − 2)2 + 4(k + λ j )

2
( j = 0, 1, 2, 3 . . .).

The solutions to Eq. (1.3) have the asymptotic (see [6])

Vj (r) ∼ M3r ι+j,k , W j (r) ∼ M4r ι−j,k , as r → ∞, (1.4)

where M3 and M4 are some positive constants.
Further, we have

ι+j,k ≥ ι+j,0 > M5 j
1

n−1 ( j = 1, 2, 3 . . .) (1.5)

from (1.1), where M5 is a positive constant independent of j .
If a ∈ Aa , it is known that the following expansion for the Green function

G(�, a)(P, Q) (see [3, Ch. 11])

G(�, a)(P, Q) =
∞∑
j=0

1

χ ′(1)
Vj (min{r, t})W j (max{r, t})ϕ j (�)ϕ j (�),
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596 L. Qiao, Y. Ren

where P = (r,�), Q = (t,�), r �= t and χ ′(t) = w (W1(r), V1(r)) |r=1 is their
Wronskian. This series converges uniformly if either r ≤ st or t ≤ sr (0 < s < 1). In
the case a = 0, this expansion coincides with the well-known result by Lelong-Ferrand
(see [9]).

For a nonnegative integer m and two points P = (r,�), Q = (t,�) ∈ Cn(�), we
put

K (�, a, m)(P, Q) =
{

0 if 0 < t < 1,

K̃ (�, a, m)(P, Q) if 1 ≤ t < ∞,

where

K̃ (�, a, m)(P, Q) =
m∑

j=0

1

χ ′(1)
Vj (r)W j (t)ϕ j (�)ϕ j (�).

To obtain the modified Poisson integral representation for the Schrödinger operator
in a cone, we use the following modified kernel function defined by

G(�, a, m)(P, Q) = G(�, a)(P, Q) − K (�, a, m)(P, Q)

for two points P = (r,�), Q = (t,�) ∈ Cn(�).

Write

U (�, a, m; u)(P) =
∫

Sn(�)

P(�, a, m)(P, Q)u(Q)dσQ,

where

P(�, a, m)(P, Q) = ∂G(�, a, m)(P, Q)

∂nQ
, P(�, a, 0)(P, Q) = P(�, a)(P, Q)

and u(Q) is a continuous function on ∂Cn(�).
Now we define the function ρ(R) under consideration. Hereafter, the function

ρ(R) (≥ 1) is always supposed to be nondecreasing and continuously differentiable
on the interval [0,+∞). We assume further that

ε0 = lim sup
R→∞

(ι+[ρ(R)]+1,k)
′ R ln R

ι+[ρ(R)]+1,k

< 1. (1.6)

Remark ι+[ρ(R)]+1,k in (1.6) is not the function Vj (R). For any ε (0 < ε < 1 − ε0),

there exists a sufficiently large positive number Rε such that R > Rε , by (1.5) and
(1.6) we have

M(ρ(R))
1

n−1 < ι+[ρ(R)]+1,k < ι+[ρ(e)]+1,k(ln R)ε0+ε,

where M is a positive constant.
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Integral representations for the solutions 597

For positive real numbers β, we denote C�,β,a the class of all measurable functions
f (t,�) (Q = (t,�) ∈ Cn(�)) satisfying the following inequality

∫
Cn(�)

| f (t,�)|ϕ1

1 + V[ρ(t)]+1(t)tn+β−1 dw < ∞ (1.7)

and the class D�,β,a , consists of all measurable functions g(t,�) (Q = (t,�) ∈
Sn(�)) satisfying

∫
Sn(�)

|g(t,�)|V1(t)W1(t)

1 + χ ′(t)V[ρ(t)]+1(t)tn+β−2

∂ϕ1

∂n
dσQ < ∞, (1.8)

where χ ′(t) = w (W1(r), V1(r)) |r=t is their Wronskian.
We will also consider the class of all continuous functions u(t,�) ((t,�) ∈ Cn(�))

generalized harmonic in Cn(�) with u+(t,�) ∈ C�,β,a ((t,�) ∈ Cn(�)) and
u+(t,�) ∈ D�,β,a ((t,�) ∈ Sn(�)) is denoted by E�,β,a .

Next we define the order of g.h.f, which is similar to the F. Riesz’ definition for
the order of classical harmonic function (see [7, Definition 4.1]). We shall say that a
g.h.f.-u(P) (P = (r,�) ∈ Cn(�)) is of order λ if

λ = lim sup
r→∞

log
(
supCn(�)∩Sr

|u|)
log r

.

If λ < ∞, then u is said to be of finite order.
In case λ < ∞, about the solutions of the Dirichlet problem for the Schrödinger

operator with continuous data in Tn , we refer the readers to the paper by Kheyfits
(see [8]).

Motivated by Kheyfits’s conclusions, we prove the following results for the g.h.f.s
of infinite order. In the case a = 0, we refer readers to the paper by Qiao (see [10]).

Theorem 1 If u ∈ E�,β,a, then u ∈ D�,β,a.

Theorem 2 If u ∈ E�,β,a, then the following properties hold:

(I) U (�, a, [ρ(t)]; u)(P) is a g.h.f. on Cn(�) and can be continuously extended to
Cn(�) such that U (�, a, [ρ(t)]; u)(P) = u(P) for P = (r,�) ∈ Sn(�).

(II) There exists an infinite series h(P) = ∑∞
j=1 A j Vj (r)ϕ j (�) vanishing continu-

ously on ∂Cn(�) such that
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598 L. Qiao, Y. Ren

u(P) = U (�, a, [ρ(t)]; u)(P) + h(P)

for P = (r,�) ∈ Cn(�), where A j ( j = 1, 2, 3, . . .) is a constant.

2 Lemmas

The following Lemma generalizes the Carleman’s formula (referring to the holomor-
phic functions in the half space) (see [1]) to the g.h.f.s in a cone, which is due to Levin
and Kheyfits (see [3, Ch. 11]).

Lemma 1 If u(t,�) is a g.h.f. on a domain containing Cn(�; (1, R)), then

m+(R) +
∫

Sn(�;(1,R))

u+�(t)
∂ϕ1

∂n
dσQ + M6 + W1(R)

V1(R)
M7 = m−(R)

+
∫

Sn(�;(1,R))

u−�(t)
∂ϕ1

∂n
dσQ,

where

�(t) = W1(t) − W1(R)

V1(R)
V1(t), m±(R) =

∫
Sn(�;R)

χ ′(R)

V1(R)
u±ϕ1d SR,

M6 =
∫

Sn(�;1)

uϕ1W ′
1(1) − W1(1)ϕ1

∂u

∂n
d S1 and M7 =

∫
Sn(�;1)

V1(1)ϕ1
∂u

∂n
− uϕ1V ′

1(1)d S1.

Lemma 2 (see [3, Ch. 11]) For a non-negative integer m, we have

|P(�, a, m)(P, Q)| ≤ M8Vm+1(2r)
Wm+1(t)

t
ϕ1(�)

∂ϕ1(�)

∂n�

(2.1)

for any P = (r,�) ∈ Cn(�) and Q = (t,�) ∈ Sn(�) satisfying 2r ≤ t , where M8
is a constant depending only n.

Lemma 3 If h(r,�) is a g.h.f. in Cn(�) vanishing continuously on ∂Cn(�), then

h(r,�) =
∞∑
j=1

B j Vj (r)ϕ j (�), (2.2)

where the series converges uniformly and absolutely in any compact set of Cn(�), and
B j ( j = 1, 2, 3, . . .) is a constant satisfying
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Integral representations for the solutions 599

B j Vj (r) =
∫
�

h(r,�)ϕ j (�)d S1 (2.3)

for every r (0 < r < ∞).

Proof Set

y j (r) =
∫
�

h(r,�)ϕ j (�)d S1 ( j = 1, 2, 3, . . .).

Making use of the assumptions on h and self-adjoint of the Laplace-Beltrami oper-
ator �∗, one can check directly (by differentiating under the integral sign) that the
functions y j ( j = 1, 2, 3, . . .) satisfy the Eq. (1.3). This equation has a general solu-
tion y j (r) = B j Vj (r) + D j W j (r), where B j and D j are constants independent of
r ( j = 1, 2, 3, . . .). We note that h(r,�) converges uniformly to zero as r → 0 and
hence limr→0 y j (r) = 0 ( j = 1, 2, 3, . . .). Thus we see that D j = 0 ( j = 1, 2, 3, . . .).
Since y j (r) takes the value y j (r1) at r = r1, we have

y j (r) = Vj (r)

Vj (r1)
y j (r1)

for any r and r1 (0 < r, r1 < R1), where 0 < R1 ≤ +∞. In particular, if R1 = ∞,
then

lim
r→∞

y j (r)

Vj (r)
= B j ( j = 1, 2, 3, . . .) (2.4)

exists.
Since y j (r1) → y j (R1) as r1 → R1, we see that

y j (r) = Vj (r)

Vj (R1)
y j (R1) ( j = 1, 2, 3, . . .), (2.5)

which gives

|y j (r)| ≤ M2wn

(
r

R1

)ι+j,k
j

1
2 sup

�∈�

|h(R1,�)|

from (1.2) and (1.4), where wn is the surface area 2πn/2{�(n/2)}−1 of Sn−1.
Now we set

J = max

{
j; ι+j,k − ι+l+1,k <

1

2
M5 j

1
n−1

}
(l = 1, 2, 3, . . .).
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600 L. Qiao, Y. Ren

The existence of this J is known from (1.5). Hence if we put

M9 = wn M2
2

⎧⎨
⎩

J∑
j=l+1

j

(
1

2

)ι+j,k−ι+m+1,k +
∞∑

j=J+1

j

(
1

2

)2−1 M5 j
1

n−1
⎫⎬
⎭

and use (1.2), then from the completeness of {ϕ j (�)} we can expand h(r,�) into the
Fourier series

h(r,�) =
∞∑
j=1

y j (r)ϕ j (�)

satisfying

∞∑
j=l+1

|y j (r)||ϕ j (�)| ≤ M9

(
r

R1

)ι+l+1,k

sup
�∈�

|h(R1,�)| (l = 1, 2, 3, . . .) (2.6)

on Cn(�; (0, R1
2 )), where M9 is a positive constant independent of r and R1.

Take any compact H , H ⊂ Cn(�) and a number R1 satisfying R1 >

2 max{r; (r,�) ∈ H}. So we can represent h(r,�) as

h(r,�) =
∞∑
j=1

y j (r)ϕ j (�), (2.7)

where (r,�) is a point in H . Hence we observe in (2.5) that y j (r) is a number
independent of R1. Hence as R1 → ∞, we see from (2.4) that y j (r) = B j Vj (r),
which is (2.3). This and (2.7) give (2.2).

To prove the absolute and uniform convergence of (2.7) on H , see from (2.6) that

∞∑
j=l+1

|y j (r)||ϕ j (�)| ≤ M92−ι+l+1,k sup
�∈�

|h(R1,�)|,

which converges to 0 as l → ∞. Then Lemma 3 is proved. �

3 Proof of Theorem 1

Since u ∈ E�,β,a , we obtain by (1.7)

∞∫
1

m+(R)V1(R)

χ ′(R)V[ρ(R)]+1(R)Rn+β−1 d R ≤2
∫

Cn(�)

u+ϕ1

1 + V[ρ(t)]+1(t)tn+β−1 dw<∞. (3.1)
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Integral representations for the solutions 601

From (1.4) and (1.8), we conclude that

∞∫
1

V1(R)

χ ′(R)V[ρ(R)]+1(R)Rn+β−1

∫
Sn(�;(1,R))

u+�(t)
∂ϕ1

∂n
dσQd R

≤ 2χ1,k

(χ1,k + β)β

∫
Sn(�)

u+V1(t)W1(t)

1 + χ ′(t)V[ρ(t)]+1(t)tn+β−2

∂ϕ1

∂n
dσQ

< ∞, (3.2)

where χ1,k = ι+1,k − ι−1,k .

It follows from (1.4), Remark and the L’hospital’s rule

lim
t→∞

χ ′(t)V[ρ(t)]+1(t)tn+β−2

W1(t)

∞∫
t

V1(R)

χ ′(R)V[ρ(R)]+1(R)Rn+ β
2 −1

(
W1(t)

V1(t)
− W1(R)

V1(R)

)
d R = +∞,

which yields that there exists a positive constant M10 such that for any t ≥ 1,

∞∫
t

V1(R)

χ ′(R)V[ρ(t)]+1(R)Rn+ β
2 −1

�(t)d R ≥ M10V1(t)W1(t)

χ ′(t)V[ρ(t)]+1(t)tn+β−2 .

From (3.1), (3.2) and Lemma 1 we see that

M10

∫
Sn(�;(1,∞))

u−V1(t)W1(t)

χ ′(t)V[ρ(t)]+1(t)tn+β−2

∂ϕ1

∂n
dσQ

≤
∫

Sn(�;(1,∞))

u−
∞∫

t

V1(R)

χ ′(R)V[ρ(t)]+1(R)Rn+ β
2 −1

�(t)d R
∂ϕ1

∂n
dσQ

< ∞.

Then Theorem 1 is proved from |u| = u+ + u−.

4 Proof of Theorem 2

Let l1 be any positive number such that l1 ≥ 2β. For any fixed P = (r,�) ∈
Cn(�), take a number σ satisfying σ > σr = max{[2r ] + 1, ϑr }, where ϑr =
exp( l1

β
ι+[ρ(e)]+1,k21+ε0+ε ln 2r)

1
1−ε0−ε .

From the Remark we see that there exists a constant M(r) dependent only on r

such that M(r) ≥ (2r)
ι+[ρ(i+1)]+1,k i

− β
l1 from σ ≥ ϑr .
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602 L. Qiao, Y. Ren

By (1.4), (1.8), (2.1) and Theorem 1, we have

∫
Sn(�;(σ,∞))

|P(�, a, [ρ(t)])(P, Q)||u(Q)|dσQ

≤ M8ϕ1(�)

∞∑
i=σr

∫
Sn(�;[i,i+1))

(2r)
ι+[ρ(t)]+1,k

t
β
l1

|u(t,�)|
V[ρ(t)]+1(t)t

n−2+ β
l1

dσQ

≤ M8

∞∑
i=σr

(2r)
ι+[ρ(i+1)]+1,k

i
β
l1

∫
Sn(�;[i,i+1))

|u(t,�)|
V[ρ(t)]+1(t)t

n−2+ β
l1

dσQ

≤ M8 M(r)ϕ1(�)

∫
Sn(�;[σr ,∞))

|u(t,�)|
V[ρ(t)]+1(t)t

n−2+ β
l1

dσQ

< ∞.

Hence U (�, a, [ρ(t)]; u)(P) is absolutely convergent and finite for any P ∈
Cn(�). Thus U (�, a, [ρ(t)]; u)(P) is generalized harmonic on Cn(�).

Now we study the boundary behavior of U (�, a, [ρ(t)]; u)(P). Let Q′ = (t ′,�′) ∈
∂Cn(�) be any fixed point and l2 be any positive number such that l2 > t ′ + 1.

Set χS(l2) is the characteristic function of S(l2) = {Q = (t,�) ∈ ∂Cn(�), t ≤ l2}
and write

U (�, a, [ρ(t)]; u)(P) = U ′(P) − U ′′(P) + U ′′′(P),

where

U ′(P) =
∫

Sn(�;(0,2l2])
P(�, a)(P, Q)u(Q)dσQ,

U ′′(P) =
∫

Sn(�;(1,2l2])

∂K (�, a, [ρ(t)])(P, Q)

∂nQ
u(Q)dσQ

and

U ′′′(P) =
∫

Sn(�;(2l2,∞))

P(�, a, [ρ(t)])(P, Q)u(Q)dσQ .

Notice that U ′(P) is the Poisson integral of u(Q)χS(2l2), we have limP∈Cn(�),P→Q′
U ′(P) = u(Q′). Since lim�→�′ ϕ j (�) = 0 ( j = 1, 2, 3 . . .) as P = (r,�) →
Q′ = (t ′,�′) ∈ Sn(�), we have limP∈Cn(�),P→Q′ U ′′(P) = 0 from the definition of
the kernel function K (�, a, [ρ(t)])(P, Q). U ′′′(P) = O(M(r)ϕ1(�)) and therefore
tends to zero.
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Integral representations for the solutions 603

So the function U (�, a, [ρ(t)]; u)(P) can be continuously extended to Cn(�) such
that

lim
P∈Cn(�),P→Q′ U (�, a, [ρ(t)]; u)(P) = u(Q′)

for any Q′ = (t ′,�′) ∈ ∂Cn(�) from the arbitrariness of l2.
So (I) is proved. Finally (I) and Lemma 3 give the conclusion of (II). Then we

complete the proof of Theorem 2.
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