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Abstract Each solution of infinite order of the stationary Schrodinger equation
defined in a smooth cone and continuous in the closure can be represented in terms
of the modified Poisson integral and an infinite series vanishing continuously on the
boundary.
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1 Introduction and results

Let R and R be the set of all real numbers and the set of all positive real numbers,
respectively. We denote by R (n > 2) the n-dimensional Euclidean space. A point in
R” is denoted by P = (X, x,), X = (x1,x2, ..., x,—1). The Euclidean distance of
two points P and Q in R” is denoted by |P — Q]. Also |P — O] with the origin O
of R" is simply denoted by |P|. The boundary and the closure of a set S in R” are
denoted by 9S and S, respectively.
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594 L. Qiao, Y. Ren

We introduce a system of spherical coordinates (r, ®), ® = (01,62,...,0,-1),
in R” which are related to cartesian coordinates (X, x,) = (x1, X2, ..., Xp—1, X,) by
X, = rcosb.

For P € R" and r > 0, let B(P, r) denote the open ball with center at P and
radius r in R”. S, = 9B(O, r). The unit sphere and the upper half unit sphere in R”
are denoted by 8"~! and Sf‘[l, respectively. For simplicity, a point (1, ®) on §"~!
and the set {®; (1, ®) € Q} foraset 2, 2 C S"—! are often identified with ® and
Q, respectively. For two sets A C Ry and Q c S""!, the set {(r, ®) € R";r €
A, (1,08) € Q} in R” is simply denoted by A x . In particular, the half space
R x S’rl = {(X, x,) € R"; x,, > 0} will be denoted by T,,.

By C,,(£2), we denote the set R x € in R” with the domain  on 8"~!. We call it
a cone. We denote the sets 7 x Q2 and I x 92 with an interval on R by C,,(€2; ) and
Sn(€2; 1). By S, (€2; r) we denote C,,(€2) N S;-. By §,,(£2) we denote S, (€2; (0, +00))
which is 0C,(2) — {O}.

Furthermore, we denote by dog (resp. dS,) the (n — 1)-dimensional volume ele-
ments induced by the Euclidean metric on dC,, (€2) (resp. S;) and by dw the elements
of the Euclidean volume in R”.

Let <7, denote the class of nonnegative radial potentials a(P),i.e.0 < a(P) = a(r),
P = (r,®) € C,(2), such that a € L;’OC(C,,(Q)) with some b > n/2 if n > 4 and
withb =2ifn =2orn = 3.

This article is devoted to the stationary Schrodinger equation

Schau(P) = —Au(P) +a(P)u(P) =0 for P e Cp(Q),

where A is the Laplace operator and a € 7,. These solutions are called a-harmonic
functions or generalized harmonic functions (g.h.f.s) associated with the operator
Sch,. Note that they are classical harmonic functions in the case a = 0. Under these
assumptions the operator Sch, can be extended in the usual way from the space
Cy°(Cy(2)) to an essentially self-adjoint operator on L2(C,(R)) (see [11, Ch. 13]).
We will denote it Sch, as well. This last one has a Green function G(£2, a)(P, Q)
whichis positive on C,, (£2) and its inner normal derivative dG (2, a)(P, Q)/dng > 0,
where 0/0n ¢ denotes the differentiation at Q along the inward normal into C, (£2).
We denote this derivative P (2, a)(P, Q), which is called the Poisson a-kernel with
respect to Cp, (£2).

Let A* be a Laplace-Beltrami operator (spherical part of the Laplace) on  c S§"~!
andA; (j=1,2,3...,0 < A; < A2 < A3 <...)betheeigenvalues of the eigenvalue
problem for A* on Q (see, e.g., [12, p. 41])

Ap(®) +1p(®) =0 in £,
p(®)=0 on 0RQ.

Corresponding eigenfunctions are denoted by ¢;(®). We set 1o = 0, norm the eigen-
functions in L?(£2) and ¢ (©) > 0.

In order to ensure the existences of A; (j = 1,2, 3,...). We put a rather strong
assumption on Q:if n > 3, then Q is a C>%-domain (0 < a < 1) on "~ ! surrounded
by a finite number of mutually disjoint closed hypersurfaces (e.g. see [5, p. 88—-89] for
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Integral representations for the solutions 595

the definition of C*%-domain), ¢; € C*(Q) (j = 1,2,3,...) and d¢;/dn > 0 on
9% (here and below, d/dn denotes differentiation along the interior normal).

Here well-known estimates (see, e.g., [2], and also [4, p. 120 and p. 126—128] imply
the following inequalities:

Myt <a; (G=1,2,3,..) (L1)
and
1
lp;(®)] <Myj2 (©®eQ,j=123,..), (1.2)

where M| and M, are two positive constants.
Let V;(r) and W;(r) stand, respectively, for the increasing and non-increasing, as
r — 00, solutions of the equation

. n—1 )\j
—Q(r)—TQ(r)+(r—2+a(r))Q(r):O, 0<r <o, (1.3)

normalized under the condition V;(1) = W;(1) = 1.

We will also consider the class %, consisting of the potentials a € .7, such that
there exists the finite limit lim,_, oo r2a(r) = k € [0, 00), moreover, r ! |r2a(r)—k| €
L(1,00).If a € %,, then the g.h.f.s are continuous (see [13]).

In the rest of paper, we assume that a € %, and we shall suppress this assumption
for simplicity. Meanwhile, we use the standard notations ut = max{u,0}, u= =
—minf{u, 0} and [d] is the integer part of d, where d is a positive real number.

Denote

2—nk (1 -2 +4Gk+1)
Lsz 5 (j=0,1,2,3...).

The solutions to Eq. (1.3) have the asymptotic (see [6])
" _
Vi(r) ~ Mar'ik, Wi(r) ~ Mar'i*, as r — oo, (1.4)

where M3 and M4 are some positive constants.
Further, we have

ezt > MsjiT (j=1,2.3..) (1.5)
from (1.1), where M5 is a positive constant independent of j.

If a € <, it is known that the following expansion for the Green function
G(2,a)(P, Q) (see [3, Ch. 11])

1

G, a)(P, Q)= Z mVj (minfr, 1)) Wj(max{r, t})¢; (©)¢;(P),
Jj=0
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where P = (r,0), Q = (t,®), r # t and x'(t) = w (Wi (r), Vi(r)) |,=1 is their
Wronskian. This series converges uniformly if either r < stort <sr (0 <s < 1).In
the case a = 0, this expansion coincides with the well-known result by Lelong-Ferrand
(see [9]).

For a nonnegative integer m and two points P = (r, ®), O = (¢, ®) € C,(2), we
put

0 if0<t<l1,

K(2,a,m)(P, Q) = [E({La,m)(f’, Q) if 1 =1<o0,

where
m
~ 1
K(Q.a.m)(P, Q)= @ VI OWi00;(©); ().
j=0
To obtain the modified Poisson integral representation for the Schrédinger operator
in a cone, we use the following modified kernel function defined by

G(,a,m)(P, Q) =G(Q,a)(P, Q) — K(,a,m)(P, Q)
for two points P = (r, ®), Q = (¢, ) € C,,(R2).

Write
UKQ,a,m;u)(P) = / P(Q,a,m)(P, Qu(Q)doyp,
$,(2)
where
P@.a.mp. )= 08 amP. D o 0y P.0) = P(.a)P. )

ong

and u(Q) is a continuous function on 0C, (£2).

Now we define the function p(R) under consideration. Hereafter, the function
p(R) (= 1) is always supposed to be nondecreasing and continuously differentiable
on the interval [0, +00). We assume further that

(«F YRInR
€0 = lim sup — 2L <1. (1.6)

R—o0 Lo(R)1+1,k

Remark LE;(R)]+] i in (1.6) is not the function V;(R). For any € (0 < € < 1 — €p),

there exists a sufficiently large positive number R, such that R > R, by (1.5) and
(1.6) we have

Ao+ + +
M(p(R)™T <t py1k < Ypie1. e MBS,

where M is a positive constant.
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For positive real numbers 8, we denote Cq g, the class of all measurable functions
ft, @) (Q = (t, D) € C,,(RQ)) satisfying the following inequality

t, ®
/ |11, Dler —dw < o0 (1.7)
L+ Vipop1 (D1~

Ca ()

and the class Dgq g 4, consists of all measurable functions g(¢, ®) (Q = (¢, P) €
S, (R2)) satisfying

——dop < 00, 1.8
L+ X OVipa o1 (O 2 an © (1.8)
S (2)

/ g, D)IVIOWiI() 991

where x/'(t) = w (Wi (r), Vi(r)) |,= is their Wronskian.

We will also consider the class of all continuous functions u (¢, ®) ((t, ®) € C,(2))
generalized harmonic in C,(R) with u™ (¢, ®) € Capa(t,®) € Cn(R) and
ut(t, ®) € Dg g4 ((t, P) € S,()) is denoted by Eq g.a-

Next we define the order of g.h.f, which is similar to the F. Riesz’ definition for
the order of classical harmonic function (see [7, Definition 4.1]). We shall say that a
ghf-u(P) (P = (r,®) € C,(RQ)) is of order A if

log (su u
A =1lim sup g ( pcn(Q)er | I) ‘
r—00 log r

If L < oo, then u is said to be of finite order.

In case 1 < oo, about the solutions of the Dirichlet problem for the Schrédinger
operator with continuous data in T,,, we refer the readers to the paper by Kheyfits
(see [8)).

Motivated by Kheyfits’s conclusions, we prove the following results for the g.h.f.s
of infinite order. In the case a = 0, we refer readers to the paper by Qiao (see [10]).

Theorem 1 Ifu € £q g.q, then u € Dg g 4.

Theorem 2 Ifu € £q g 4, then the following properties hold:

D UK, a,[p@)]; u)(P)is a g.h.f. on C, (L) and can be continuously extended to
Cn(R2) such that U(R2, a, [p(®)]; u)(P) = u(P) for P = (r, ®) € S,(2).

(IT) There exists an infinite series h(P) = Z?il A;jVi(r)e;(®) vanishing continu-
ously on 0C, (2) such that
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598 L. Qiao, Y. Ren

u(P) =U(, a,[p®)]; u)(P) + h(P)

for P = (r,0) € C,(R), where A (j =1,2,3,...) is a constant.

2 Lemmas
The following Lemma generalizes the Carleman’s formula (referring to the holomor-
phic functions in the half space) (see [1]) to the g.h.f.s in a cone, which is due to Levin

and Kheyfits (see [3, Ch. 11]).

Lemma 1 Ifu(t, ®) is a g.h.f. on a domain containing C,(2; (1, R)), then

+ WI(R)
mo(R) + \If(t)—dGQ—l-M + gy M=)
Sn(2:(1,R))
_ 991
V(t)—doyp,
+ / () dog
Sn(2:(1,R))

where

Wi(R "(R
() = Wi(t) — vf((m) Vi), mx(R) = / yuiwldsle,

u u
Mg = / wp Wi (1) = W1 SodS; and My = / Vit — gt V().
Sn(2;1) Sn(2;1)

Lemma 2 (see [3, Ch. 11]) For a non-negative integer m, we have

Wi 0 [
|P(Q, a,m)(P, Q)| < MgVy11(2r) jl(%(@) ‘gln(q)) @2.1)

forany P = (r, ®) € C,(2) and Q = (t, ®) € S, () satisfying 2r < t, where Mg
is a constant depending only n.

Lemma 3 Ifh(r, ®) is a g.h.f. in C, () vanishing continuously on 0C,,(2), then

h(r.©) =" B;V(r)g;(©), (2.2)

j=1

where the series converges uniformly and absolutely in any compact set of C,,(£2), and
B; (j =1,2,3,...) is a constant satisfying
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Integral representations for the solutions 599

B;Vi(r) = /h(r, ), (®)dS) (2.3)
Q

foreveryr (0 <r < o0).

Proof Set

yj(r) =/h(r, ®e;(O®)dS (j=1,2,3,...).
Q

Making use of the assumptions on 4 and self-adjoint of the Laplace-Beltrami oper-
ator A*, one can check directly (by differentiating under the integral sign) that the
functions y; (j =1, 2, 3, ...) satisfy the Eq. (1.3). This equation has a general solu-
tion y;(r) = B;V;(r) + D;W;(r), where B; and D; are constants independent of
r(j=1,2,3,...). We note that 4 (r, ®) converges uniformly to zero as r — 0 and
hencelim, .o y;j(r) =0(j =1,2,3,...). Thusweseethat D; =0(j =1,2,3,...).
Since y;(r) takes the value y;(r1) at r = r1, we have

Vi(r)
V;i(r1)

yj(r) = yj(ry)

forany r and 71 (0 < r,7; < Ry), where 0 < R; < 4o0. In particular, if R; = oo,
then

Jim 21
r—00 Vj(r)

=B (j=123,..) (2.4)

exists.
Since y;(r1) — y;(Ry) as r1 — Ry, we see that

Vi(r)
Vi(Ry)

yj(r) = yi(R) (j=1,2,3,...), 2.5

which gives

.
r\Uk

lyj (M| < Maw, (—) J2 sup |A(Ry, ©)]
Ry 0eQ

from (1.2) and (1.4), where w,, is the surface area 27"/2{I"(n/2)} "' of §"~1.
Now we set

ot + L L
J = max Js Lj,k_tl—‘rl,k < EMS]”_I (l: 1,2,3,...).
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The existence of this J is known from (1.5). Hence if we put

1
J ﬁ' —L+ [ee] Z*IM in—1
. 1 Gk T tmA1k . 1 5]
My = w, M Z J (5) + Z J (5)
J=it1 j=J+1

and use (1.2), then from the completeness of {¢; (©)} we can expand (7, ®) into the
Fourier series

o
h(r, ©) = yj(r)g;(©)
j=1
satisfying

o l+
r 1+1,k
E lyj (Mg ()] < Mg <_R ) sup [h(R1,©)] (1 =1,2,3,...) (2:6)
. 1 e

Jj=l+1

on C, (£2; (0, &)), where My is a positive constant independent of r and Rj.
Take any compact H, H C C,(2) and a number R; satisfying Ry >
2max{r; (r, ®) € H}. So we can represent i (r, ®) as

h(r, ©) =D yj(r)g;(©), 2.7)

j=1

where (7, ©) is a point in H. Hence we observe in (2.5) that y;(r) is a number
independent of R;. Hence as Ry — oo, we see from (2.4) that y;(r) = B;V;(r),
which is (2.3). This and (2.7) give (2.2).

To prove the absolute and uniform convergence of (2.7) on H, see from (2.6) that

o

_,t
> i)l (©)] < Me2 1k sup |h(R, ©)],
j=l+1 Oeq

which converges to 0 as [ — oo. Then Lemma 3 is proved. O

3 Proof of Theorem 1

Since u € £q, g4, we obtain by (1.7)

o0

R)Vi(R "
/ / m4(R)Vi(R) AR <2 / “ e cdw<oo. (3.1)
X' (R)YVip(ryj+1(R)R™ A= L+ Vip@1 (1P~

Cn(2)
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From (1.4) and (1.8), we conclude that
Vi(R
/ , 1(R) — / +\y(t)—danR
X' (RVipry+1(R) R
1 Sn (€2 (1,R))
2x1k ut Vi) Wi(r) d¢1
= 7 182 —dog
X1k + BB : L+ X' @O Vip@y+1 (01" on
< 00, (3.2)
where x1x = Ltk — LIk.
It follows from (1.4), Remark and the L’hospital’s rule
i X OVipwsa (P2 / Vi(R) . (Wl @ _ WI(R)) dR = 400,
—00 Wi(t) X,(R)V[,o(R)H»I(R)R'thil Vi(t) Vi(R)

which yields that there exists a positive constant Mg such that for any r > 1,

e¢]

/ Vi(R) W(DdR > MioVi®) Wi (1)

ﬁ — .
X' (R\Vipw+1 (R)R" 27! X OVipay+1 () TF=2

From (3.1), (3.2) and Lemma 1 we see that

Mo / u=Vi()Wi() 1 I

X' O Vipan+1(O1"+F=2 on
Sn (€2:(1,00))

Vi(R 3
/ u*/ 1(R) . ]‘I’(f)dR%daQ
Sn (2 (1,00)) t X' (R)Vipay+1(R)R" 27 n
< o0.

Then Theorem 1 is proved from |u| = u™ +u".

4 Proof of Theorem 2

Let /; be any positive number such that /1 > 28. For any fixed P = (r,®) €

C,(2), take a number o satlsfylng o > o, = max{[2r] + 1, ¥,}, where 9,

1+€p+ 5 €.
exp(lB [p(L)]+1k2 €+ In 2r) T-c0—¢

From the Remark we see that there exists a constant M (r) dependent only on r

+ _B
such that M (r) > (2r)'leG+DI1k; " 1T from o > 0,

@ Springer



602 L. Qiao, Y. Ren

By (1.4), (1.8), (2.1) and Theorem 1, we have

[P(Q,a,[p(ODP, Q)lu(Q)ldog

Sn(2;(0,00))

) o
(2r) @itk |u(r, @)
< M1 (©) > / 3 dog

. i n_2+ﬁ
’:"'Snm iy P Ve T

1

i (2r) o re1e lu(t, @)

n—2+£
’[1 su:liit1) Vie1+1(D1 h

< MsM ()1 (©) @t D4,

n—2+£
§,(Qilor.00)) V@11 (O "0

Hence U (2, a, [p(t)]; u)(P) is absolutely convergent and finite for any P €
C,(2). Thus U (2, a, [p(t)]; u)(P) is generalized harmonic on C, (£2).

Now we study the boundary behaviorof U (2, a, [p(1)]; u)(P).Let Q' = (', ®') €
9C,(R2) be any fixed point and I, be any positive number such that I, > ' + 1.

Set xs(,) 1s the characteristic function of S(/2) = {Q = (¢, ®) € 9C, (), 1 < 1o}
and write

UQ,a,[pM];w)(P) =U'(P) = U"(P) + U"(P),

where
U'(P) = / P(2,a)(P, Q)u(Q)dog,
Sn(€2;(0,212])
U"(P) = / 3K(Q,a,£,0(t)])(P, Q)u(Q)daQ
ng
Sn(S2;(1,212])
and

U"(P) = / P(Q2,a, [p(O)D(P, Qu(Q)dog.
Sn(2;(2l2,00))

Notice that U’(P) is the Poisson integral of u(Q) xs(21,), we have limpec, (@), P— ¢/
U'(P) = u(Q"). Since limg_, ¢ ¢;(®) =0 (j = 1,2,3..)as P = (,0) —
Q' = (', ¥') € §,(R), we have limpec, (@), p— o U”(P) = 0 from the definition of
the kernel function K (2, a, [p(1)])(P, Q). U"(P) = O(M(r)¢1(®)) and therefore
tends to zero.
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Integral representations for the solutions 603

So the function U (2, a, [p(¢)]; u)(P) can be continuously extended to C,, (£2) such
that

lim U(Q,a,[p®];u)(P) = u(Q)
PeCy(2),P— Q'

forany Q' = (¢', ®') € 0C,(R2) from the arbitrariness of /5.
So (I) is proved. Finally (I) and Lemma 3 give the conclusion of (II). Then we
complete the proof of Theorem 2.
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