Integral representations for the solutions of infinite order of the stationary Schrödinger equation in a cone

Lei Qiao · Yudong Ren

Received: 31 January 2013 / Accepted: 23 April 2013 / Published online: 7 May 2013 © Springer-Verlag Wien 2013

Abstract Each solution of infinite order of the stationary Schrödinger equation defined in a smooth cone and continuous in the closure can be represented in terms of the modified Poisson integral and an infinite series vanishing continuously on the boundary.

Keywords Integral representation · Stationary Schrödinger equation · Generalized harmonic function · Cone

Mathematics Subject Classification (2000) 31B10 · 31C05

1 Introduction and results

Let **R** and \mathbf{R}_+ be the set of all real numbers and the set of all positive real numbers, respectively. We denote by \mathbb{R}^n ($n \geq 2$) the *n*-dimensional Euclidean space. A point in \mathbb{R}^n is denoted by $P = (X, x_n), X = (x_1, x_2, \ldots, x_{n-1})$. The Euclidean distance of two points *P* and *Q* in \mathbb{R}^n is denoted by $|P - Q|$. Also $|P - O|$ with the origin *O* of \mathbb{R}^n is simply denoted by |P|. The boundary and the closure of a set **S** in \mathbb{R}^n are denoted by ∂**S** and **S**, respectively.

Communicated by A. Jüngel.

This work is supported by the National Natural Science Foundation of China (Grant No. 11226093).

L. Qiao \cdot Y. Ren (\boxtimes)

Department of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou 450002, China e-mail: yudong83@163.com

L. Qiao e-mail: qiaocqu@163.com

We introduce a system of spherical coordinates (r, Θ) , $\Theta = (\theta_1, \theta_2, \dots, \theta_{n-1}),$ in \mathbb{R}^n which are related to cartesian coordinates $(X, x_n) = (x_1, x_2, \ldots, x_{n-1}, x_n)$ by $x_n = r \cos \theta_1$.

For $P \in \mathbb{R}^n$ and $r > 0$, let $B(P, r)$ denote the open ball with center at P and radius *r* in \mathbb{R}^n . *S_r* = $\partial B(O, r)$. The unit sphere and the upper half unit sphere in \mathbb{R}^n are denoted by S^{n-1} and S^{n-1} , respectively. For simplicity, a point (1, Θ) on S^{n-1} and the set $\{\Theta; (1, \Theta) \in \Omega\}$ for a set Ω , $\Omega \subset \mathbf{S}^{n-1}$, are often identified with Θ and $Ω$, respectively. For two sets $Λ ⊂ \mathbf{R}_+$ and $Ω ⊂ \mathbf{S}^{n-1}$, the set { $(r, ⊕) ∈ \mathbf{R}^n$; $r ∈$ Λ , $(1, \Theta) \in \Omega$ in \mathbb{R}^n is simply denoted by $\Lambda \times \Omega$. In particular, the half space $\mathbf{R}_+ \times \mathbf{S}_+^{n-1} = \{ (X, x_n) \in \mathbf{R}^n; x_n > 0 \}$ will be denoted by \mathbf{T}_n .

By $C_n(\Omega)$, we denote the set $\mathbf{R}_+ \times \Omega$ in \mathbf{R}^n with the domain Ω on \mathbf{S}^{n-1} . We call it a cone. We denote the sets $I \times \Omega$ and $I \times \partial \Omega$ with an interval on **R** by $C_n(\Omega; I)$ and $S_n(\Omega; I)$. By $S_n(\Omega; r)$ we denote $C_n(\Omega) \cap S_r$. By $S_n(\Omega)$ we denote $S_n(\Omega; (0, +\infty))$ which is $\partial C_n(\Omega) - \{O\}.$

Furthermore, we denote by $d\sigma$ _O (resp. dS_r) the $(n-1)$ -dimensional volume elements induced by the Euclidean metric on $\partial C_n(\Omega)$ (resp. *S_r*) and by *dw* the elements of the Euclidean volume in **R***n*.

Let \mathscr{A}_a denote the class of nonnegative radial potentials $a(P)$, i.e. $0 \le a(P) = a(r)$, $P = (r, \Theta) \in C_n(\Omega)$, such that $a \in L^b_{loc}(C_n(\Omega))$ with some $b > n/2$ if $n \ge 4$ and with $b = 2$ if $n = 2$ or $n = 3$.

This article is devoted to the stationary Schrödinger equation

 $Sch_au(P) = -\Delta u(P) + a(P)u(P) = 0$ for $P \in C_n(\Omega)$,

where Δ is the Laplace operator and $a \in \mathcal{A}_a$. These solutions are called *a*-harmonic functions or generalized harmonic functions (g.h.f.s) associated with the operator *Sch_a*. Note that they are classical harmonic functions in the case $a = 0$. Under these assumptions the operator Sch_a can be extended in the usual way from the space $C_0^{\infty}(C_n(\Omega))$ to an essentially self-adjoint operator on $L^2(C_n(\Omega))$ (see [\[11](#page-10-0), Ch. 13]). We will denote it Sch_a as well. This last one has a Green function $G(\Omega, a)(P, Q)$ which is positive on $C_n(\Omega)$ and its inner normal derivative $\partial G(\Omega, a)(P, Q)/\partial n_Q \geq 0$, where $\partial/\partial n_Q$ denotes the differentiation at Q along the inward normal into $C_n(\Omega)$. We denote this derivative $P(\Omega, a)(P, Q)$, which is called the Poisson *a*-kernel with respect to $C_n(\Omega)$.

Let Δ^{*} be a Laplace-Beltrami operator (spherical part of the Laplace) on $Ω ⊂ Sⁿ⁻¹$ and λ_j ($j = 1, 2, 3, \ldots, 0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \ldots$) be the eigenvalues of the eigenvalue problem for Δ^* on Ω (see, e.g., [\[12,](#page-10-1) p. 41])

$$
\Delta^*\varphi(\Theta) + \lambda \varphi(\Theta) = 0 \text{ in } \Omega,
$$

$$
\varphi(\Theta) = 0 \text{ on } \partial\Omega.
$$

Corresponding eigenfunctions are denoted by $\varphi_i(\Theta)$. We set $\lambda_0 = 0$, norm the eigenfunctions in $L^2(\Omega)$ and $\varphi_1(\Theta) > 0$.

In order to ensure the existences of λ_j ($j = 1, 2, 3, \ldots$). We put a rather strong assumption on Ω : if $n > 3$, then Ω is a $C^{2,\alpha}$ -domain (0 < α < 1) on S^{n-1} surrounded by a finite number of mutually disjoint closed hypersurfaces (e.g. see [\[5,](#page-10-2) p. 88–89] for the definition of $C^{2,\alpha}$ -domain), $\varphi_i \in C^2(\overline{\Omega})$ ($j = 1, 2, 3, ...$) and $\partial \varphi_1 / \partial n > 0$ on ∂ (here and below, ∂/∂*n* denotes differentiation along the interior normal).

Here well-known estimates (see, e.g., [\[2\]](#page-10-3), and also [\[4,](#page-10-4) p. 120 and p. 126–128] imply the following inequalities:

$$
M_1 j^{\frac{2}{n-1}} \le \lambda_j \quad (j = 1, 2, 3, \ldots) \tag{1.1}
$$

and

$$
|\varphi_j(\Theta)| \le M_2 j^{\frac{1}{2}} \quad (\Theta \in \Omega, j = 1, 2, 3, \ldots), \tag{1.2}
$$

where M_1 and M_2 are two positive constants.

Let $V_i(r)$ and $W_i(r)$ stand, respectively, for the increasing and non-increasing, as $r \rightarrow +\infty$, solutions of the equation

$$
-Q''(r) - \frac{n-1}{r}Q'(r) + \left(\frac{\lambda_j}{r^2} + a(r)\right)Q(r) = 0, \quad 0 < r < \infty,\tag{1.3}
$$

normalized under the condition $V_i(1) = W_i(1) = 1$.

We will also consider the class \mathscr{B}_a , consisting of the potentials $a \in \mathscr{A}_a$ such that there exists the finite limit lim_{*r*→∞} $r^2 a(r) = k \in [0, \infty)$, moreover, $r^{-1}|r^2 a(r) - k| \in$ *L*(1, ∞). If $a \in \mathcal{B}_a$, then the g.h.f.s are continuous (see [\[13](#page-10-5)]).

In the rest of paper, we assume that $a \in \mathcal{B}_a$ and we shall suppress this assumption for simplicity. Meanwhile, we use the standard notations $u^+ = \max\{u, 0\}$, $u^- =$ − min{*u*, 0} and [*d*] is the integer part of *d*, where *d* is a positive real number.

Denote

$$
\iota_{j,k}^{\pm} = \frac{2 - n \pm \sqrt{(n-2)^2 + 4(k+\lambda_j)}}{2} \quad (j = 0, 1, 2, 3 \ldots).
$$

The solutions to Eq. (1.3) have the asymptotic (see [\[6](#page-10-6)])

$$
V_j(r) \sim M_3 r^{t_{j,k}^+}, W_j(r) \sim M_4 r^{t_{j,k}^-}, \text{ as } r \to \infty,
$$
 (1.4)

where M_3 and M_4 are some positive constants.

Further, we have

$$
t_{j,k}^+ \ge t_{j,0}^+ > M_5 j^{\frac{1}{n-1}} \quad (j = 1, 2, 3...)
$$
 (1.5)

from (1.1) , where M_5 is a positive constant independent of *j*.

If $a \in \mathcal{A}_a$, it is known that the following expansion for the Green function $G(\Omega, a)(P, Q)$ (see [\[3,](#page-10-7) Ch. 11])

$$
G(\Omega, a)(P, Q) = \sum_{j=0}^{\infty} \frac{1}{\chi'(1)} V_j(\min\{r, t\}) W_j(\max\{r, t\}) \varphi_j(\Theta) \varphi_j(\Phi),
$$

 \mathcal{L} Springer

where $P = (r, \Theta), Q = (t, \Phi), r \neq t$ and $\chi'(t) = w (W_1(r), V_1(r))|_{r=1}$ is their Wronskian. This series converges uniformly if either $r \leq st$ or $t \leq sr$ ($0 < s < 1$). In the case $a = 0$, this expansion coincides with the well-known result by Lelong-Ferrand (see [\[9\]](#page-10-8)).

For a nonnegative integer *m* and two points $P = (r, \Theta), Q = (t, \Phi) \in C_n(\Omega)$, we put

$$
K(\Omega, a, m)(P, Q) = \begin{cases} 0 & \text{if } 0 < t < 1, \\ \widetilde{K}(\Omega, a, m)(P, Q) & \text{if } 1 \le t < \infty, \end{cases}
$$

where

$$
\widetilde{K}(\Omega, a, m)(P, Q) = \sum_{j=0}^{m} \frac{1}{\chi'(1)} V_j(r) W_j(t) \varphi_j(\Theta) \varphi_j(\Phi).
$$

To obtain the modified Poisson integral representation for the Schrödinger operator in a cone, we use the following modified kernel function defined by

$$
G(\Omega, a, m)(P, Q) = G(\Omega, a)(P, Q) - K(\Omega, a, m)(P, Q)
$$

for two points $P = (r, \Theta), Q = (t, \Phi) \in C_n(\Omega)$.

Write

$$
U(\Omega, a, m; u)(P) = \int\limits_{S_n(\Omega)} P(\Omega, a, m)(P, Q)u(Q)d\sigma_Q,
$$

where

$$
P(\Omega, a, m)(P, Q) = \frac{\partial G(\Omega, a, m)(P, Q)}{\partial n_Q}, \quad P(\Omega, a, 0)(P, Q) = P(\Omega, a)(P, Q)
$$

and $u(Q)$ is a continuous function on $\partial C_n(\Omega)$.

Now we define the function $\rho(R)$ under consideration. Hereafter, the function $\rho(R)$ (\geq 1) is always supposed to be nondecreasing and continuously differentiable on the interval $[0, +\infty)$. We assume further that

$$
\epsilon_0 = \limsup_{R \to \infty} \frac{(\iota_{[\rho(R)]+1,k}^+)' R \ln R}{\iota_{[\rho(R)]+1,k}^+} < 1. \tag{1.6}
$$

Remark $\iota_{\lbrack\rho(R)+1,k}^{+}$ in [\(1.6\)](#page-3-0) is not the function $V_j(R)$. For any ϵ (0 < ϵ < 1 – ϵ_0), there exists a sufficiently large positive number R_{ϵ} such that $R > R_{\epsilon}$, by [\(1.5\)](#page-2-2) and (1.6) we have

$$
M(\rho(R))^{\frac{1}{n-1}} < \iota^+_{[\rho(R)]+1,k} < \iota^+_{[\rho(e)]+1,k}(\ln R)^{\epsilon_0+\epsilon},
$$

where *M* is a positive constant.

 $\circled{2}$ Springer

For positive real numbers β , we denote $C_{\Omega, \beta, a}$ the class of all measurable functions $f(t, \Phi)$ ($Q = (t, \Phi) \in C_n(\Omega)$) satisfying the following inequality

$$
\int_{C_n(\Omega)} \frac{|f(t, \Phi)|\varphi_1}{1 + V_{[\rho(t)] + 1}(t)t^{n + \beta - 1}} dw < \infty \tag{1.7}
$$

and the class $\mathcal{D}_{\Omega,\beta,a}$, consists of all measurable functions $g(t, \Phi)$ ($Q = (t, \Phi) \in$ $S_n(\Omega)$) satisfying

$$
\int_{S_n(\Omega)} \frac{|g(t,\Phi)|V_1(t)W_1(t)}{1+\chi'(t)V_{[\rho(t)]+1}(t)t^{n+\beta-2}} \frac{\partial \varphi_1}{\partial n} d\sigma_Q < \infty, \tag{1.8}
$$

where $\chi'(t) = w(W_1(r), V_1(r))|_{r=t}$ is their Wronskian.

We will also consider the class of all continuous functions $u(t, \Phi)$ ($(t, \Phi) \in \overline{C_n(\Omega)}$) generalized harmonic in $C_n(\Omega)$ with $u^+(t, \Phi) \in C_{\Omega, \beta, a}((t, \Phi) \in C_n(\Omega))$ and $u^+(t, \Phi) \in \mathcal{D}_{\Omega, \beta, a}$ $((t, \Phi) \in S_n(\Omega))$ is denoted by $\mathcal{E}_{\Omega, \beta, a}$.

Next we define the order of g.h.f, which is similar to the F. Riesz' definition for the order of classical harmonic function (see [\[7](#page-10-9), Definition 4.1]). We shall say that a g.h.f.- $u(P)(P = (r, \Theta) \in C_n(\Omega)$ is of order λ if

$$
\lambda = \limsup_{r \to \infty} \frac{\log (\sup_{C_n(\Omega) \cap S_r} |u|)}{\log r}.
$$

If $\lambda < \infty$, then *u* is said to be of finite order.

In case $\lambda < \infty$, about the solutions of the Dirichlet problem for the Schrödinger operator with continuous data in \mathbf{T}_n , we refer the readers to the paper by Kheyfits (see $[8]$).

Motivated by Kheyfits's conclusions, we prove the following results for the g.h.f.s of infinite order. In the case $a = 0$, we refer readers to the paper by Qiao (see [\[10\]](#page-10-11)).

Theorem 1 *If* $u \in \mathcal{E}_{\Omega, \beta, a}$, then $u \in \mathcal{D}_{\Omega, \beta, a}$.

Theorem 2 *If* $u \in \mathcal{E}_{\Omega, \beta, a}$, then the following properties hold:

- (I) $U(\Omega, a, [\rho(t)]; u)(P)$ *is a g.h.f. on* $C_n(\Omega)$ *and can be continuously extended to* $\overline{C_n(\Omega)}$ *such that* $U(\Omega, a, [\rho(t)]; u)(P) = u(P)$ *for* $P = (r, \Theta) \in S_n(\Omega)$ *.*
- (II) *There exists an infinite series* $h(P) = \sum_{j=1}^{\infty} A_j V_j(r) \varphi_j(\Theta)$ *vanishing continuously on* $\partial C_n(\Omega)$ *such that*

$$
u(P) = U(\Omega, a, [\rho(t)]; u)(P) + h(P)
$$

for $P = (r, \Theta) \in C_n(\Omega)$, where A_i ($j = 1, 2, 3, \ldots$) is a constant.

2 Lemmas

The following Lemma generalizes the Carleman's formula (referring to the holomorphic functions in the half space) (see $[1]$) to the g.h.f.s in a cone, which is due to Levin and Kheyfits (see [\[3,](#page-10-7) Ch. 11]).

Lemma 1 *If* $u(t, \Phi)$ *is a g.h.f. on a domain containing* $C_n(\Omega; (1, R))$ *, then*

$$
m_{+}(R) + \int_{S_n(\Omega;(1,R))} u^{+} \Psi(t) \frac{\partial \varphi_1}{\partial n} d\sigma_{Q} + M_6 + \frac{W_1(R)}{V_1(R)} M_7 = m_{-}(R)
$$

+
$$
\int_{S_n(\Omega;(1,R))} u^{-} \Psi(t) \frac{\partial \varphi_1}{\partial n} d\sigma_{Q},
$$

where

$$
\Psi(t) = W_1(t) - \frac{W_1(R)}{V_1(R)} V_1(t), \quad m_{\pm}(R) = \int\limits_{S_n(\Omega;R)} \frac{\chi'(R)}{V_1(R)} u^{\pm} \varphi_1 dS_R,
$$

$$
M_6 = \int\limits_{S_n(\Omega;1)} u\varphi_1 W_1'(1) - W_1(1)\varphi_1 \frac{\partial u}{\partial n} dS_1 \text{ and } M_7 = \int\limits_{S_n(\Omega;1)} V_1(1)\varphi_1 \frac{\partial u}{\partial n} - u\varphi_1 V_1'(1) dS_1.
$$

Lemma 2 (see [\[3,](#page-10-7) Ch. 11]) *For a non-negative integer m, we have*

$$
|P(\Omega, a, m)(P, Q)| \le M_8 V_{m+1}(2r) \frac{W_{m+1}(t)}{t} \varphi_1(\Theta) \frac{\partial \varphi_1(\Phi)}{\partial n_{\Phi}}
$$
(2.1)

for any $P = (r, \Theta) \in C_n(\Omega)$ *and* $Q = (t, \Phi) \in S_n(\Omega)$ *satisfying* $2r \le t$ *, where* M_8 *is a constant depending only n.*

Lemma 3 *If h*(*r*, Θ) *is a g.h.f. in* $C_n(\Omega)$ *vanishing continuously on* $\partial C_n(\Omega)$ *, then*

$$
h(r, \Theta) = \sum_{j=1}^{\infty} B_j V_j(r) \varphi_j(\Theta),
$$
 (2.2)

where the series converges uniformly and absolutely in any compact set of $\overline{C_n(\Omega)}$ *, and* B_j ($j = 1, 2, 3, \ldots$) *is a constant satisfying*

$$
B_j V_j(r) = \int_{\Omega} h(r, \Theta) \varphi_j(\Theta) dS_1
$$
 (2.3)

for every r $(0 < r < \infty)$.

Proof Set

$$
y_j(r) = \int_{\Omega} h(r, \Theta) \varphi_j(\Theta) dS_1 \quad (j = 1, 2, 3, \ldots).
$$

Making use of the assumptions on *h* and self-adjoint of the Laplace-Beltrami operator Δ^* , one can check directly (by differentiating under the integral sign) that the functions y_i ($j = 1, 2, 3, \ldots$) satisfy the Eq. [\(1.3\)](#page-2-0). This equation has a general solution $y_j(r) = B_j V_j(r) + D_j W_j(r)$, where B_j and D_j are constants independent of $r (j = 1, 2, 3, \ldots)$. We note that $h(r, \Theta)$ converges uniformly to zero as $r \to 0$ and hence $\lim_{r\to 0} y_j(r) = 0$ (*j* = 1, 2, 3, ...). Thus we see that $D_j = 0$ (*j* = 1, 2, 3, ...). Since $y_i(r)$ takes the value $y_i(r_1)$ at $r = r_1$, we have

$$
y_j(r) = \frac{V_j(r)}{V_j(r_1)} y_j(r_1)
$$

for any *r* and r_1 (0 < *r*, r_1 < R_1), where $0 < R_1 \leq +\infty$. In particular, if $R_1 = \infty$, then

$$
\lim_{r \to \infty} \frac{y_j(r)}{V_j(r)} = B_j \quad (j = 1, 2, 3, ...)
$$
\n(2.4)

exists.

Since $y_i(r_1) \rightarrow y_i(R_1)$ as $r_1 \rightarrow R_1$, we see that

$$
y_j(r) = \frac{V_j(r)}{V_j(R_1)} y_j(R_1) \quad (j = 1, 2, 3, ...),
$$
\n(2.5)

which gives

$$
|y_j(r)| \le M_2 w_n \left(\frac{r}{R_1}\right)^{\iota_{j,k}^+} j^{\frac{1}{2}} \sup_{\Theta \in \Omega} |h(R_1, \Theta)|
$$

from [\(1.2\)](#page-2-3) and [\(1.4\)](#page-2-4), where w_n is the surface area $2\pi^{n/2}\{\Gamma(n/2)\}^{-1}$ of \mathbf{S}^{n-1} . Now we set

$$
J = \max \left\{ j; \ t_{j,k}^+ - t_{l+1,k}^+ < \frac{1}{2} M_5 j^{\frac{1}{n-1}} \right\} \ (l = 1, 2, 3, \ldots).
$$

 \mathcal{D} Springer

The existence of this J is known from (1.5) . Hence if we put

$$
M_9 = w_n M_2^2 \left\{ \sum_{j=l+1}^J j \left(\frac{1}{2} \right)^{t_{j,k}^+ - t_{m+1,k}^+} + \sum_{j=J+1}^\infty j \left(\frac{1}{2} \right)^{2^{-1} M_5 j^{\frac{1}{n-1}}} \right\}
$$

and use [\(1.2\)](#page-2-3), then from the completeness of $\{\varphi_i(\Theta)\}\$ we can expand $h(r, \Theta)$ into the Fourier series

$$
h(r, \Theta) = \sum_{j=1}^{\infty} y_j(r)\varphi_j(\Theta)
$$

satisfying

$$
\sum_{j=l+1}^{\infty} |y_j(r)| |\varphi_j(\Theta)| \le M_9 \left(\frac{r}{R_1}\right)^{l_{l+1,k}^+} \sup_{\Theta \in \Omega} |h(R_1, \Theta)| \ (l=1, 2, 3, \ldots) \tag{2.6}
$$

on $C_n(\Omega; (0, \frac{R_1}{2}))$, where M_9 is a positive constant independent of *r* and R_1 .

Take any compact *H*, *H* $\subset \overline{C_n(\Omega)}$ and a number R_1 satisfying $R_1 >$ $2 \max\{r; (r, \Theta) \in H\}$. So we can represent $h(r, \Theta)$ as

$$
h(r, \Theta) = \sum_{j=1}^{\infty} y_j(r)\varphi_j(\Theta),
$$
\n(2.7)

where (r, Θ) is a point in *H*. Hence we observe in [\(2.5\)](#page-6-0) that $y_i(r)$ is a number independent of R_1 . Hence as $R_1 \rightarrow \infty$, we see from [\(2.4\)](#page-6-1) that $y_i(r) = B_i V_i(r)$, which is (2.3) . This and (2.7) give (2.2) .

To prove the absolute and uniform convergence of (2.7) on *H*, see from (2.6) that

$$
\sum_{j=l+1}^{\infty} |y_j(r)||\varphi_j(\Theta)| \leq M_9 2^{-\iota_{l+1,k}^+} \sup_{\Theta \in \Omega} |h(R_1, \Theta)|,
$$

which converges to 0 as $l \to \infty$. Then Lemma [3](#page-5-1) is proved.

3 Proof of Theorem 1

Since $u \in \mathcal{E}_{\Omega, \beta, a}$, we obtain by [\(1.7\)](#page-4-0)

$$
\int_{1}^{\infty} \frac{m_{+}(R)V_{1}(R)}{\chi'(R)V_{[\rho(R)]+1}(R)R^{n+\beta-1}}dR \leq 2 \int_{C_{n}(\Omega)} \frac{u^{+}\varphi_{1}}{1+V_{[\rho(t)]+1}(t)t^{n+\beta-1}}du < \infty.
$$
 (3.1)

From (1.4) and (1.8) , we conclude that

$$
\int_{1}^{\infty} \frac{V_{1}(R)}{\chi'(R)V_{[\rho(R)]+1}(R)R^{n+\beta-1}} \int_{S_{n}(\Omega;(1,R))} u^{+} \Psi(t) \frac{\partial \varphi_{1}}{\partial n} d\sigma_{Q} dR
$$
\n
$$
\leq \frac{2\chi_{1,k}}{(\chi_{1,k}+\beta)\beta} \int_{S_{n}(\Omega)} \frac{u^{+}V_{1}(t)W_{1}(t)}{1+\chi'(t)V_{[\rho(t)]+1}(t)t^{n+\beta-2}} \frac{\partial \varphi_{1}}{\partial n} d\sigma_{Q}
$$
\n
$$
< \infty, \tag{3.2}
$$

where $\chi_{1,k} = \iota_{1,k}^+ - \iota_{1,k}^-$.

∞

It follows from [\(1.4\)](#page-2-4), Remark and the L'hospital's rule

$$
\lim_{t\to\infty}\frac{\chi'(t)V_{[\rho(t)]+1}(t)t^{n+\beta-2}}{W_1(t)}\int\limits_t^\infty\frac{V_1(R)}{\chi'(R)V_{[\rho(R)]+1}(R)R^{n+\frac{\beta}{2}-1}}\left(\frac{W_1(t)}{V_1(t)}-\frac{W_1(R)}{V_1(R)}\right) dR=+\infty,
$$

which yields that there exists a positive constant M_{10} such that for any $t \geq 1$,

$$
\int\limits_t^\infty \frac{V_1(R)}{\chi'(R)V_{[\rho(t)]+1}(R)R^{n+\frac{\beta}{2}-1}}\Psi(t)dR\geq \frac{M_{10}V_1(t)W_1(t)}{\chi'(t)V_{[\rho(t)]+1}(t)t^{n+\beta-2}}.
$$

From (3.1) , (3.2) and Lemma [1](#page-5-2) we see that

$$
M_{10} \int_{S_n(\Omega;(1,\infty))} \frac{u^- V_1(t) W_1(t)}{\chi'(t) V_{[\rho(t)]+1}(t) t^{n+\beta-2}} \frac{\partial \varphi_1}{\partial n} d\sigma \varrho
$$

\n
$$
\leq \int_{S_n(\Omega;(1,\infty))} u^- \int_{t}^{\infty} \frac{V_1(R)}{\chi'(R) V_{[\rho(t)]+1}(R) R^{n+\frac{\beta}{2}-1}} \Psi(t) dR \frac{\partial \varphi_1}{\partial n} d\sigma \varrho
$$

\n
$$
< \infty.
$$

Then Theorem [1](#page-4-2) is proved from $|u| = u^+ + u^-$.

4 Proof of Theorem 2

Let l_1 be any positive number such that $l_1 \geq 2\beta$. For any fixed $P = (r, \Theta) \in$ *C_n*(Ω), take a number σ satisfying $\sigma > \sigma_r = \max\{2r + 1, \vartheta_r\}$, where $\vartheta_r =$ $\exp(\frac{l_1}{\beta} \iota^+_{[\rho(e)]+1,k} 2^{1+\epsilon_0+\epsilon} \ln 2r)^{\frac{1}{1-\epsilon_0-\epsilon}}.$

From the Remark we see that there exists a constant $M(r)$ dependent only on r such that $M(r) \ge (2r)^{t^+_{[\rho(i+1)]+1,k}} i^{-\frac{\beta}{l_1}}$ from $\sigma \ge \vartheta_r$.

² Springer

By (1.4) , (1.8) , (2.1) and Theorem [1,](#page-4-2) we have

$$
\int_{S_n(\Omega; (\sigma, \infty))} |P(\Omega, a, [\rho(t)])(P, Q)||u(Q)|d\sigma_Q
$$
\n
$$
\leq M_8\varphi_1(\Theta) \sum_{i=\sigma_{r}}^{\infty} \int_{S_n(\Omega; [i, i+1))} \frac{(2r)^{t_{[\rho(t)]+1,k}^+}}{t^{\frac{\beta}{t_1}}} \frac{|u(t, \Phi)|}{V_{[\rho(t)]+1}(t)t^{n-2+\frac{\beta}{t_1}}} d\sigma_Q
$$
\n
$$
\leq M_8 \sum_{i=\sigma_{r}}^{\infty} \frac{(2r)^{t_{[\rho(t+1)]+1,k}^+}}{t^{\frac{\beta}{t_1}}} \int_{S_n(\Omega; [i, i+1))} \frac{|u(t, \Phi)|}{V_{[\rho(t)]+1}(t)t^{n-2+\frac{\beta}{t_1}}} d\sigma_Q
$$
\n
$$
\leq M_8 M(r)\varphi_1(\Theta) \int_{S_n(\Omega; [\sigma_r, \infty))} \frac{|u(t, \Phi)|}{V_{[\rho(t)]+1}(t)t^{n-2+\frac{\beta}{t_1}}} d\sigma_Q
$$
\n
$$
< \infty.
$$

Hence $U(\Omega, a, [\rho(t)]; u)(P)$ is absolutely convergent and finite for any $P \in$ $C_n(\Omega)$. Thus $U(\Omega, a, [\rho(t)]; u)(P)$ is generalized harmonic on $C_n(\Omega)$.

Now we study the boundary behavior of $U(\Omega, a, [\rho(t)]; u)(P)$. Let $Q' = (t', \Phi') \in$ $\partial C_n(\Omega)$ be any fixed point and *l*₂ be any positive number such that $l_2 > t' + 1$.

Set $\chi_{S(\ell_2)}$ is the characteristic function of $S(\ell_2) = \{Q = (t, \Phi) \in \partial C_n(\Omega), t \leq \ell_2\}$ and write

$$
U(\Omega, a, [\rho(t)]; u)(P) = U'(P) - U''(P) + U'''(P),
$$

where

$$
U'(P) = \int_{S_n(\Omega; (0,2l_2])} P(\Omega, a)(P, Q)u(Q)d\sigma_Q,
$$

$$
U''(P) = \int_{S_n(\Omega; (1,2l_2])} \frac{\partial K(\Omega, a, [\rho(t)])(P, Q)}{\partial n_Q} u(Q)d\sigma_Q
$$

and

$$
U'''(P) = \int\limits_{S_n(\Omega; (2l_2,\infty))} P(\Omega, a, [\rho(t)])(P, Q)u(Q)d\sigma_Q.
$$

Notice that $U'(P)$ is the Poisson integral of $u(Q) \chi_{S(2l_2)}$, we have $\lim_{P \in C_n(\Omega), P \to Q'}$ *U*['](*P*) = *u*(*Q*[']). Since lim_{$\Theta \to \Phi'$} $\varphi_j(\Theta) = 0$ (*j* = 1, 2, 3...) as *P* = (*r*, Θ) → $Q' = (t', \Phi') \in S_n(\Omega)$, we have $\lim_{P \in C_n(\Omega), P \to Q'} U''(P) = 0$ from the definition of the kernel function $K(\Omega, a, [\rho(t)])(P, Q)$. $U'''(\tilde{P}) = O(M(r)\varphi_1(\Theta))$ and therefore tends to zero.

So the function $U(\Omega, a, [\rho(t)]; u)(P)$ can be continuously extended to $\overline{C_n(\Omega)}$ such that

$$
\lim_{P \in C_n(\Omega), P \to Q'} U(\Omega, a, [\rho(t)]; u)(P) = u(Q')
$$

for any $Q' = (t', \Phi') \in \partial C_n(\Omega)$ from the arbitrariness of l_2 .

So (I) is proved. Finally (I) and Lemma [3](#page-5-1) give the conclusion of (II). Then we complete the proof of Theorem [2.](#page-4-3)

References

- 1. Carleman, T.: Über die Approximation analytischer Funktionen durch lineare Aggregate von vorgegebenen Potenzen. Ark. för Mat. Astr. och Fysik **17**, 1–30 (1923)
- 2. Cheng, S.Y., Li, P.: Heat kernel estimates and lower bound of eigenvalues, Comment. Math. Helvetici **5**6, 327–338 (1981)
- 3. Escassut, A., Tutschke, W., Yang, C.C.: Some topics on value distribution and differentiability in complex and P-adic analysis. In: Mathematics Monograph Series, vol. 11. Science Press Beijing, Beijing, pp. 323–397 (2008)
- 4. Essén, M., Lewis, J.L.: The generalized Ahlfors-Heins theorems in certain d-dimensional cones. Math. Scand. **3**3, 111–129 (1973)
- 5. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1977)
- 6. Hartman, P.: Ordinary Differential Equations. Wiley, New York (1964)
- 7. Hayman, W.K., Kennedy, P.B.: Subharmonic Functions, vol. 1. Academic Press, London (1976)
- 8. Kheyfits, A.: Dirichlet problem for the Schrödinger operator in a half-space with boundary data of arbitrary growth at infinity. Differ. Integr. Equ. **10**, 153–164 (1997)
- 9. Lelong-Ferrand, J.: Etude des fonctions subharmoniques positives dans un cylindre ou dans un cone. C. R. Acad. Sci. Paris, Ser A. **2**29(5), 340–341 (1949)
- 10. Qiao, L.: Integral representations for harmonic functions of infinite order in a cone. Results Math. **61**, 63–74 (2012)
- 11. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 3. Academic Press, London (1970)
- 12. Rosenblum, G., Solomyak, M., Shubin, M.: Spectral Theory of Differential Operators. VINITI, Moscow (1989)
- 13. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. **7**, 447–526 (1982)