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Abstract The law of the iterated logarithm for discrepancies of {θk x} is proved for
θ < −1. When θ is not a power root of rational number, the limsup equals to 1/2.
When θ is an odd degree power root of rational number, the limsup constants for
ordinary discrepancy and star discrepancy are not identical.
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1 Introduction

A sequence {ak} of real numbers is said to be uniformly distributed mod 1 if

1

N
#{k ≤ N | 〈ak〉 ∈ [a′, a)} → a − a′, (N → ∞),

for all 0 ≤ a′ < a < 1, or equivalently

1

N
#{k ≤ N | 〈ak〉 ∈ [0, a)} → a, (N → ∞),
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34 K. Fukuyama

for all 0 ≤ a < 1, where 〈x〉 denotes the fractional part x − [x] of a real number x .
We can easily see that these convergences are uniform in a′ and a, and hence we use
the following discrepancies DN {ak} and D∗

N {ak} to measure speed of convergence:

DN {ak} = sup
0≤a′<a<1

∣
∣
∣
∣

1

N
#{k ≤ N | 〈ak〉 ∈ [a′, a)} − (a − a′)

∣
∣
∣
∣
,

D∗
N {ak} = sup

0≤a<1

∣
∣
∣
∣

1

N
#{k ≤ N | 〈ak〉 ∈ [0, a)} − a

∣
∣
∣
∣
.

One of the most well known results on asymptotic behavior of discrepancies is Chung–
Smirnov theorem [13,29], which asserts the law of the iterated logarithm

lim
N→∞

N DN {Uk}√
2N log log N

= lim
N→∞

N D∗
N {Uk}√

2N log log N
= 1

2
, a.s.,

for [0, 1]-valued uniformly distributed i.i.d. {Uk}. By various studies on lacunary
series, it is known that a sequence {nk x} behaves like uniformly distributed i.i.d. when
{nk} diverges rapidly. Actually Philipp [28] proved the following bounded law of the
iterated logarithm by assuming the Hadamard gap condition nk+1/nk ≥ q > 1:

1

4
√

2
≤ lim

N→∞
N DN {nk x}√
2N log log N

≤ 1√
2

(

166 + 664

q1/2 − 1

)

, a.e.

Beside of a result by Dhompongsa [14] stating that the limsup equals to 1
2 when {nk}

satisfies very strong gap condition

log(nk+1/nk)

log log k
→ ∞, (k → ∞),

any concrete value of limsup for exponentially growing sequence was not determined
before the recent result below on divergent positive geometric progressions {θk x}.
Theorem 1 [15,16,19] For θ > 1, there exists a constant Σθ such that

lim
N→∞

N DN {θk x}√
2N log log N

= lim
N→∞

N D∗
N {θk x}√

2N log log N
= Σθ, a.e.

When θ satisfies

θn /∈ Q (n ∈ N), (1)

then

Σθ = 1

2
.
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Metric discrepancy results for alternating geometric progressions 35

When θ > 1 does not satisfy the condition, we write θ in the following way:

θ = r

√
p

q
where r = min{n ∈ N | θn ∈ Q}, p, q ∈ N, and gcd(p, q) = 1.

(2)

In this case we have

1

2
< Σθ ≤ 1

2

√

pq + 1

pq − 1
. (3)

We can evaluate Σθ in the following cases:

Σθ =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

√
pq + 1

pq − 1
, if p and q are both odd;

1

2

√
p + 1

p − 1
, especially if p is odd and q = 1;

1

2

√

(p + 1)p(p − 2)

(p − 1)3 , if p ≥ 4 is even and q = 1;
√

42

9
, if p = 2 and q = 1;

√
22

9
, if p = 5 and q = 2.

The proof of the above theorem is given in [15] except for the proof of the inequality
1
2 < Σθ in (3), which is proved in [19].

In this paper we consider a sequence {θk x} for θ < −1, i.e., a divergent alternating
geometric progression. When θ < −1 does not satisfy (1), we can write θ in the
following way:

θ = − r

√
p

q
where r = min{n ∈ N | θn ∈ Q}, p, q ∈ N, and gcd(p, q) = 1.

(4)

Now we are in a position to state our result.

Theorem 2 For θ < −1, there exist constants Σθ and Σ∗
θ such that

lim
N→∞

N DN {θk x}√
2N log log N

= Σθ, and lim
N→∞

N D∗
N {θk x}√

2N log log N
= Σ∗

θ , a.e.
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36 K. Fukuyama

When θ satisfies (1), then

Σθ = Σ∗
θ = 1

2
. (5)

Suppose that θ is given by (4). then we have

1

2
< Σθ ≤ Σ|θ |, (6)

where Σ|θ | is a limsup constant for the law of the iterated logarithm for discrepancies
of {|θ |k x} whose existence is proved in Theorem 1.

Moreover we can evaluate Σθ and Σ∗
θ in the following cases.

1. If r is even, then

Σθ = Σ∗
θ = Σ|θ |. (7)

2. If r, p, and q are odd, then

Σθ = Σ|θ |. (8)

3. If r is odd, p ≥ 4 is even, and q = 1, then we have (8).
4. If r is odd, p = 5, and q = 2, then we have (8).
5. If r is odd, p is odd, and q = 1, then we have

Σ∗
θ = 1

2

√

p(p3 + 2p2 − p + 2)

(p − 1)(p + 1)3 . (9)

It is bigger than 1
2 if p = 3, and less than 1

2 otherwise.
6. If r is odd and pq is even, then we have

Σ∗
θ = 1

2
. (10)

7. If r, p, and q ≥ 3 are odd, then we have

Σ∗
θ <

1

2
. (11)

We can easily derive a simple fact below.

Corollary 1 Suppose that θ < −1. We have Σ∗
θ �= Σθ if and only if θ is given by (4)

with odd r.

Our results show the first examples of sequences for which two limsups in the law
of the iterated logarithm for ordinary discrepancy and star discrepancy are distinct
constants.
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Metric discrepancy results for alternating geometric progressions 37

We already have examples given by Aistleitner [3,4] in which two limsups are not
equal on a set of positive measure and at lease one of these is not a constant. If we
consider Erdős–Fortet sequence {(2k −1)x}, it is known [24] that these limsups are not
equal a.e. and the limsup for star-discrepancy is not a constant a.e. These sequences
{nk x} has strong dependence which make the limsup non-constant.

In our theorem a geometric progression {θk x} is asymptotically stationary and its
dependence is rather regular. This is the reason why we have constant limsups for both
discrepancies. It is very interesting, even in the case of such regular dependence, we
have possibility that these limsups are distinct.

We can also find a construction of irregular sequences with non-constant and iden-
tical limsups [18].

As to sufficient conditions to make two limsups equal to 1
2 , the Chung–Smirnov

constant, Aistleitner [1,2] gave almost optimal results. We can also prove existence
of a sequence {nk x} of arbitrarily slow divergence speed of nk+1 − nk , for which we
have the Chung–Smirnov constant 1

2 .
There are various sequences having constant limsups different from 1

2 . They are
mainly given as variations of geometric progressions, and limsup constants are given
as modifications of constants for geometric progressions. If we randomize the common
ratio of geometric progression or replace the common ratio by periodic sequence, we
[25] still can prove the law of the iterated logarithm for discrepancies and investigate
limsup constants. It is also possible to investigate the union of finitely many geometric
progressions.

In [26], Hardy–Littlewood–Pólya sequences are investigated. In [22], it is shown
that the set of constants for arbitrary subsequence of positive diverging geometric
progression {θk x} coincides with the interval [ 1

2 ,Σθ ].
In [27], it is proved that any real number bigger than or equal to 1

2 can be a limsup
constant for some sequence satisfying the Hamadard’s gap condition. It is also proved
in [19] that any positive number less than 1

2 can be a limsup constant for some sequence
with bounded gaps. By these two results, we see that any positive number can be a
limsup constant for some strictly monotonously increasing sequence of integers.

Before closing introduction, we mention results relating to permutations of
sequences. In [17] it was found that the limsups are not invariant under permutations of
sequences, and this phenomenon is studied extensively by Aistleitner–Berkes–Tichy
[5–9]. See also [10–13].

2 Preliminary

Suppose that f is a real valued function defined on R satisfying

f (x + 1) = f (x),

1∫

0

f (x) dx = 0

1∫

0

f 2(x) dx < ∞, (12)

and suppose that f is of bounded variation over [0, 1]. Put
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38 K. Fukuyama

σ 2( f, θ) =
1∫

0

f 2(x) dx,

if θ satisfy (1),

σ 2( f, θ) =
1∫

0

f 2(x) dx + 2
∞
∑

k=1

1∫

0

f (pk x) f (qk x) dx,

if θ is given by (2), and

σ 2( f, θ) =
1∫

0

f 2(x) dx + 2
∞
∑

k=1

1∫

0

f ((−1)rk pk x) f (qk x) dx,

if θ is given by (4). We can verify that σ 2( f, θ) is well defined and

lim
d→∞ σ 2( fd , θ) = σ 2( f, θ), (13)

where fd is a dth subsum of the Fourier series of f . If f is a trigonometric polynomial
satisfying (12), we can prove

lim
N→∞

1√
2N log log N

∣
∣
∣
∣
∣

N
∑

k=1

f (θk x)

∣
∣
∣
∣
∣
= σ( f, θ), a.e. (14)

We can prove these by simplifying the proof given in [22]. The full proof of these also
can be found in [21].

For a, a′ ∈ R satisfying 0 ≤ a − a′ < 1, we put

Ia′,a(x) =
∑

n∈Z

1[a′,a)(x + n) and Ĩa′,a(x) = Ia′,a(x) − (a − a′),

where 1[a′,a) is the indicator function of [a′, a). If 0 ≤ a′ < a < 1, we see Ia′,a(x) =
1[a′,a)(〈x〉). By this notation, we can write the discrepancies as below:

DN {ak} = sup
0≤a′<a<1

∣
∣
∣
∣
∣

1

N

N
∑

k=1

Ĩa′,a(ak)

∣
∣
∣
∣
∣
, D∗

N {ak} = sup
0≤a<1

∣
∣
∣
∣
∣

1

N

N
∑

k=1

Ĩ0,a(ak)

∣
∣
∣
∣
∣
.

We use the following result in case when �(n) = n. It can be proved by modifying
the method of Takahashi [30] and Philipp [28].

Proposition 1 [23] Let {nk} be a sequence of real numbers satisfying

n1 �= 0, |nk+1/nk | > q > 1 (k = 1, 2, . . .), (15)

123



Metric discrepancy results for alternating geometric progressions 39

and � be a permutation of N, i.e., a bijection N → N. Then for any dense countable
set S ⊂ [0, 1), we have

lim
N→∞

N DN {n�(k)x}√
2N log log N

= sup
S�a′<a∈S

lim
N→∞

1√
2N log log N

∣
∣
∣
∣
∣

N
∑

k=1

Ĩa′,a(n�(k)x)

∣
∣
∣
∣
∣

= sup
0≤a′<a<1

lim
N→∞

1√
2N log log N

∣
∣
∣
∣
∣

N
∑

k=1

Ĩa′,a(n�(k)x)

∣
∣
∣
∣
∣
,

lim
N→∞

N D∗
N {n�(k)x}√

2N log log N
= sup

a∈S
lim

N→∞
1√

2N log log N

∣
∣
∣
∣
∣

N
∑

k=1

Ĩ0,a(n�(k)x)

∣
∣
∣
∣
∣

= sup
0≤a<1

lim
N→∞

1√
2N log log N

∣
∣
∣
∣
∣

N
∑

k=1

Ĩ0,a(n�(k)x)

∣
∣
∣
∣
∣
,

(16)

for almost every x ∈ R. If we denote the d-th subsum of the Fourier series of Ĩa′,a by
Ĩa′,a;d , we have

lim
N→∞

1√
2N log log N

∣
∣
∣
∣
∣

N
∑

k=1

Ĩa′,a(n�(k)x)

∣
∣
∣
∣
∣

= lim
d→∞ lim

N→∞
1√

2N log log N

∣
∣
∣
∣
∣

N
∑

k=1

Ĩa′,a;d(n�(k)x)

∣
∣
∣
∣
∣

for almost every x ∈ R.

We prove later that σ (̃Ia′,a, θ) is continuous with respect to (a′, a) ∈ T2. By Prop-
osition 1 and relations (13) and (14), we can prove

lim
N→∞

N DN {θk x}√
2N log log N

= Σθ := sup
0≤a′<a<1

σ (̃Ia′,a, θ), a.e.,

lim
N→∞

N D∗
N {θk x}√

2N log log N
= Σ∗

θ := sup
0≤a<1

σ (̃I0,a, θ), a.e.

(17)

We here verify next two important properties of Ĩa′,a . When 0 ≤ a − a′ < 1, we
have

Ĩa′,a(x) =
{

Ĩ〈a′〉,〈a〉(x), if 〈a′〉 ≤ 〈a〉,
−̃I〈a〉,〈a′〉(x), if 〈a′〉 > 〈a〉, (18)

Ĩa′,a(x) = Ĩ0,〈a〉(x) − Ĩ0,〈a′〉(x). (19)

Actually, by 0 ≤ a −a′ < 1, there exists an integer m satisfying m ≤ a′ ≤ a < m +1
or m − 1 ≤ a′ < m ≤ a < m + 1. In the first case we have 〈a′〉 ≤ 〈a〉 and Ĩa′,a(x) =
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40 K. Fukuyama

Ĩ〈a′〉,〈a〉(x). In the second case we have 〈a′〉 > 〈a〉 and
∑

n∈Z 1[a′,a)(x + n) = 1 −
∑

n∈Z 1[a,a′+1)(x + n) which produces Ĩa′,a(x) = − Ĩa,a′+1(x) = − Ĩ〈a〉,〈a′〉(x) by
m ≤ a < a′ + 1 < m + 1. Here we have verified (18). The formula (19) can be easily
verified by (18).

To evaluate σ (̃Ia′,a, θ), we use the following functions. For x, y, ξ, η ∈ [0, 1), put

V (x, ξ) = x ∧ ξ − xξ,

Ṽ (x, y, ξ, η) = V (x, ξ) + V (y, η) − V (x, η) − V (y, ξ).

Clearly we have

Ṽ (x, y, ξ, η) = Ṽ (ξ, η, x, y) = −Ṽ (y, x, ξ, η) = −Ṽ (x, y, η, ξ) (20)

and

0 ≤ Ṽ (0, y, 0, η) = V (y, η) ≤ V (η, η) ≤ 1

4
. (21)

We have proved the next lemma in [15] in case a = b and a′ = b′. Although we
can prove the next version in the same way, we give a proof for reader’s convenience.

Lemma 1 Let μ and ν are relatively prime positive integers. Then we have

1∫

0

Ĩa′,a(μt )̃Ib′,b(νt) dt = Ṽ (〈μa′〉, 〈μa〉, 〈νb′〉, 〈νb〉)
μν

(22)

for a, a′, b, b′ with 0 ≤ a − a′ < 1 and 0 ≤ b − b′ < 1.

Proof First we prove in the case a′ = b′ = 0, in which we have 0 ≤ a, b < 1. Since
the integrand has period 1, we have

1∫

0

Ĩ0,a(μt )̃I0,b(νt) dt

= 1

μν

ν−1
∑

k=0

μ−1
∑

j=0

1∫

0

Ĩ0,a(μ(t + j/μ + k/ν))̃I0,b(ν(t + j/μ + k/ν)) dt.

By Ĩ0,a(μ(t+ j/μ+k/ν)) = Ĩ0,a(μ(t+k/ν)) and Ĩ0,b(ν(t+ j/μ+k/ν)) = Ĩ0,b(ν(t+
j/μ)), we have

∫ 1
0 Ĩ0,a(μt )̃I0,b(νt) dt = ∫ 1

0 Γ (t)
(t) dt/μν, where Γ (t) =
∑ν−1

k=0 Ĩ0,a(μ(t + k/ν)) and 
(t) = ∑μ−1
j=0 Ĩ0,b(ν(t + j/μ)). Since μ and ν are rel-

atively prime, the transforms k �→ μk on Z/νZ and j �→ ν j on Z/μZ are bijective.
We therefore have
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Metric discrepancy results for alternating geometric progressions 41

Γ (t) =
ν−1
∑

k=0

Ĩ0,a(μt + k/ν) and 
(t) =
μ−1
∑

j=0

Ĩ0,b(νt + j/μ).

Note that both of 1/μ and 1/ν are periods of Γ 
. Since μ and ν are relatively prime,
there exist integers P and Q such that 1 = Pμ + Qν. Thus 1/μν = P/ν + Q/μ is
also a period, and hence

1∫

0

Ĩ0,a(μt )̃I0,b(νt) dt =
1/μν∫

0

Γ (t)
(t) dt.

By 0 ≤ t < 1/μν and 0 ≤ k ≤ ν − 1, we have 0 ≤ μt + k/ν < 1. Hence
I0,a(μt + k/ν) = 1 if and only if μt + k/ν ∈ [0, a), i.e., 0 ≤ μνt + k < νa =
[νa] + 〈νa〉. The last condition holds if and only if 0 ≤ k < [νa ], or k = [νa] and
μνt < 〈νa〉. Therefore

Γ (t) = [νa] + 1[0,〈νa〉/μν)(t) − νa = 1[0,〈νa〉/μν)(t) − 〈νa〉, (0 ≤ t < 1/μν).

In the same way we can prove

Δ(t) = 1[0,〈νb〉/μν)(t) − 〈νb〉, (0 ≤ t < 1/μν).

By integrating Γ Δ over [0, 1/μν), we have

1∫

0

Ĩ0,a(μt )̃I0,b(νt) dt = V (〈μa〉, 〈νb〉)
μν

.

By using (19) and by noting 〈μ〈a〉〉 = 〈μa〉 etc., we can verify (22) as below:

1∫

0

Ĩa′,a(μt )̃Ib′,b(νt) dt =
1∫

0

Ĩ0,〈a〉(μt )̃I0,〈b〉(νt) dt +
1∫

0

Ĩ0,〈a′〉(μt )̃I0,〈b′〉(νt) dt

−
1∫

0

Ĩ0,〈a〉(μt )̃I0,〈b′〉(νt) dt −
1∫

0

Ĩ0,〈a′〉(μt )̃I0,〈b〉(νt) dt

= V (〈μa〉, 〈νb〉) + V (〈μa′〉, 〈νb′〉) − V (〈μa〉, 〈νb′〉) − V (〈μa′〉, 〈νb〉)
μν

.

If 0 ≤ a − a′ < 1 and 0 ≤ b − b′ < 1, by (22) we have

1∫

0

Ĩa′,a(t )̃Ib′,b(t) dt = Ṽ (〈a′〉, 〈a〉, 〈b′〉, 〈b〉). (23)
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42 K. Fukuyama

Hence we have

Ṽ (〈a′〉, 〈a〉, 〈a′〉, 〈a〉) =
1∫

0

Ĩ2
a′,a(t) dt =

1∫

0

Ĩ2
0,a−a′(t) dt = V (a − a′, a − a′),

if 0 ≤ a − a′ < 1, and

Ṽ (〈a′〉, 〈a〉, 〈a′〉, 〈a〉) = V (〈a − a′〉, 〈a − a′〉) (a, a′ ∈ R),

since we have 〈a〉 = 〈

a′ + 〈a − a′〉〉.
By noting Ṽ (x, y, x, y) = Ṽ (y, x, y, x), we can show

Ṽ (x, y, x, y) = V (|x − y|, |x − y|) = |x − y| − |x − y|2, (x, y ∈ [0, 1)).

Although we essentially proved the next lemma in [15], we give here a simple proof
for it.

Lemma 2 For any x, y, ξ, η ∈ [0, 1), we have

Ṽ (x, y, ξ, η) ≤ V (〈y − x〉, 〈η − ξ 〉), (24)

and

|Ṽ (x, y, ξ, η)| ≤ 1

4
.

Proof Let us assume that 0 ≤ a − a′ < 1 and 0 ≤ b − b′ < 1. Since Ia′,a = 1 holds
on [0, 1) with measure a − a′, and Ib′,b = 1 holds on [0, 1) with measure b − b′, we
have

1∫

0

Ia′,a(t)Ib′,b(t) dt ≤ (a − a′) ∧ (b − b′).

By adding −(a − a′)(b − b′) to both sides and by noting (23), we have

Ṽ (a′, a, b′, b) =
1∫

0

Ĩa′,a(t )̃Ib′,b(t) dt ≤ V (a − a′, b − b′)

Hence, the case 0 ≤ x ≤ y < 1 and 0 ≤ ξ ≤ η < 1 is already proved. If 0 ≤ y ≤
x < 1 and 0 ≤ ξ ≤ η < 1, we see that 0 ≤ y + 1 − x < 1 and 〈y + 1〉 = y, and
hence by (22) and the above inequality we have

Ṽ (x, y, ξ, η)=
1∫

0

Ĩx,y+1(t )̃Iξ,η(t) dt ≤ V (y + 1 − x, ξ − η)=V (〈y−x〉, 〈ξ − η〉).
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Metric discrepancy results for alternating geometric progressions 43

The other cases can be proved in the same way. The second inequality is clear from
(20), (21), and (24).

By denoting σ (̃Ia′,a, θ) by σθ;a′,a , we here give a series expansion of σ 2
θ;a′,a . Firstly,

let us consider the case when θ satisfies (1). Then we have

σ 2
θ;a′,a =

1∫

0

Ĩ2
a′,a(t) dt = |a − a′| − |a − a′|2 ≤ 1

4
,

where the equality holds if and only if a − a′ = 1
2 . Clearly σθ;a′,a is continuous with

respect to (a′, a) ∈ T2. Hence by (17), we have (5).
Secondly, let us consider the case when θ is given by (4).
If r is even, then we have σθ;a′,a = σ|θ |;a′,a . We have already proved in [15] that

σ|θ |;a′,a is continuous with respect to (a′, a) ∈ T2. Thus the equality (7) follows from
(17).

From now on we assume that r is odd.
Since we have Ia′,a(−t) = I1−a,1−a′(t) if 〈−t〉 �= 〈a〉, 〈a′〉, we have Ĩa′,a(−t) =

Ĩ1−a,1−a′(t) a.e. and hence we have

1∫

0

Ĩa′,a(−p2k−1x )̃Ia′,a(q2k−1x) dx =
1∫

0

Ĩ1−a,1−a′(p2k−1x )̃Ia′,a(q2k−1x) dx

= 1

(pq)2k−1 Ṽ (〈−p2k−1a〉, 〈−p2k−1a′〉, 〈p2k−1a′〉, 〈p2k−1a〉),

and

σ 2
θ;a′,a = Ṽ (a′, a, a′, a)

+ 2
∞
∑

k=1

(
1

p2k−1q2k−1 Ṽ (〈−p2k−1a〉, 〈−p2k−1a′〉, 〈q2k−1a′〉, 〈q2k−1a〉)

+ 1

p2kq2k
Ṽ (〈p2ka′〉, 〈p2ka〉, 〈q2ka′〉, 〈q2ka〉)

)

. (25)

Therefore by applying (24) and by noting 〈〈A〉 − 〈B〉〉 = 〈A − B〉 for A, B ∈ R, we
have

σ 2
θ;a′,a ≤ V (a − a′, a − a′) + 2

∞
∑

k=1

1

pkqk
V (〈pk(a − a′)〉, 〈qk(a − a′)〉)

= σ 2
|θ |;0,a−a′ ≤ Σ2|θ |,

and by taking the supremum for a and a′, we have Σθ ≤ Σ|θ |, i.e., the upper bound
estimate part of the inequality (6). Since Ṽ (x, y, ξ, η) is bounded and
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Ṽ (〈(−p)ka′〉, 〈(−p)ka〉, 〈qka′〉, 〈qka〉) is uniformly continuous with respect to (a′, a)

∈ T2, we see that σ 2
θ;a′,a is also uniformly continuous in (a′, a).

By putting a′ = 0, and by noting

Ṽ (〈−p2k−1a〉, 0, 0, 〈q2k−1a〉) = −V (〈−p2k−1a〉, 〈q2k−1a〉)

and

Ṽ (0, 〈p2ka〉, 0, 〈q2ka〉) = V (〈p2ka〉, 〈q2ka〉),

we have

σ 2
θ;0,a = V (a, a) + 2

∞
∑

k=1

(−1)k

pkqk
V (〈(−p)ka〉, 〈qka〉). (26)

For 0 ≤ x, y < 1, we can verify V (x, y) = V (1 − x, 1 − y). Hence we have

V (〈(−p)k(1 − a)〉, 〈qk(1 − a)〉) = V (1 − 〈(−p)ka〉, 1 − 〈qka〉)
= V (〈(−p)ka〉, 〈qka〉),

and thereby we have

σθ;0,a = σθ;0,1−a (27)

We here prepare a lemma.

Lemma 3 Let p ≥ 2 be an integer. For 0 < a < 1
2 and 0 ≤ t < 1, it holds

−V (t, a) + 1

p
V (〈−pt〉, a) ≤ a(1 − 2a)

p
,

where equality holds if and only if t = 1 − a
p .

Proof Put h(t) = −pV (t, a) + V (〈−pt〉, a). For t < a, we have

h′(t) = −p + pa + pa +
{

−p

0
≤ p(2a − 1) < 0.

Thus h(t) strictly increases on [0, a] and h(t) < h(a) for t < a. For t > a, we have

h′(t) = pa + pa +
{

−p

0
=

{

(2a − 1)p < 0, 〈−pt〉 < a,

2pa > 0, 〈−pt〉 > a.

Hence h′(t) < 0 on (1 − a
p , 1) and h′(t) > 0 on (1 − 1

p , 1 − a
p ). Hence we have

h(t) ≤ h(1 − a
p ) = a(1 − 2a) on (1 − 1

p , 1) and have equality only if t = 1 − a
p .
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Assume that a ≤ t < 1 − 1
p and take a positive integer k satisfying 1 − 1

p ≤
t + k

p < 1. Since −pV (t, a) strictly increases in t ∈ [a, 1), we have −pV (t, a) <

−pV (t + k
p , a). Clearly we have V (〈−pt〉, a) = V (〈−p(t + k

p )〉, a) and hence

h(t) ≤ h(t + k
p ) ≤ a(1 − 2a).

By assuming that p and q are coprime positive integers, we put

Bp,q;l(a) = −1

(pq)2l+1 V (〈−p2l+1a〉, 〈q2l+1a〉) + 1

(pq)2l+2 V (〈p2l+2a〉, 〈q2l+2a〉).

Then we have

σ 2
−p/q;0,a = V (a, a) + 2

∞
∑

l=0

Bp,q;l(a). (28)

It is clear from 0 ≤ V (a′, a) ≤ 1
4 that

Bp,q;l(a) ≤ 1

4p2l+2q2l+2 . (29)

Therefore we have

σ 2
−p/q;0,a ≤ a(1 − a) + 2Bp,q;0(a) + · · · + 2Bp,q;L−1(a)

+ 1

2p2Lq2L(p2q2 − 1)
, (30)

for L = 0, 1, 2, . . ., and especially we have

σ 2
−p/q;0,a ≤ a(1 − a) + 1

2(p2q2 − 1)
= hI(a), (31)

σ 2
−p/q;0,a ≤ a(1 − a) + 2Bp,q;0 + 1

2p2q2(p2q2 − 1)
. (32)

When q = 1, by applying Lemma 3, we have

Bp,1;l(a) ≤ 1

p2l+2 a(1 − 2a), (a ∈ (0, 1
2 )), (33)

where the equality holds if and only if 〈−p2l+1a〉 = 1 − a
p . Thus we have

σ 2
−p;0,a ≤ a(1 − a) + 2Bp,1;0(a) + · · · + 2Bp,1;L−1(a)

+ 2

p2L(p2 − 1)
a(1 − 2a), (a ∈ (0, 1

2 )) (34)
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for L = 0, 1, 2, . . ., where the equality holds if 〈−p2l+1a〉 = 1 − a
p holds for every

l. Especially, for a ∈ (0, 1
2 ), we have

σ 2
−p;0,a ≤ a(1 − a) + 2

p2 − 1
a(1 − 2a), (35)

σ 2
−p;0,a ≤ a(1 − a) + 2Bp,1;0(a) + 2

p2(p2 − 1)
a(1 − 2a). (36)

3 Proof of the equality (8)

Firstly suppose that θ satisfies (4) with q = 1, even p ≥ 4, and odd r . In this case, we
have σθ;a′,a = σ−p;a′,a . It is proved in [15] that

Σp = σp;0,ap , where ap = p − 2

2(p − 1)
.

Note that 〈pkap〉 = ap. If we put

ã′
p = p

2(p2 − 1)
, ãp = p

2(p2 − 1)
+ p − 2

2(p − 1)
= 1

2
− 1

2(p2 − 1)
,

we can verify

〈−pã′
p〉 = ãp, 〈−pãp〉 = ã′

p, ãp − ã′
p = ap,

and

Ṽ (〈−p2k−1ãp〉, 〈−p2k−1ã′
p〉, 〈ã′

p〉, 〈ãp〉) = Ṽ (ã′
p, ãp, ã′

p, ãp) = V (ap, ap),

Ṽ (〈p2k ã′
p〉, 〈p2k ãp〉, 〈ã′

p〉, 〈ãp〉) = Ṽ (ã′
p, ãp, ã′

p, ãp) = V (ap, ap).

Hence by (25), we have

σ 2
−p;ã′

p,ãp
= V (ap, ap) + 2

∞
∑

k=1

1

pk
V (ap, ap) = σ 2

p;0,ap
= Σ2

p.

Since we have already verified Σ−p ≤ Σp, we see that

Σ−p = σ−p;ã′
p,ãp = σp;0,ap = Σp.

Secondly, suppose that p, q, and r are all odd. It is shown in [15] that Σp/q =
σp/q;0,1/2. We have
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(−p)k = (−p − q + q)k

= qk + kqk−1(−p − q) +
k−2
∑

i=0

(

k
i

)

qi (−p − q)k−i

≡ qk − kqk−1(p + q) mod 2(p + q)

since p + q is even. Put

ã′
p q = 1

2(p + q)
and ãp q = 1

2
+ 1

2(p + q)
.

Because of ãp q − ã′
p q = 1

2 ,

〈qk(ãp q − ã′
p q)〉 = 1

2

is clear. We have

p2k

2(p + q)
≡ q2k

2(p + q)
− kq2k−1 ≡ q2k

2(p + q)
mod 1,

thereby 〈p2k ã′
p q〉 = 〈q2k ã′

p q〉 and 〈p2k ãp q〉 = 〈q2k ãp q〉.
Similarly,

−p2k−1

2(p + q)
≡ q2k−1

2(p + q)
− (2k − 1)q2k

2
≡ q2k−1

2(p + q)
+ q2k−1

2
mod 1,

and thereby 〈−p2k−1ã′
p q〉 = 〈q2k−1ãp q〉 and 〈−p2k−1ãp q〉 = 〈q2k−1ã′

p q〉.
Hence we have

Ṽ (〈−p2k−1ãp q〉, 〈−p2k−1ã′
p q〉, 〈q2k−1ã′

p q〉, 〈q2k−1ãp q〉)
= Ṽ (〈q2k−1ã′

p q〉, 〈q2k−1ãp q〉, 〈q2k−1ã′
p q〉, 〈q2k−1ãp q〉)

= V (〈q2k−1(ãp q − ã′
p q)〉, 〈q2k−1(ãp q − ã′

p q)〉) = V ( 1
2 , 1

2 )

= V (〈p2k−1 1
2 〉, 〈q2k−1 1

2 〉)
Ṽ (〈p2k ã′

p q〉, 〈p2k ãp q〉, 〈q2k ã′
p q〉, 〈q2k ãp q〉)

= Ṽ (〈q2k ã′
p q〉, 〈q2k ãp q〉, 〈q2k ã′

p q〉, 〈q2k ãp q〉)
= V (〈q2k(ãp q − ã′

p q)〉, 〈q2k(ãp q − ã′
p q)〉) = V ( 1

2 , 1
2 )

= V (〈p2k 1
2 〉, 〈q2k 1

2 〉)

which yields

σ 2
−p/q;ã′

p q ,ãp q
= V ( 1

2 , 1
2 ) + 2

∞
∑

k=1

1

pkqk
V (〈pk 1

2 〉, 〈qk 1
2 〉) = σ 2

p/q;0,1/2 = Σ2
p/q .
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Since we have already verified Σ−p/q ≤ Σp/q , we see that

Σ−p/q = σ−p/q;ã′
p q ,ãp q = σp/q;0,1/2 = Σp/q .

Lastly, suppose that r is odd, p = 5, and q = 2. In this case σθ;a′,a = σ−5/2;a′,a .
It is shown in [15] that Σ5/2 = σ5/2;0,1/3. Note that

V (〈52k 1
3 〉, 〈22k 1

3 〉) = V (〈52k+1 1
3 〉, 〈22k+1 1

3 〉) = 2
9 .

Put ã′ = 1
21 and ã = 8

21 . Then we have 〈(−5)3ã〉 = ã, 〈(−5)3ã′〉 = ã′, 〈23ã〉 =
ã′, 〈23ã′〉 = ã, and see that all values below equal to 2

9 :

Ṽ (〈(−5)6k ã′〉, 〈(−5)6k ã〉, 〈26k ã′〉, 〈26k ã〉) = Ṽ
( 1

21 , 8
21 , 1

21 , 8
21

)

,

Ṽ (〈(−5)6k+1ã〉, 〈(−5)6k+1ã′〉, 〈26k+1ã′〉, 〈26k+1ã〉) = Ṽ
( 2

21 , 16
21 , 2

21 , 16
21

)

,

Ṽ (〈(−5)6k+2ã′〉, 〈(−5)6k+2ã〉, 〈26k+2ã′〉, 〈26k+2ã〉) = Ṽ
( 4

21 , 11
21 , 4

21 , 11
21

)

,

Ṽ (〈(−5)6k+3ã〉, 〈(−5)6k+3ã′〉, 〈26k+3ã′〉, 〈26k+3ã〉) = Ṽ
( 8

21 , 1
21 , 8

21 , 1
21

)

,

Ṽ (〈(−5)6k+4ã′〉, 〈(−5)6k+4ã〉, 〈26k+4ã′〉, 〈26k+4ã〉) = Ṽ
( 16

21 , 2
21 , 16

21 , 2
21

)

,

Ṽ (〈(−5)6k+5ã〉, 〈(−5)6k+5ã′〉, 〈26k+5ã′〉, 〈26k+5ã〉) = Ṽ
( 11

21 , 4
21 , 11

21 , 4
21

)

.

Therefore we have σ−5/2;0,1/3 = σ5/2;0,1/3 = Σ5/2. Since we have already proved
Σ−5/2 ≤ Σ5/2, we have Σ−5/2 = Σ5/2.

4 Proof of the evaluation (9)

Let r be odd, p ≥ 3 be an odd integer, and q = 1. In this case we have Σθ = Σ−p.
Put

bp = p

2(p + 1)
= 1

2
− 1

2(p + 1)
and b′

p = 2p + 1

2(p + 1)
.

We can easily verify that 〈−pbp〉 = b′
p and 〈−pb′

p〉 = bp. We have

V (bp, bp) = p2 + 2p

4(p + 1)2 , V (b′
p, bp) = p

4(p + 1)2 ,

p2l+1 Bp,1;l(bp) = −V (b′
p, bp) + 1

p
V (〈−pb′

p〉, bp) = 2

4(p + 1)2 .
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We prove

Σ∗−p
2 = σ 2

−p;0,bp
= V (bp, bp) + 2

∞
∑

l=0

Bp,1;l(bp) = p(p3 + 2p2 − p + 2)

4(p − 1)(p + 1)3

= 1

4
+ −p2 + 4p + 1

4(p − 1)(p + 1)3

{

< 1
4 , p ≥ 5,

> 1
4 , p = 3.

By (27) and continuity of σ 2
−p;0,a in a, it is enough to prove σ 2

−p;0,a ≤ σ 2
−p;0,bp

for

all 0 ≤ a < 1
2 . By applying (35), we have

σ 2
−p;0,a ≤ 1

p2 − 1
((p2 + 1)a − (p2 + 3)a2) = hII(a).

Because of 〈(−p)2l+1bp〉 = b′
p = 1 − bp

p , the equality holds in the above inequality

when a = bp, i.e., σ 2
−p;0,bp

= hII(bp).

Since hII(a) is increasing for a <
p2+1

2(p2+3)
= 1

2 − 2
2(p2+3)

and since we have

(
1

2
− 2

2(p2 + 3)

)

− bp = (p − 1)2

2(p2 + 3)(p + 1)
> 0,

we see that hII(a) is increasing for a < bp. Hence we have

σ 2
−p;0,a ≤ hII(a) ≤ hII(bp) = σ 2

−p;0,bp
, (a ≤ bp).

Note that p−1
2p < bp. If p−1

2p < a < 1
2 , we have

− p + 1

2
< − p

2
< −pa < − p − 1

2
= − p + 1

2
+ 1.

Hence [−pa] = − 1
2 (p + 1) and 〈−pa〉 = −pa + 1

2 (p + 1). By 〈−pa〉 − a =
1
2 (1 − 2a)(p + 1) > 0, we have V (〈−pa〉, a) = a(pa − 1

2 (p − 1)) and

Bp,1;0 ≤ −a

(

a − p − 1

2p

)

+ 1

p2 a(1 − a),

where the equality holds for a = bp. Hence for p−1
2p < a < 1

2 , by (36) we have
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σ 2
−p;0,a ≤ a(1 − a) − 2a

(

a − p − 1

2p

)

+ 2

p2 a(1 − a) + 2

p2(p2 − 1)
a(1 − 2a)

= 1

p2(p2 − 1)
((2p4 − p3 + p)a − (3p4 − p2 + 2)a2) = hIII(a),

where the equality holds for a = bp. Note that 3p4 − p2 + 2 > 0. Since hIII(a) is

decreasing for a >
2p4−p3+p

2(3p4−p2+2)
and since we have

p − 1

2p
− 2p4 − p3 + p

2(3p4 − p2 + 2)
= p3(p2 − 2p − 1) + 2(p2 − 1)

2p(3p4 − p2 + 2)
> 0

for p ≥ 3, we see that hIII(a) is decreasing for p−1
2p < a < 1

2 , and hence for bp ≤a < 1
2 .

Thereby we have

σ 2
−p;0,a ≤ hIII(a) ≤ hIII(bp) = σ 2

−p;0,bp
, (bp ≤ a < 1

2 ).

5 Proof of (10)

When 2 | pq, we have 〈(−p)k 1
2 〉 = 0 or 〈qk 1

2 〉 = 0 for k ≥ 1, and thereby
σ 2

−p/q;0,1/2 = V ( 1
2 , 1

2 ) = 1
4 . Therefore Σ∗−p/q ≥ 1

2 is trivial, and it is sufficient

to show Σ∗−p/q ≤ 1
2 to prove (10). We divide the proof into three parts. Put

Ik =
(

1

2
− 1

pk ∨ (2qk)
,

1

2

)

and Jk =
(

1

2
− 1

2(pk + qk)
,

1

2

)

.

Clearly we have Ik ⊃ Ik+1 and Ik ⊃ Jk .

5.1 The case when p ≥ 4 is even and q ≥ 3 is odd

By using p ≥ 4, we have 2(pk + qk) < 4pk ≤ pk+1 ∨ (2qk+1) and Jk ⊃ Ik+1. For
k ≥ 1, we have

〈−pka〉=−pka + pk

2
, 〈pka〉= pka− pk

2
+ 1, 〈qka〉=qka− qk − 1

2
, (a ∈ Ik).

We can verify 〈−p2l+1a〉 < 〈q2l+1a〉 on J2l+1. Therefore we have

−1

(pq)2l+1 V (〈−p2l+1a〉, 〈q2l+1a〉) = −
(

−a + 1

2

) (
1

2
+ 1

2q2l+1 − a

)
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for a ∈ J2l+1, and hence for a ∈ I2l+2. By applying V (a′, a) ≤ a(1 − a′), we have

1

(pq)2l+2 V (〈p2l+2a〉, 〈q2l+2a〉) ≤ 〈q2l+2a〉(1 − 〈p2l+2a〉)
(pq)2l+2

=
(

a − 1

2
+ 1

2q2l+2

) (
1

2
− a

)

for a ∈ I2l+2. Hence we have

Bp,q;l(a) ≤ −2

(
1

2
+ 1

4q2l+1 − 1

4q2l+2 − a

) (
1

2
− a

)

< 0, (a ∈ I2l+2).

Suppose that L ≥ 1. For a ∈ I2L we therefore have Bp,q;1(a)+· · ·+ Bp,q;L−1(a) < 0
and, by (30) we have

σ 2
−p/q;0,a ≤ a(1 − a) − 4

(
1

2
− a

) (
1

2
+ 1

4q
− 1

4q2 − a

)

+ 1

2p2Lq2L(p2q2 − 1)

= hIV(a).

Note that we have

hIV

(
1

2
− 1

p2L+2

)

− 1

4
= − 5

p4L+4 + −2(q − 1)q2L−2(p2q2 − 1) + p2

2p2L+2q2L(p2q2 − 1)
< 0

by −2(q − 1)(p2q2 − 1) + p2 ≤ −4(p2q2 − 1) + p2 < −2p2q2 + p2 < 0, and we
have

hIV

(
1

2
− 1

2q2L+2

)

− 1

4
= − 5

4q4L+4 + −(q − 1)p2L(p2q2 − 1) + q4

2p2Lq2L+4(p2q2 − 1)
< 0

by −(q − 1)p2(p2q2 − 1)+ q4 ≤ −2p2(p2q2 − 1)+ q4 ≤ −p4q2 + q4 < 0. Hence
we have verified

hIV

(
1

2
− 1

p2L+2 ∨ (2q2L+2)

)

<
1

4
.

Since hIV is increasing on I2L , we see that σ 2
−p/q;0,a ≤ hIV(a) < 1

4 for a ∈ I2L\I2L+2.

By taking union for L = 1, 2, . . ., we have σ 2
−p/q;0,a ≤ hIV(a) < 1

4 for a ∈ I2.
We have

hI

(
1

2
− 1

2(p + q)

)

− 1

4
= − 1

4(p + q)2 + 1

2(p2q2 − 1)
< 0
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by q ≥ 3 and 2(p + q)2 ≤ 8p2 = 9p2 − p2 ≤ p2q2 − 1. Since hI is increasing on
(0, 1

2 ), we verified that

σ 2
−p/q;0,a ≤ hI(a) <

1

4
for a ∈

(

0,
1

2
− 1

2(p + q)

]

.

On ( 1
2 − 1

2(p+q)
, 1

2 ) = J1, we have 〈−pa〉 = −pa + p
2 < qa − q−1

2 = 〈qa〉 and

Bp,q;0 ≤ (a − 1
2 )( 1

2 + 1
2q − a) + 1

4p2q2 . Hence by (32), we have

σ 2
−p/q;0,a ≤ a(1 − a) + 2

(

a − 1

2

)(
1

2
+ 1

2q
− a

)

+ 1

2(p2q2 − 1)
= hV(a),

for a ∈ J1. Recall that I2 ⊂ J1. Note that we have

hV

(
1

2
− 1

p2

)

− 1

4
= − 3

p4 − 1

p2q
+ 1

2(p2q2 − 1)
< 0

by 2(p2q2 − 1) ≥ 6p2q − 2 ≥ p2q, and have

hV

(
1

2
− 1

2q2

)

− 1

4
= − 3

4q4 − 1

2q3 + 1

2(p2q2 − 1)
< 0

by 2(p2q2 − 1) ≥ 8pq2 − 2 ≥ 8q3 − 2 ≥ 2q3. Since we have verified

hV

(
1

2
− 1

p2 ∨ (2q2)

)

<
1

4
,

and since hV is increasing in a < 1
2 , we have

σ 2
−p/q;0,a ≤ hV(a) <

1

4
for a ∈

(
1

2
− 1

2(p + q)
,

1

2
− 1

p2 ∨ (2q2)

]

.

Hence we have verified Σ∗
θ = 1

2 in this case.

5.2 The case when p is even and q = 1

Since [p2la] ≤ 1
2 p2l − 1 for a < 1

2 and l ≥ 1, we have 〈p2la〉 ≥ p2la − 1
2 p2l + 1.

Hence we have

1

p2l
V (〈p2la〉, a) ≤ 1

p2l
a

(

1 − 〈p2la〉
)

≤ a

(
1

2
− a

)

, (a < 1
2 , l ≥ 1). (37)

Note that

Ik =
(

1

2
− 1

pk
,

1

2

)

, Jk =
(

1

2
− 1

2(pk + 1)
,

1

2

)

, and Jk ⊂ Ik .
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For a ∈ I2l+1, we have 〈−p2l+1a〉 = −p2l+1a+ 1
2 p2l+1. Since we have 〈−p2l+1a〉 <

a for a ∈ J2l+1, we have

− 1

p2l+1 V (〈−p2l+1a〉, a) = −
(

1

2
− a

)

(1 − a), (a ∈ J2l+1),

and Bp,1;l(a) ≤ − 1
2 (1 − 2a)2 < 0(a ∈ J2l+1). Hence we have Bp,1;1(a) + · · · +

Bp,1;L−1(a) < 0 on J2L−1, and by (34) we have

σ 2
−p;0,a ≤ a(1 − a) − (1 − 2a)2 + 2

p2L(p2 − 1)
a(1 − 2a) = a(1 − a) + hVI(a)

for a ∈ J2L−1 and L ≥ 1. We have

hVI(a)= 2 + 2p2L(p2−1)

p2L(p2−1)
(1−2a)(a−cL ) where cL = 1

2
− 1

2(1 + p2L(p2 − 1))

and thereby

σ 2
−p;0,cL

≤ cL(1 − cL) + hVI(cL) ≤ 1

4
.

Since a(1 − a) + hVI(a) is increasing in (0, cL), we have

σ 2
−p;0,a ≤ a(1 − a) + hVI(a) ≤ 1

4
(a ∈ J2L−1 ∩ (0, cL)).

We have

cL −
(

1

2
− 1

2(1 + p2L+1)

)

= p2L(p2 − p − 1)

2(1 + p2L(p2 − 1))(1 + p2L+1)
> 0

by p2 − p − 1 > 0 for p ≥ 2. Thus we have σ 2
−p;0,a ≤ 1

4 for a ∈ J2L−1\J2L+1 By

taking a union for L = 1, 2, . . ., we have σ 2
−p;0,a ≤ 1

4 (a ∈ J1).
By applying (35), we have

σ 2
−p;0,a ≤ 1

p2 − 1
((p2 + 1) − (p2 + 3)a)a = hVII(a), (a < 1

2 ).

Note that hVII is increasing for a ≤ p2+1
2(p2+3)

= 1
2 − 2

2(p2+3)
. Because of

(
1

2
− 2

2(p2 + 3)

)

−
(

1

2
− 1

2(p + 1)

)

= p2 − 2p + 1

2(p2 + 3)(p + 1)
> 0,
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hVII is verified to be increasing for a ≤ 1
2 − 1

2(p+1)
. By noting

hVII

(
1

2
− 1

2(p + 1)

)

− 1

4
= −p2 + 4p + 1

4(p + 1)3(p − 1)
< 0

for p ≥ 6, we have σ 2
−p;0,a < 1

4 for a ∈ (0, 1
2 )\J1 and p ≥ 6. Thus we have Σ∗−p = 1

2
for even p ≥ 6.

In case p = 4, we have

hVII

(
1

4

)

= 49

60

1

4
<

1

4
,

and hence we have σ 2
−4;0,a < 1

4 for a ∈ (0, 1
4 ]. Since we have already proved σ 2

−4;0,a

< 1
4 for a ∈ J1 = ( 2

5 , 1
2 ), it is enough to prove σ 2

−4;0,a < 1
4 for a ∈ ( 1

4 , 2
5 ]. For

a ∈ ( 1
4 , 2

5 ], we have [−4a] = −2, 〈−4a〉 = −4a + 2, and 〈−4a〉 ≥ a. Hence we
have V (〈−4a〉, a) = a(4a −1) and B4,1;0(a) ≤ − 1

4 a(4a −1)+ 1
16 a(1−a). By using

(36), we have

σ 2
−4;0,a ≤ a(1 − a) − 1

2
a(4a − 1) + 1

8
a(1 − a) + 1

120
a(1 − 2a)

= 1

120

(

−377

(

a − 98

377

)2

+ 982

377

)

≤ 492

30 · 377
<

1

4

for a ∈ ( 1
4 , 2

5 ]. Therefore we have Σ∗−4 = 1
2 .

In case p = 2, we have 1
2 − 1

2(p+1)
= 1

3 and σ 2
−2;0,a < 1

4 for 1
3 < a < 1

2 . It is

enough to prove σ 2
−2;0,a < 1

4 for a ≤ 1
3 .

For 0 < a ≤ 1
3 , we have 〈−2a〉 ≥ a and V (〈−2a〉, a) = a(1 − 〈−2a〉) = 2a2.

Hence we have B2,1;0(a) ≤ −a2 + 1
4 a(1 − a), and by (36), we have

σ 2
−2;0,a ≤ a(1 − a) − 2a2 + 1

2
a(1 − a) + 1

6
a(1 − 2a)

= 1

6
(−23a2 + 10) = 1

6

(

−23

(

a − 5

23

)2

+ 25

23

)

≤ 25

23 · 6
≤ 30

20 · 6
= 1

4
.

Hence we have proved Σ∗−2 = 1
2 .

5.3 The case when p is odd, q is even

In this case, by q < p, we have

(
1

2
− 1

qk
,

1

2

)

⊃
(

1

2
− 1

2pk
,

1

2

)

= I ′
k ⊃ Jk
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and hence

〈−pka〉 = −pka + pk + 1

2
, 〈pka〉 = pka − pk − 1

2
,

〈qka〉 = qka − qk

2
+ 1, (a ∈ I ′

k, k ≥ 1).

Since 〈−p2l+1a〉 < 〈q2l+1a〉 for a ∈ J2l+1, we have

− 1

(pq)2l+1 V (〈−p2l+1a〉, 〈q2l+1a〉) = −
(

−a + 1

2
+ 1

2p2l+1

)(
1

2
− a

)

,

(a ∈ J2l+1).

If a ∈ J2l+1, then a ∈ I ′
2l+1 and 1

2 (p2l+2 − p) < p2l+2a < 1
2 p2l+2. Thus we have

1
2 (p2l+2− p) ≤ [p2l+2a] ≤ 1

2 (p2l+2−1) and 〈p2l+2a〉 = p2l+2a− 1
2 (p2l+2− j)( j =

1, 3, . . . , p). Since a < 1
2 , we have q2l+1a < 1

2 q2l+1, [q2l+1a] ≤ 1
2 q2l+1 − 1, and

〈q2l+1a〉 ≥ q2l+1a − 1
2 q2l+1 +1 in turn. Therefore by applying V (a, a′) ≤ a(1−a′),

we have

1

(pq)2l+2 V (〈p2l+2a〉, 〈q2l+2a〉) ≤
(

a − 1

2
+ j

2p2l+2

)(
1

2
− a

)

, (a ∈ J2l+1).

By combining these and by noting 1
4p2l+1 − j

4p2l+2 ≥ 0 we have

Bp,q;l(a) ≤ −2

(

−a + 1

2
+ 1

4p2l+1 − j

4p2l+2

)(
1

2
− a

)

< 0, (a ∈ J2l+1).

Hence Bp,q;1(a) + · · · + Bp,q;L−1(a) < 0 for a ∈ J2L−1. If a ∈ I ′
2, then

1

p2q2 V (〈p2a〉, 〈q2a〉) ≤
(

a − 1

2
+ 1

2p2

)(
1

2
− a

)

.

Because of J1 ⊃ I ′
2, we see

− 1

pq
V (〈−pa〉, 〈qa〉) = −

(

−a + 1

2
+ 1

2p

) (
1

2
− a

)

, (a ∈ I ′
2),

and thereby we can conclude

Bp,q;0(a) ≤ −2

(

−a + 1

2
+ 1

4p
− 1

4p2

) (
1

2
− a

)

, (a ∈ I ′
2).
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By (30) we have

σ 2
−p/q;0,a ≤ a(1−a)−4

(

−a+ 1

2
+ 1

4p
− 1

4p2

) (
1

2
−a

)

+ 1

2p2Lq2L(p2q2−1)

= hVIII(a)

for a ∈ J2L−1 ∩ I ′
2. Note that we have

hVIII

(
1

2
− 1

2(p2L+1 + q2L+1)

)

− 1

4
= − 5

2(p2L+1 + q2L+1)2

+ p2L+1 + q2L+1 + p2L−1q2L + p2Lq2L+2 − p2L+1q2L+2 − p2L−2q2L

2p2Lq2L(p2q2 − 1)
< 0

by p2L+1 ≤ 1
4 p2L+1q2L+2, q2L+1 ≤ 1

6 p2L+1q2L+2, p2L−1q2L ≤ 1
36 p2L+1q2L+2,

p2Lq2L+2 ≤ 1
3 p2L+1q2L+2, and 1

4 + 1
6 + 1

36 + 1
3 = 7

9 < 1. Since hVIII(a) increases on
J2L−1, we see hVIII(a) < 1

4 or σ 2
−p/q;0,a ≤ 1

4 for a ∈ (J2L−1\J2L+1) ∩ I ′
2. By taking

a union for L = 1, 2, . . ., and by noting that J1 ⊃ I ′
2 ⊃ J3 ⊃ J5 ⊃ · · ·, we have

σ 2
−p/q;0,a ≤ 1

4 for a ∈ I ′
2.

Let a ∈ J1. we have p2a > 1
2 p2 − p2

2(p+q)
, [p2a] ≥ 1

2 p2 − p2

2(p+q)
− 1, and

〈p2a〉 ≤ p2a − 1
2 p2 + p2

2(p+q)
+ 1. Since we have 〈q2a〉 ≥ q2a − 1

2 q2 + 1 as before,
we have

1

p2q2 V (〈p2a〉, 〈q2a〉) ≤
(

a − 1

2
+ 1

2(p + q)
+ 1

p2

) (
1

2
− a

)

,

and

Bp,q;0(a) ≤ −2

(

−a + 1

2
+ 1

4p
− 1

4(p + q)
− 1

2p2

)(
1

2
− a

)

, (a ∈ I ′
2).

By applying (32) and these estimates, we have

σ 2
−p/q;0,a ≤ a(1 − a) − 4

(

−a + 1

2
+ 1

4p
− 1

4(p + q)
− 1

2p2

) (
1

2
− a

)

+ 1

2p2q2(p2q2 − 1)

= hIX(a), (a ∈ J1).

Note that we have

hIX

(
1

2
− 1

2p2

)

− 1

4
≤ − 1

4p2 − q3(p2q2 − 1) − p(p + q)

2p3q2(p + q)(p2q2 − 1)
< 0
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by q3(p2q2 − 1) − p(p + q) ≥ 4p2q3 − q3 − p2 − pq = (p2q3 − q3) + (p2q3 −
p2) + (2p2q3 − pq) > 0. Since hIX(a) increases on J1, we see that σ 2

−p/q;0,a ≤ 1
4

on J1 ∩ (0, 1
2 − 1

2p2 ] and hence on ( 1
2(p+q)

, 1
2 ).

We here use (31). Assume that p/q �= 3/2. In this case we have 2(p + q)2 ≤
p2q2 − 1. Actually, when q ≥ 3, then we have 2(p + q)2 ≤ 8p2 < p2q2, and when
q = 2, 2(p + 2)2 − (p222 − 1) = −2p2 + 8p + 9 ≤ 0 for p ≥ 5.

Since hI is increasing on (0, 1
2 ) and satisfies

hI

(
1

2
− 1

2(p + q)

)

− 1

4
= −(p2q2 − 1) + 2(p + q)2

4(p + q)2(p2q2 − 1)
< 0,

we see that σ 2
−p/q;0,a ≤ hI(a) ≤ 1

4 for a ∈ (0, 1
2 )\J1. Therefore we have σ 2

−p/q;0,a ≤
1
4 for all a ∈ (0, 1

2 ) and Σ∗−p/q = 1
2 .

Lastly we consider the case p/q = 3/2. In this case we have

hI

(
1

2
− 1

2p

)

− 1

4
= −(p2q2 − 1) + 2p2

4p2(p2q2 − 1)
= −35 + 18

36 · 35
< 0

and since hI(a) is increasing in (0, 1
2 ), we have σ 2

−3/2;0,a ≤ hI(a) ≤ 1
4 for a ∈

(0, 1
2 )\I ′

1. For a ∈ I ′
1\J1, we have 〈qa〉 ≤ 〈−pa〉 and hence

− 1

pq
V (〈−pa〉, 〈qa〉) = −

(

a − 1

2
+ 1

q

) (

a − 1

2
+ 1

2p

)

= −a

(

a − 1

3

)

.

Thus we have B3,2;0 ≤ −a(a − 1
3 ) + 1

4 · 32 · 22, and by (32) we have

σ 2
−3/2;0,a ≤ a(1 − a) − 2a

(

a − 1

3

)

+ 1

2(3222 − 1)
= −3a2 + 5

3
a + 1

70
= hX(a).

Since hX(a) is decreasing for a > 5
18 , hence for a ∈ ( 1

3 , 2
5 ] = I ′

1\J1. Hence

hX(a) ≤ hX

(
1

3

)

= 149

630
<

1

4
(a ∈ I ′

1\J1).

Therefore σ 2
−3/2;0,a ≤ 1

4 for a < 1
2 and Σ∗−3/2 = 1

2 .

6 Proof of the inequality (11)

We assume that p > q ≥ 3 are odd numbers. Since hI increases on (0, 1
2 ), by (31)

and
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hI

(
1

2
− 1

2p

)

− 1

4
= −(p2q2 − 1) + 2p2

4p2(p2q2 − 1)
≤ −9p2 + 1 + 2p2

4p2(p2q2 − 1)
< 0,

we see that σ 2
−p/q;0,a < 1

4 for a ∈ (0, 1
2 )\I ′

1.

On I ′
1, we have 〈−pa〉 = −pa + 1

2 (p + 1) ≥ 1
2 ≥ qa − 1

2 (q − 1) = 〈qa〉 and

Bp,q;0(a) ≤ −
(

a − 1

2
+ 1

2q

)(

a − 1

2
+ 1

2p

)

+ 1

4p2q2 .

By applying (32), we have

σ 2
−p/q;0,a ≤a(1 − a)−2

(

a − 1

2
+ 1

2q

) (

a − 1

2
+ 1

2p

)

+ 1

2(p2q2 − 1)
=hXI(a),

for a ∈ I ′
1. Because of

hXI(a) = −3a2 +
(

3 − p + q

pq

)

a − 2

(
1

2
− 1

2q

) (
1

2
− 1

2p

)

+ 1

2(p2q2 − 1)
,

hXI has maximum at ǎ = 1
2 − p+q

6pq .
If p ≥ 2q, then

ǎ −
(

1

2
− 1

2p

)

= 2q − p

6pq
≤ 0,

and hence hXI is decreasing in I ′
1. Thereby we have

σ 2
−p/q;0,a ≤ hXI(a) ≤ hXI

(
1

2
− 1

2p

)

= hI

(
1

2
− 1

2p

)

<
1

4

for a ∈ I ′
1. By continuity, the above estimate can be also proved for a = 1

2 , Hence
Σ∗−p/q < 1

2 in this case.
If p < 2q,

hXI(ǎ) − 1

4
= (p2 − 4pq + q2)(p2q2 − 1) + 6p2q2

12p2q2(p2q2 − 1)

= p3q2(p − 2q) + p2q3(q − p) − (p − q)2 + (6p2q2 + 2pq − p3q3)

12p2q2(p2q2 − 1)

< 0

by 6p2q2 +2pq − p3q3 ≤ 6p2q2 +2pq −15p2q2 < 0. Hence hXI(a) ≤ hXI(ǎ) < 1
4

for a ∈ I ′
1 and Σ∗−p/q < 1

2 in this case.
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7 Proof of (6)

Suppose that θ is given by (4). Because we have already proved Σθ ≤ Σ|θ |, we here
prove 1

2 < Σθ . In case when (8) holds, then by (3), we have 1
2 < Σθ . Hence we must

prove 1
2 < Σ−p/q in the case when one of the p and q > 1 is even, and also in the

case when p = 2 and q = 1.
Firstly, assume that p is odd and q is even. We have 〈(−p)k 1

2 〉 = 1
2 and 〈qk 1

2 〉 = 0
for k ≥ 1. Put

fk(a
′) = Ṽ (〈(−p)ka′〉, 〈(−p)k 1

2 〉, 〈qka′〉, 〈qk 1
2 〉)

= V (〈(−p)ka′〉, 〈qka′〉) − V ( 1
2 , 〈qka′〉)

for k ≥ 1. Since fk is continuous and piecewisely continuously differentiable, and
satisfies fk(0) = 0, we have

fk(a
′) =

a′
∫

0

D+ fk(t) dt,

where D+ fk denotes the left derivative of fk . We have

D+ fk(a
′) = (−p)k(1(〈(−p)ka′〉 < 〈qka′〉) − 〈qka′〉)

+qk(1(〈(−p)ka′〉 > 〈qka′〉) − 〈(−p)ka′〉)
−qk(1(〈qka′〉 < 1

2 ) − 1
2 ),

and hence |D+ fk(a′)| ≤ pk + 3
2 qk .

We have D+ fk(a′) → 1
2 (−q)k as a′ ↓ 0. Actually, it is verified by 〈(−p)ka′〉 ↑ 1

and 〈qka′〉 ↓ 0 if k is odd, and by 〈(−p)ka′〉 ↓ 0, 〈qka′〉 ↓ 0, and 〈(−p)ka′〉 > 〈qka′〉
for small enough a′ > 0 if k is even. Hence we have

2
K

∑

k=1

1

(−pq)k
D+ fk(a

′) →
K

∑

k=1

1

pk
= 1 − 1/pK

p − 1
as a′ ↓ 0.

On the other hand, we have

∣
∣
∣
∣
∣
2

∞
∑

k=K+1

1

(−pq)k
D+ fk(a

′)
∣
∣
∣
∣
∣
≤

∞
∑

k=K+1

(
2

qk
+ 3

pk

)

= 2

q K (q − 1)
+ 3

pK (p − 1)
.

Take large enough K satisfying

2

q K (q − 1)
+ 3

pK (p − 1)
≤ 1

4

1 − 1/pK

p − 1
,
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and take small enough A > 0 satisfying

2t ≤ 1

4

1 − 1/pK

p − 1
, 2

K
∑

k=1

1

(−pq)k
D+ fk(t) ≥ 3

4

1 − 1/pK

p − 1
, (0 < t < A).

By noting V ( 1
2 − a′, 1

2 − a′) = 1
4 − a′2 = 1

4 − ∫ a′
0 2t dt , we have

σ 2
−p/q;a′,1/2 = 1

4
+

a′
∫

0

(

−2t +
(

2
K

∑

k=1

+2
∞
∑

k=K+1

)

D+ fk(t)

(−pq)k

)

dt

≥ 1

4
+ 1

4

1 − 1/pK

p − 1
a′ >

1

4

for 0 < a′ < A. Hence we have Σ−p/q > 1
2 .

Secondly assume that p is even and q ≥ 3 is odd. In this case, we have 〈(−p)k 1
2 〉 =

0, 〈qk 1
2 〉 = 1

2 , and

fk(a
′) = V (〈(−p)ka′〉, 〈qka′〉) − V (〈(−p)ka′〉, 1

2 ), (k ≥ 1).

We have

D+ fk(a
′) = (−p)k(1(〈(−p)ka′〉 < 〈qka′〉) − 〈qka′〉)

+qk(1(〈(−p)ka′〉 > 〈qka′〉) − 〈(−p)ka′〉)
−(−p)k(1(〈(−p)ka′〉 < 1

2 ) − 1
2 )

and hence |D+ fk(a′)| ≤ 3
2 pk + qk .

If k is odd, D+ fk(a′) → 1
2 (−p)k as a′ ↓ 0, and if k is even, D+ fk(a′) →

qk − 1
2 (−p)k as a′ ↓ 0. Therefore

2
L

∑

l=1

( −1

(pq)2l−1 D+ f2l−1(a
′) + 1

(pq)2l
D+ f2l(a

′)
)

→
L

∑

l=1

(
1

q2l−1 + 2

p2l
− 1

q2l

)

= 1 − 1/q2L

q + 1
+ 2

1 − 1/p2L

p2 − 1
.

On the other hand, we have

∣
∣
∣
∣
∣
2

∞
∑

l=L+1

(−D+ f2l−1(a′)
(pq)2l−1 + D+ f2l(a′)

(pq)2l

)
∣
∣
∣
∣
∣
≤ 3

q2L(q − 1)
+ 2

p2L(p − 1)
.
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Take large enough L satisfying

3

q2L(q − 1)
+ 2

p2L(p − 1)
≤ 1

4

1 − 1/q2L

q + 1
,

and take small enough A > 0 satisfying

2t ≤ 1

4

1 − 1/q2L

q + 1
, 2

L
∑

l=1

(−D+ f2l−1(t)

(pq)2l−1 + D+ f2l(t)

(pq)2l

)

≥ 1 − 1/q2L

q + 1

for 0 < t < A. Then we have

σ 2
−p/q;a′,1/2

= 1

4
+

a′
∫

0

(

−2t +
(

2
L

∑

l=1

+2
∞
∑

l=L+1

) (−D+ f2l−1(t)

(pq)2l−1 + D+ f2l(t)

(pq)2l

))

dt

≥ 1

4
+ 1

2

1 − 1/q2L

q + 1
a′ >

1

4

for 0 < a′ < A. Hence we have Σ−p/q > 1
2 .

Thirdly assume that p = 2 and q = 1. Since we have

Ṽ
(〈

(−2)6l 1
7

〉

,
〈

(−2)6l 6
7

〉

, 1
7 , 6

7

)

= Ṽ
( 1

7 , 6
7 , 1

7 , 6
7

) = 10
49 ,

Ṽ
(〈

(−2)6l+1 6
7

〉

,
〈

(−2)6l+1 1
7

〉

, 1
7 , 6

7

)

= Ṽ
( 2

7 , 5
7 , 1

7 , 6
7

) = 6
49 ,

Ṽ
(〈

(−2)6l+2 1
7

〉

,
〈

(−2)6l+2 6
7

〉

, 1
7 , 6

7

)

= Ṽ
( 4

7 , 3
7 , 1

7 , 6
7

) = −2
49 ,

Ṽ
(〈

(−2)6l+3 6
7

〉

,
〈

(−2)6l+3 1
7

〉

, 1
7 , 6

7

)

= Ṽ
( 1

7 , 6
7 , 1

7 , 6
7

) = 10
49 ,

Ṽ
(〈

(−2)6l+4 1
7

〉

,
〈

(−2)6l+4 6
7

〉

, 1
7 , 6

7

)

= Ṽ
( 2

7 , 5
7 , 1

7 , 6
7

) = 6
49 ,

Ṽ
(〈

(−2)6l+5 6
7

〉

,
〈

(−2)6l+5 1
7

〉

, 4
7 , 3

7

)

= Ṽ
( 4

7 , 3
7 , 1

7 , 6
7

) = −2
49 ,

we have

σ 2
−2;1/7,6/7 = 10

49
+2

(
1

2
· 6

49
+ 1

4
· −2

49
+ 1

8
· 10

49

) (

1 + 1

8
+ 1

82 +· · ·
)

= 130

73 >
1

4
.

Hence we have Σ−2 ≥
√

910
49 > 1

2 .
Although we conjecture that this is the right value of Σ−2, unfortunately we do not

have a proof for it. We shall return to this evaluation in future.
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