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Abstract The question of how certain arithmetical conditions on the lengths of the
conjugacy classes of a finite group G influence the group structure has been studied
by several authors with many results available. The purpose of this paper is to analyse
the restrictions imposed by the lengths of the conjugacy classes of some elements of
the factors of a finite group G = G1G2 · · · Gr , which is the product of the pairwise
mutually permutable subgroups G1, G2, . . . , Gr , on its structure. Some earlier results
appear as corollaries of our main theorems.
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1 Introduction and statement of results

This paper deals with several problems concerning finite factorised groups, that is,
groups G = G1G2 · · · Gr which are the product of pairwise permutable subgroups
G1, G2, . . . , Gr . Arguably, the study of factorised groups is a productive and interest-
ing area of research in finite group theory, with the structural impact of the factors one
of the central questions. During the past two decades, finite factorised groups whose
factors are connected by means of certain permutability properties, namely mutually
and totally permutable products, have gained more and more popularity (see Ref. [1]).
Recall that two subgroups A and B of a group G are called mutually permutable if
A permutes with every subgroup of B and B permutes with every subgroup of A. A
group G = G1G2 · · · Gr which is the product of its pairwise permutable subgroups
G1, G2, . . . , Gr is said to be the mutually permutable product of G1, G2, . . . , Gr if
Gi and G j are mutually permutable subgroups of G for all i, j ∈ {1, 2, . . . , r}.

Our paper features some results which give information about the structural restric-
tions on a mutually permutable factorised finite group in which the lengths of conjugacy
classes of some elements of its factors have certain arithmetical properties.

In the sequel all groups considered are finite.
The terminology here is as follows: for an element x of a group G, we denote the

conjugacy class of x in G by xG . We denote by |xG | the length of the conjugacy class
xG , that is, the number of elements of xG . If p is a prime, we say that an element x of
the group G is p-regular if its order is not divisible by p; we say that x is p-singular
if its order is divisible by p. As usual, a p-element of G is a p-singular element of
prime power order.

Our first main result shows that the structure of a mutually permutable product
in which the length of the conjugacy classes of the elements of the factors are not
divisible by a prime p is quite restricted.

Theorem 1.1 Let the group G = G1G2 · · · Gr be the product of the pairwise mutually
permutable subgroups G1, G2, . . . , Gr , and let p be a prime. Then:

1. No conjugacy class length |xG |, where x is a p-regular element of prime power
order in

⋃r
i=1 Gi , is divisible by p if and only if G = Op(G) × Op′(G).

2. |xG | is not divisible by p for every element x ∈ ⋃r
i=1 Gi if and only if G =

Op(G) × Op′(G) with Op(G) abelian.

In the particular case when G = G1 = · · · = Gr , we have:

Corollary 1.2 [4] Let p be a prime integer. Then |xG | is not divisible by p for every
element x of G if and only if G = Op(G) × Op′(G) with Op(G) abelian.

The case when r = 2, when G = G1G2 is just the product of the mutually permut-
able subgroups G1 and G2 is of special interest, since sometimes the problems reduce
from an arbitrary number r of factors to the case r = 2. Our second main result shows
that the order of the Sylow p-subgroups of the chief factors of a mutually permutable
product of two factors in which the conjugacy class lengths of the p-regular elements
of the factors are not divisible by p2 is not divisible by p2 either.
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Theorem 1.3 Let the group G = AB be the mutually permutable product of the sub-
groups A and B. Suppose that for every p-regular element x ∈ A ∪ B, |xG | is not
divisible by p2. Then the order of a Sylow p-subgroup of every chief factor of G is at
most p. In particular, if G is p-soluble, we have that G is p-supersoluble.

We do not know whether or not the above result holds for an arbitrary number of
factors.

As an immediate deduction we have the

Corollary 1.4 [8] Let G be a group and let p be a prime. Suppose that, for every
p-regular element x of G, |xG | is not divisible by p2. Then the order of a Sylow
p-subgroup of every chief factor of G is at most p.

If the condition of Theorem 1.3 holds for every prime, we get supersolubility.

Corollary 1.5 Let the group G = AB be the mutually permutable product of the
subgroups A and B. Suppose that for every prime p and every p-regular element
x ∈ A ∪ B, |xG | is not divisible by p2. Then G is supersoluble.

Theorem 10 of Ref. [7] was the starting point of our investigation. It can be regarded
as a particular case of the above corollary.

Corollary 1.6 [7] Let the group G = AB be a product of two subgroups A and
B which are permutable in G. Suppose that for every prime p and every element
x ∈ A ∪ B, |xG | is not divisible by p2. Then G is supersoluble.

2 Proofs

Our first result, whose proof is straightforward, implies that the assumptions about
conjugacy classes of our main results are inherited by normal subgroups and quotient
groups. We shall use these properties frequently without further reference.

Lemma 2.1 Let N be a normal subgroup of a group G and let p be a prime. Then:

1. |x N | divides |xG | for any x ∈ N.
2. |(yN )G/N | divides |yG | for any y ∈ G.
3. If x N is a p-element of G/N, then there is a p-element x1 of G such that x N = x1 N.

We shall also use the following lemma frequently and without further comment.
It says that if G is a mutually permutable product and N is a normal subgroup of G,
then G/N is also a mutually permutable product.

Lemma 2.2 [1, 4.1.11] Let the group G = G1G2 · · · Gr be the product of the pair-
wise mutually permutable subgroups G1, G2, . . . , Gr . Then G/N is the product of
the mutually permutable subgroups G1 N/N , G2 N/N , . . . , Gr N/N.

Our next result will be applied to the consideration of groups with no conjugacy
class length divisible by a given prime.
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Lemma 2.3 [7, Theorem 5] Let p be a prime and let G be a group such that |xG |
is not divisible by p for any p-regular element x of prime power order in G. Then
G = Op(G) × Op′(G).

Lemma 2.4 Let p be a prime and Q a p′-group acting faithfully on an elementary
abelian p-group N with |[x, N ]| = p for all 1 �= x ∈ Q. Then Q is cyclic.

Proof Suppose the result is not true and let Q be chosen as small as possible and
then N also chosen as small as possible. Note that N cannot be cyclic. The hypoth-
eses of the lemma remain true for subgroups of Q and so we must have Q = 〈a, b〉.
Also since N = [N , Q] × CN (Q) we have CN (Q) = 1 by the minimality of N .
Since |[a, N ]| = |[b, N ]| = p, CN (a) and CN (b) are maximal in N . Also, CN (a) ∩
CN (b) = CN (Q) = 1 and so if CN (a) = CN (b) we would have |N | = p, a contradic-
tion. Hence N = CN (a)×CN (b) and [a, CN (b)] = CN (b) and [b, CN (a)] = CN (a).

If n ∈ CN (a) then n[a,b] = na−1b−1ab = nb−1ab = (nb−1
)b = n (since nb−1 ∈

CN (a)). Similarly [a, b] centralises CN (b) and hence N , a contradiction. Thus Q is
abelian. In this case we have CN (ab) = 1 and this contradiction completes the proof.

	

Proof of Theorem 1.1 We first give a proof for Statement 1. It is clear that only the
necessity of the condition is in doubt. Assume that G = G1G2 · · · Gr is the product of
the pairwise mutually permutable subgroups G1, G2, . . . , Gr and |xG | is not divisible
by p for any p-regular element of prime power order x ∈ ⋃r

i=1 Gi . Suppose that the
theorem is not true, and let the group G provide a counterexample of least possible
order. If M is a non-trivial normal subgroup of G, then G/M satisfies the hypotheses
of the theorem. Thus, by the minimality of G, we have G/M = (P M/M) × (Q/M)

with P a Sylow p-subgroup of G and Q/M = Op′(G/M). Since the class of all
groups which are the direct product of a p-group and a p′-group is a formation, we
see easily that G has a unique minimal normal subgroup, say N . Assume that N
is not abelian. We have by [1, 4.3.8] that there exists j ∈ {1, 2, . . . , r} such that
N ≤ G j . Applying Lemma 2.3, N has a normal Sylow p-subgroup, which must be
trivial because N is minimal normal in G. Thus the order of N is not divisible by p,
and hence every p-regular element of P N is contained in N . By virtue of Lemma 2.3,
P is a normal Sylow p-subgroup of P N . It follows immediately that P is normal in
G, a contradiction which implies that N is an abelian subgroup of G. If N is a p-group
then Q = N T, N ∩ T = 1. Since T is a p′ group, it follows that N centralises every
element of T and then since T centralises P/N and N it centralises P ([5, I, 1.5]).
Thus G = P × T , a contradiction. Suppose now that N is a p′-group. Applying [1,
4.1.45], P is prefactorised in G, that is, P = (P ∩ G1)(P ∩ G2) · · · (P ∩ Gr ). More-
over, by [1, 4.1.22] (see also Ref. [2] for the case of 2 factors), every normal subgroup
of G is prefactorised in G. Thus U = P N = (U ∩ G1)(U ∩ G2) · · · (U ∩ Gr ),
and N = (N ∩ G1)(N ∩ G2) · · · (N ∩ Gr ). Moreover, U is the pairwise mutually
permutable product of the subgroups U ∩ G1, U ∩ G2, · · · , U ∩ Gr . Suppose that U
is a proper normal subgroup of G. Since U satisfies the hypotheses of the theorem,
the minimality of G ensures that U = P × N . We now have P centralises both Q/N
and N and hence P centralises Q (by [5, I, 1.5]). Thus G = P × Q, a contradiction.
This contradiction yields U = P N = G. Let ni ∈ (N ∩ Gi ), i ∈ {1, 2, . . . , r}. Then
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CG(ni ) contains a Sylow p-subgroup of G. Since N is abelian, we have CG(ni ) = G.
It follows that N ≤ Z(G) and so G = P × N , a final contradiction.

It is clear that Statement 2 is a direct consequence of Statement 1. This completes
the proof of the theorem. 	


Proof of Theorem 1.3 Suppose that the result is false and choose for G a counterex-
ample of minimal order. Since the properties of G, as enunciated in the statement of
the theorem, are inherited by quotients of G and the class of all groups whose chief
factors have Sylow p-subgroups of order at most p is a formation, the minimality of G
implies that G has a unique minimal normal subgroup N , the Sylow p-subgroups of
N have order at least p2, and the chief factors of G above N have Sylow p-subgroups
of order at most p. Suppose that N is not soluble. Then N = N1 × · · · × Nt , is a di-
rect product of pairwise isomorphic non-abelian simple groups Ni , i ∈ {1, 2, . . . , t}.
Applying [1, 4.3.8] (see also Ref. [2]), either N ≤ A or N ≤ B. According to
[4, Proposition 3], for each i , there exists an element xi ∈ Ni such that |CNi (xi )|
is not divisible by p. Thus CNi (xi ) is a p′-group for every i ∈ {1, 2, . . . , t}. Let
x = x1 . . . xt . Clearly x is a p-regular element of G belonging to A or B, and
so |x N | is not divisible by p2. Moreover, CN (x) = CN1(x1) × · · · × CNt (xt ) is
a p′-group. This implies that the Sylow p-subgroups of N have order at most p,
contrary to assumption. Consequently, N must be soluble and so N is an elemen-
tary abelian p-group which is not central in G. Let Z/CG(N ) be a minimal nor-
mal subgroup of G/CG(N ). Then, by Ref. [5, A, 13.6], Z/CG(N ) is not a p-
group. In addition, the Sylow p-subgroups of Z/CG(N ) have order at most p. We
may assume, by Ref. [1, 4.3.11] (see also Ref. [3]), that Z/CG(N ) is contained in
ACG(N )/CG(N ). Suppose that Z/CG(N ) is not abelian. If the Sylow p-subgroups
of Z/CG(N ) have order p, then it follows that Z/CG(N ) is a non-abelian simple
group. Applying Ref. [4, Proposition 3], there exists an element x ∈ A such that
xCG(N ) ∈ Z/CG(N ), and CZ/CG (N )(xCG(N )) is a p′-group. Since xCG(N ) is a
p-regular element of ACG(N )/CG(N ), we may suppose that x is a p-regular ele-
ment of A. Now |N/CN (x)||(Z/CG(N ))/CZ/CG (N )(xCG(N ))| divides |Z/CZ (x)|.
Since N �= CN (x) both |N/CN (x)| and |(Z/CG(N ))/CZ/CG (N )(xCG(N ))| are divis-
ible by p and hence |Z/CZ (x)| divisible by p2, a contradiction. Thus Z/CG(N )

is a p′-group. Since for every p-regular element 1 �= xCG(N ) ∈ Z/CG(N ) we
have |N/CN (x)| = p it now follows from Lemma 2.4 that Z/CG(N ) is cyclic, say
Z/CG(N ) = 〈xCG(N )〉 with x p-regular. But then N = [N , Z ] × CN (Z), giving
[N , Z ] = [N , x] is normal in G and has order p, a contradiction. This final contra-
diction establishes the theorem. 	


Proof of Corollary 1.5 We must prove that G is supersoluble. Suppose G = AB is
chosen satisfying the hypothesis of the corollary but not supersoluble. Let N be a mini-
mal normal subgroup of G. Then G/N is supersoluble. By [1, 4.3.3], {A∩N , B∩N } ⊆
{N , 1}. If A ∩ N = B ∩ N = 1, then [1, 4.3.9] implies that N is of prime order. Hence
G is supersoluble, contrary to supposition. Therefore either N ≤ A or N ≤ B.
According Theorem 1.3, every chief factor of N has cyclic Sylow subgroups. Apply-
ing Ref. [6, IV, 2.9], N is soluble. Hence G is soluble and Theorem 1.3 yields the final
contradiction. 	
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