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Abstract In this paper, we consider a new length preserving curve flow for closed
convex curves in the plane. We show that the flow exists globally, the area of the region
bounded by the evolving curve is increasing, and the evolving curve converges to the
circle in C∞ topology as t → ∞.
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1 Introduction

In this paper, we study a nature flow for closed convex curves in the plane. This flow
preserves the length of evolving curves and then it is a non-local curve flow. We shall
obtain the entropy estimate and integral estimates for the evolution flow to get a global
flow. Then we show that it converges to a circle at t → ∞ in C∞ sense. We remark that
our method is similar to the one used in [7], where the authors have studied the curve
shortening flow which shrinks to a point at finite time. Since our flow has different
nature, we must give some detail. Curve shortening flow has been studied extensively
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58 L. Ma, A. Zhu

in the last few decades (see [3,4,7–9,13,16] for background and more references). It
can be showed that the convexity of curves along the curve shortening flow is pre-
served and the curves become more and more circular before they collapse to a point.
Other flows for curves have also been proposed. One may see Andrews’s papers (see
for example, [1]) and Tsai’s papers [18] for more flows for curves. As showed by Gage
[6], some non-local flows for convex curves are also very interesting. In a very recent
paper [17], Pan and Yang have considered a very interesting length preserving curve
flow for convex curves in the plane of the form

∂

∂t
γ (t) =

(
L

2π
− k−1

)
N ,

where L , N , and k are the length, unit normal vector, and the curvature of the curve
γ (t) respectively. They have proved that the convex planar curve flow will become
more and more circular and converges to circle in the C∞ sense. Apparently it is inter-
esting to study planar curve flows which preserve some geometry quantity, such as the
area of the region bounded by the curve. For an area-preserving planar curve flow, one
may see [14]. In [10], the author has studied a higher dimensional volume-preserving
flow for hyper-surfaces.

The main result of this paper is the following theorem.

Theorem 1.1 Suppose γ (u, 0) is a convex curve in the plane R2. Then there is a
unique maximal curve flow γ (t) := γ (u, t) of convex curves satisfying the following
evolving equation

∂

∂t
γ (t) = (k − α(t))N , (1.1)

where k is the curvature of the evolving curve γ (t) and

α(t) = 1

2π

∫
k2ds := 1

2π

∫
γ (t)

k2ds.

The flow exists globally and is length preserving. Furthermore, the flow γ (t) converges
in C∞ to the circle of fixed length L as t → ∞.

We point out that the local existence and uniqueness of the flow (1.1) follows in
the similar way as in Theorem 3.4 in [11] or using the trick of supporting function of
convex curve. By now, this part is standard and we omit the detail. The uniqueness
follows also from lemma 32.14 in the book of Kriegl and Michor [12]. We remark
that for α(t) = 2π

L in (1.1), where L is the length of the curve γ (t), the evolution
equation (1.1) is an area-preserving flow, which has been studied by Gage in [6]. In
below, we shall denote

∫
γ (t) by

∫
for the evolving curve γ (t) and use C to denote

various uniform positive constants.
The paper is organized as follows. In section 2, we introduce necessary formulae

for the flow (1.1). In section 3, we obtain key estimates about the curvature of the
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On a length preserving curve flow 59

evolving curve flow (1.1). We show that the evolving curve is a convex curve and the
flow does not blow up in finite time. We also obtain the theorem 1.1 in the C0 case.
In the last section, we show the C∞ convergence of the flow.

2 Preparation

First of all, we derive basic formulae for our curve flow (1.1) for closed convex planar
curves. We denote the evolving curve by γ (t) := γ (u, t). We let T and N be the unit
tangent vector and the (inward pointing) unit normal vectors to the evolving curve.

Lemma 2.1 Let w = |γu |. Then we have

wt = −k(k − α(t))w,

and

∂

∂t

∂

∂s
− ∂

∂s

∂

∂t
= k(k − α)

∂

∂s
.

Proof Note that

w2 = |γu |2.

Then we have

wwt = <γu, γtu> = <γu, ((k − α)N )u> = w2(k − α)<T, Ns>.

Using

Ns = −kT,

we have

wt = −k(k − α)w.

Then,

∂

∂t

∂

∂s
− ∂

∂s

∂

∂t
= ∂

∂t

(
1

w

)
∂

∂u
= k(k − α)∂s .

��
Recall that ds = wdu. Then we have

(ds)t = wt du = −k(k − α)ds.

We shall use this formula later.
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60 L. Ma, A. Zhu

Lemma 2.2

∂

∂t
T = ∂sk N ,

∂

∂t
N = −∂skT .

Proof By a direct computation, we have

∂

∂t
T = ∂

∂t

∂

∂s
γ = ∂

∂s

∂

∂t
γ + k(k − α)∂sγ

= ∂s((k − α)N ) + k(k − α)T

= ∂sk N .

Note that

0 = ∂

∂t
<T, N> = <

∂

∂t
T, N> + <T,

∂

∂t
N> = ∂sk + <T,

∂

∂t
N>.

Then we have

∂

∂t
N = −∂skT .

��
We denote the angle between the tangent of the evolving curve and the X-axis by

θ . Then we have

cosθ = <T, X>

and the curvature of the curve is given by

k = ∂θ

∂s
.

For convex curves we can use the angle θ of the tangent line as a parameter [2]. We
may write the curvature k = k(θ) in terms of this parameter.

Lemma 2.3

∂θ

∂t
= ∂sk.

Proof Note that

−sinθ
∂θ

∂t
= <

∂T

∂t
, X> = ∂sk<N , X>.

Since < N , X >= cos
(
θ + π

2

) = − sin θ . The lemma follows immediately. ��
We can derive the important evolution equation for the curvature.
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On a length preserving curve flow 61

Lemma 2.4

∂

∂t
k = ∂2

s k + k2(k − α).

Proof Just do the computation.

∂

∂t

∂

∂s
θ = ∂

∂s

∂

∂t
θ + k(k − α)∂sθ = ∂2

s k + k2(k − α).

��
Note that

∫
kds = 2π along the flow. Hence, we get

Lemma 2.5

∂

∂t

∫
kds = 0.

We remark that another proof of above fact is below through using lemma 2.4.

Proof

∂

∂t

∫
kds =

∫
∂

∂t
kds + k

∂

∂t
ds =

∫
∂2

s k + k2(k − α) − k2(k − α)ds = 0.

��
Using lemma 2.5, we derive

Lemma 2.6 The length L of the evolving curve is preserved under the flow.

Proof

∂

∂t
L =

∫
<γu, γtu>

|γu | du =
∫

<T, γts>ds

=
∫

<T, ((k − α)N )s>ds = −
∫

k(k − α)ds

= −
∫

k2ds + α

∫
kds = 2πα −

∫
k2ds = 0.

��
Another important fact for us is the following.

Lemma 2.7 The area A(t) of the domain bounded by the curve γ (t) is increasing.
That is,

d

dt
A(t) = αL − 2π ≥ 0

and the equality occurs only when k is a constant, i.e. the curve is a circle.
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Proof Since

−2A(t) =
∫

<γ, N>ds,

we have

−2
d

dt
A(t) =

∫
d

dt
<γ, N>ds +

∫
<γ, N>

d

dt
ds

=
∫

<(k − α)N , N>ds +
∫

<γ,−∂s(k − α)T >ds

+
∫

<γ, N>(−k(k − α))ds

=
∫

(k − α)ds −
∫

∂s(k − α)<γ, T >ds −
∫

<γ, N>k(k − α)ds

=
∫

(k − α)ds +
∫

(k − α)(<T, T > + k<γ, N>)ds

−
∫

<γ, N>k(k − α)ds

= 2
∫

(k − α)ds = 2(2π − Lα).

Note that

2πα =
∫

k2ds ≥ 1

L

(∫
kds

)2

= 4π2

L
.

We remark that from the Cauchy-Schwartz inequality, the equality occurs only when
k is a constant, i.e. the curve is a circle. Then we have

2π − αL ≤ 0,

which implies the result wanted. ��

We now consider the growth of α = α(t).

Lemma 2.8

∂tα = − 1

π

∫
(ks)

2ds + 1

2π

∫
k3(k − α)ds.
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On a length preserving curve flow 63

Proof Do the computation.

∂tα = 1

π

∫
kkt ds − 1

2π

∫
k3(k − α)ds

= 1

π

∫
k(kss + k2(k − α))ds − 1

2π

∫
k3(k − α)ds

= − 1

π

∫
(ks)

2ds + 1

2π

∫
k3(k − α)ds.

The lemma follows immediately. ��

3 Long time existence

In this section, we derive key estimates of the curvature k of the evolving curve γ (t).
We firstly work with the general curve flow of convex curves with

∂

∂t
γ = (k − α)N + ηT (3.1)

where the function η will be given later.
Similar to results in the section above, we can compute the following basic formulae

of the flow (3.1).

Lemma 3.1 Commutator:

∂t∂s − ∂s∂t = k(k − α)∂s − ηs∂s .

The growth of tangent:

∂t T = (∂s(k − α) + kη)N .

The change of angle:

∂tθ = ∂sk + kη.

Length invariant:

∂t L = 0.

Area growth:

∂t A =
∫

(α − k)ds.
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The computation is omitted.
We now take η such that ∂tθ = 0, i.e. η = −∂θ k. Then by changing the space

variable we can transform away the tangential component, without changing the shape
of the curves (see also the proof of Theorem 4.1.4 in [7]).

Remark 3.1 Along the flow (3.1), the length is also preserved, and the variation of
area is the same as the case when η = 0.

The evolution of the curvature of the evolving curve is given below.

Lemma 3.2

∂k

∂t
= k2∂2

θ k + k2(k − α).

Proof

∂t k = ∂s∂tθ + k(k − α)∂sθ − ∂sη∂sθ

= ∂s(∂sk + kη) + k(k − α)∂sθ − ∂sηk

= ∂2
s k + η∂sk + k2(k − α).

Since ds
dθ

= k, we have ∂s = k∂θ . Substituting ∂s = k∂θ and η = −∂θ k into the
above equality, we have

∂t k = k∂θ (k∂θk) + k∂θk(−∂θ k) + k2(k − α)

= k2∂2
θ k + k(∂θk)2 − k(∂θ k)2 + k2(k − α)

= k2∂2
θ k + k2(k − α).

Then the proof of the lemma is completed. ��
One of the main results in this section is below.

Theorem 3.1 Convexity is preserved along the flow (3.1). In fact, for any finite T ∈
(0,∞) such that the curve flow exists on [0, T ], we have that k(t) is uniformly bounded
from below by a positive constant on the interval [0, T ].
Proof Fix any finite T ∈ (0,∞) such that the curve flow exists on [0, T ]. By a direct
computation, we have, for t ∈ (0, T ],

∂t

(
1

k
− A

L
− 2π t

L

)
= k2∂2

θ

(
1

k
− A

L
− 2π t

L

)
− 2k3

(
∂θ

(
1

k
− A

L
− 2π t

L

))2

− k.

(3.2)

For any t < T0, where T0 ∈ (0, T ] is the first time such that k(T0) = 0 (which implies
that 1

k − A
L − 2π t

L blows up at T0), we have k(t) > 0. Take any ε > 0 small enough.
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On a length preserving curve flow 65

Suppose the maximum of 1
k − A

L − 2π t
L attains at (x0, t0) ∈ γ × [0, T0 − ε]. Assume

that t0 > 0. Then we have, at (x0, t0),−k < 0,

∂

∂t

(
1

k
− A

L
− 2π t

L

)
|(x0,t0) ≥ 0,

k2∂2
θ

(
1

k
− A

L
− 2π t

L

)
|x0,t0 ≤ 0,

and

2k3
(

∂θ

(
1

k
− A

L
− 2π t

L

))2

|x0,t0 = 0.

All these relations imply a contradiction with (3.2). Then, 1
k − A

L − 2π t
L attains its

maximum at t0 = 0, which implies that

1

k
− A

L
− 2π t

L
≤ max

θ

[
1

k(0, θ)
− A(0)

L

]
.

This implies that k(t) ≥ 1
C1+C2t := c(t), where C1 > 0 and C2 > 0 are uniform con-

stants independent of ε > 0. This implies that T0 does not exist. Hence, the convexity
is preserved along the flow on [0, T ] and k(t) is uniformly bounded from below by a
positive constant on the interval [0, T ]. ��

Following [7], we now do the entropy estimate.

Theorem 3.2
∫

log k(θ, t)dθ is non increasing along the flow and there is a uniform
bound for

∫
log k(θ, t)dθ along the flow.

Proof

∂

∂t

∫
log k(θ, t)dθ =

∫
k∂2

θ k + k(k − α)dθ

=
2π∫

0

−(∂θ k)2 + (k − α)2dθ + α

2π∫
0

(k − α)dθ.

By definition, we have
∫ 2π

0 (k −α)dθ = 0. Using the Wirtinger inequality, we have

∂

∂t

2π∫
0

log k(θ, t)dθ ≤ 0.

123



66 L. Ma, A. Zhu

Therefore,

2π∫
0

log k(θ, t)dθ ≤
2π∫

0

log k(θ, 0)dθ.

��
Based on the entropy estimate above we can derive the following result.

Theorem 3.3 Assume that the curve flow exists on [0, T ). Then for any δ > 0, we
can find a constant C(T ) > 0 such that k(θ, t) ≤ C(T ) except on intervals of length
less than or equal to δ.

Proof If k ≥ C(T ) on a ≤ θ ≤ b and b − a ≥ δ, then

2π∫
0

log k(θ, t)dθ ≥ δ log C(T ) + (2π − δ) log kmin(t)

≥ δ log C(T ) + (2π − δ) log c(T ),

where c(T ) is the lower bound of k on [0, T ). Using the fact that
∫ 2π

0 log k(θ, t)dθ is
non-increasing, we know that C(T ) is bounded above. ��

Along the flow we have the following inverse Poincare type inequality.

Lemma 3.3 We have

∫ (
∂k

∂θ

)2

dθ ≤
∫

k2 + D

for some uniform constant D which depends only on the initial curve γ (0).

Proof Compute,

∂

∂t

∫
(k − α)2 −

(
∂k

∂θ

)2

dθ

= 2
∫

(k − α)(∂t k − ∂tα) − 2
∂k

∂θ

∂2k

∂θ∂t
dθ

= 2
∫

(k − α + ∂2
θ k)∂t kdθ − 2

∫
(k − α)∂tαdθ

= 2
∫

(k − α + ∂2
θ k)2k2dθ + 2∂tα(2πα −

∫
kdθ).

Note that
∫

kdθ =
∫

k2ds = 2πα.
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On a length preserving curve flow 67

Then we have

∂

∂t

∫
(k − α)2 −

(
∂k

∂θ

)2

dθ = 2
∫ (

k − α + ∂2
θ k

)2
k2dθ.

Integrating the above inequality, we have

∫
(k(t) − α(t))2 −

(
∂k(t)

∂θ

)2

dθ ≥
∫

(k(0) − α(0))2 −
(

∂k(0)

∂θ

)2

dθ = −D.

By this we have

∫ (
∂k(t)

∂θ

2
)

dθ ≤
∫

(k(t) − α(t))2 + D ≤
∫

k2dθ + D.

This completes the proof.

Theorem 3.4 If
∫ 2π

0 log k(θ, t)dθ is uniformly bounded on [0, T ), then k(θ, t) is uni-
formly bounded on S1 × [0, T ).

Proof For any given δ, by theorem 3.3, we have k ≤ C(T ) except on intervals [a, b]
of length less than δ. On such an interval

k(φ) = k(a) +
φ∫

a

∂k

∂θ
dθ ≤ C(T ) + √

δ

(∫ (
∂k

∂θ

)2

dθ

)1/2

≤ C(T ) + √
δ

(∫
k2dθ + D

)1/2

.

Assume that k attains its maximum at φ. Then we have

kmax ≤ C(T ) + √
δ
(

2πk2
max + D

)1/2
.

By choosing δ small, we have

k2
max ≤ 2C2(T ) + 2δD

1 − 4πδ
≤ 4C2(T ).

��
Lemma 3.4 If k is bounded, then ∂k

∂θ
is bounded.

Proof

∂t∂θk = k2∂3
θ k + 2k∂θk∂2

θ k + 3k2∂θk − 2αk∂θ k.

Since k is bounded, α is bounded. Then ∂θ k grows at most exponentially. ��
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In the following, we will use k
′
, k

′′
, etc, to denote the derivatives of γ (t) with

respect to the variable θ .

Lemma 3.5 If k and k
′

are bounded, then
∫ 2π

0 (k
′′
)4dθ is bounded.

Proof By the Holder inequality, we have

∂

∂t

2π∫
0

(k
′′
)4dθ = 4

2π∫
0

(k
′′
)3(k2k

′′ + k2(k − α))
′′
dθ

= −12

2π∫
0

(k
′′
)2(k

′′′
)(k2k

′′′ + 2kk
′
k

′′ + 3k2k
′ − 2αkk

′
)dθ

= −12

2π∫
0

k2(k
′′
)2(k

′′′
)2 + 2kk

′
(k

′′
)3k

′′′ + 3k2k
′
(k

′′
)2k

′′′
dθ

+24α

2π∫
0

kk
′
(k

′′
)2k

′′′
dθ

≤ C1

2π∫
0

(k
′′
)4(k

′
)2dθ + C2

2π∫
0

k2(k
′
)2(k

′′
)2dθ

+24αC3

2π∫
0

(k
′
)2(k

′′
)2dθ.

By the bound of k, k
′
, we see that

∫ 2π

0 (k
′′
)4dθ grows at most exponentially. ��

Lemma 3.6 If k, k
′
, and

∫ 2π

0 (k
′′
)4dθ are bounded, then so is

∫ 2π

0 (k
′′′
)2dθ .

Proof Note that

∂

∂θ

2π∫
0

(k
′′′
)2dθ

= −2

2π∫
0

k
′′′′

(k2k
′′ + k3 − αk2)

′′
dθ

= −2

2π∫
0

k2(k
′′′′

)2 + 4kk
′
k

′′′
k

′′′′ + 2k(k
′′
)2k

′′′′

+2(k
′
)2k

′′
k

′′′′ + 3k2k
′′
k

′′′′ + 6k(k
′
)2k

′′′′

−2α(k
′
)2k

′′′′ − 2αkk
′′
k

′′′′
dθ
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≤ C1

∫
(k

′
)2(k

′′′
)2dθ + C2

∫
(k

′′
)4dθ + C3

∫
(k

′
)4

k2 (k
′′
)2dθ

+C4

∫
k2(k

′′
)2dθ + C5

∫
(k

′
)4dθ + C6

∫
(k

′
)4

k2 dθ + C7

∫
(k

′′
)2dθ.

By the bounds of k, k
′
, ||k ′′ ||4, we see that

∫ 2π

0 (k
′′′
)2dθ grows at most exponen-

tially. ��
Corollary 3.1 Under the same hypothesis as above, k

′′
is bounded.

Proof Recall the well-known fact that for any one dimensional smooth function f ,
we always have that

max | f |2 ≤ C
∫

| f
′ |2 + f 2.

We apply this to k
′′

to get the desired estimate. ��
Lemma 3.7 If k, k

′
, and k

′′
are uniformly bounded, then so are k

′′′
and all the higher

derivatives of k.

Proof We compute

∂

∂t
k

′′′ = (k2k
′′ + k3 − k2α)

′′′

= k2kv + 6kk
′
kiv + (8kk

′′ + 6k
′2 + 3k2 − 2αk)k

′′′

+(6k
′
(k

′′
)2 + 18kk

′
k

′′ + 6(k
′
)3 − 6αk

′
k

′′
).

Since k, k
′
, k

′′
, α are bounded, k

′′′
grows at most exponentially. Similarly, we can

show that for any n ≥ 3, the derivative k(n) is bounded on any finite intervals. ��
Then we have

Theorem 3.5 The curve flow does not blow up in any finite time.

Proof By the above analysis, the curvature of the evolving curve does not blow up in
any finite time. This implies that the curve flow does not blow up in finite time and it
exists globally. ��

We now recall the following inequality from [5].

Theorem 3.6 For any closed, convex C2 curve γ in the plane, we have

π
L

A
≤

L∫
0

k2ds,

where L , A and k are the length of the curve, the area it encloses, and its curvature
respectively.
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Theorem 3.7 If the convex curve γ (t) evolves according to (3.1), then the isoperimet-
ric deficit L2 − 4π A is decreasing during the evolution process (1.1) and converges
to zero as the time t goes to infinity. Furthermore, the evolving curve converges to a
circle in the Hausdorff sense.

Proof Since the length of the curve is preserved, we have

d

dt
(L2 − 4π A) = −4π

d

dt
A(t) = −4π(Lα − 2π) ≤ 0.

From the above theorem 3.6, we have

d

dt
(L2 − 4π A) ≤ −4π

(
L2

2A
− 2π

)
= −2π

A
(L2 − 4π A).

Note that for any closed plane curve, we have

L2

4π
≥ A.

Then we have

d

dt
(L2 − 4π A) ≤ −8π2

L2 (L2 − 4π A).

Hence,

L2 − 4π A(t) ≤ Cexp

(
−8π2

L2 t

)
,

and as t → ∞, we have

L2 − 4π A → 0.

By the Bonnesen inequality (see [15]), L2

A − 4π ≥ π2

A (rout − rin)2, we have
rout − rin → 0, as t → ∞. Then the evolving curve converges to a circle in the
Hausdorff sense. ��

4 C∞ convergence

In this section, we shall complete the proof of Theorem 1.1. We shall use the argument
in Sect. 5 in the work [7] to prove the C∞ convergence of the curve flow. The differ-
ence between our work with [7] is that Gage and Hamilton have used the normalized
curvature for the curve-shortening flow in the plane, which satisfies a similar evolution
equation as our curvature flow.
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Define, for w ∈ (0, π ],

k∗
w = sup{b|k(θ) > b on some interval o f length w}.

Using similar argument as in Lemma 5.1 in [7] we have the following geometric
estimate.

Lemma 4.1

k∗
w(t)rin(t) ≤ 1

1 − K (w)( rout
rin

− 1)
,

where rin and rout are the radii of the largest inscribed circle and the smallest circum-
scribed circle of the curve defined by the curvature function k(,̇t) respectively. The
function K is defined by

K (w) = 2cos(w
2 )

1 − cos(w
2 )

.

Remark 4.1 Since the proof is almost same as in Lemma 5.1 in [7], we omit the detail.
Here we note that the function K (w) is a positive decreasing function of w with
K (0) = ∞ and K (π) = 0.

From theorem 3.7 in the above section, we know that the curve flow γ (t) converges
to a circle in the Hausdorff sense as t → ∞, i.e.

π(rout − rin)2 ≤ L2 − 4π A → 0.

We also have πr2
out ≥ A(t) ≥ A(0). Hence, for any sufficient large time T1 we

have rin(t) ≥
√

A(0)
2π

for t ≥ T1.
We firstly fix a small w. Then there is a sufficient large time T2 ≥ T1 such that

K (w)

(
rout

rin
− 1

)
≤ 1/2

for t ≥ T2. By theorem 4.1, we have k∗
w(t)rin(t) ≤ 2, i.e., k∗

w(t) ≤ 2
√

2π
A(0)

for

t ≥ T2.
Then, we have

Theorem 4.1 The curvature k(t) is uniformly bounded along the flow.

Proof We just need to consider the curvature k of the evolving curve γ (t) for t ≥ T2.
First we fix a small w < ( 1

4π
)2. Assume that [a, b] is an interval such that k ≥ k∗

w.
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By this, we have |b − a| ≤ w and k(a) = k∗
w. For any φ ∈ [a, b], we have

k(φ) = k(a) +
φ∫

a

∂k

∂θ
dθ ≤ k∗

w + √
w

(∫ (
∂k

∂θ

)2

dθ

)1/2

≤ k∗
w + √

w

(∫
k2dθ + D

)1/2

.

Let kmax denote the maximum value of k. Then

kmax ≤ k∗
w + √

w
(

2πk2
max + D

)1/2 ≤ k∗
w + 2π

√
wkmax + √

wD.

Combining the above results together, we know that k is bounded uniformly for t ≥ T2.
��

Since k(θ, t) is uniformly bounded,
∫
(∂θ k)2dθ is uniformly bounded. By this we

know that k(·, t) is equi-continuous. Then for any sequence k(θ, ti ), we can choose
a sequence k(θ, tin ) converging uniformly to k(θ,∞). Note that the evolving curve
converges to the circle in the Hausdorff sense. Then k(θ,∞) = const . Since the
sequence k(θ, ti ) is arbitrary and it has a subsequence which converges to the same
curve with k(θ,∞) = const , we know that k(θ, t) converges to k(θ,∞) = const
uniformly.

Using an argument similar to section 5 in [7], we shall give various energy bounds
for the curvature.

Lemma 4.2 ||k ′ ||4 are bounded by constants independent of t .

Proof Compute,

∂

∂t

∫
(k

′
)4dθ = 4

∫
(k

′
)3(k2k

′′ + k2(k − α))
′
dθ

= −12

2π∫
0

k2(k
′
)2(k

′′
)2 − 12

2π∫
0

(k
′
)2k

′′
k3dθ

−8α

2π∫
0

(k
′
)4kdθ

≤ 3

2π∫
0

k4(k
′
)2dθ − 8α

2π∫
0

(k
′
)4dθ.

Since k converges to a constant at t = ∞, α(t) converges to the constant at t = ∞.
Using the Holder inequality, we have

∂ f

∂t
≤ C1 f 1/2 − C2 f
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for f = ∫ 2π

0 (k
′
)4dθ , where C1 > 0 and C2 > 0 are constants independent of t . Using

lemma 5.7.4 in [7], we know that ||k ′ ||4(t) is uniformly bounded. ��

Lemma 4.3 ||k ′′ ||2 is bounded by a constant which is independent of t .

Proof Compute,

∂t
1

2

2π∫
0

(k
′′
)2dθ

=
2π∫

0

k
′′
(∂t k)

′′
dθ

= −
2π∫

0

k
′′′
(k2k

′′
)
′
dθ +

2π∫
0

k
′′
((k3)

′′ − α(k2)
′′
)dθ

= −
2π∫

0

k2(k
′′′
)2dθ − 2

2π∫
0

kk
′
k

′′
k

′′′
dθ

−3

2π∫
0

k2k
′
k

′′′
dθ − 2α

2π∫
0

k(k
′′
)2dθ − 4α

2π∫
0

k
′′
(k

′
)2dθ.

By the Cauchy inequality, we have

∂t

2π∫
0

(k
′′
)2dθ ≤ C1

2π∫
0

(k
′
k

′′
)2dθ + C2

2π∫
0

k2(k
′
)2dθ − 4α

2π∫
0

k(k
′′
)2dθ

−4α

2π∫
0

k
′′
(k

′
)2dθ.

We can control the first term by using the inequality in lemma 4.2. In fact,

∂t

2π∫
0

(k
′′
)2dθ ≤ C2

2π∫
0

k2(k
′
)2dθ − 4α

2π∫
0

k(k
′′
)2dθ

−4α

2π∫
0

k
′′
(k

′
)2dθ − C3∂t

2π∫
0

(k
′
)4dθ
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−C4

2π∫
0

(k
′
)2k

′′
k3dθ − C5

2π∫
0

(k
′
)4dθ

≤ C6 − C7

2π∫
0

(k
′′
)2dθ − C3∂t

2π∫
0

(k
′
)4dθ.

We denote
∫ 2π

0 (k
′′
)2dθ by f (t). Then we have

∂t f ≤ C6 − C7 f − C3∂t

2π∫
0

(k
′
)4dθ.

Multiplying ec7t on both sides of the above inequality and integrating, we have

ec7t f (t)|t0 ≤ C6

t∫
0

eC7t dt − C3

t∫
0

eC7t∂t

2π∫
0

(k
′
)4dθdt.

Then we have

eC7t f (t) ≤ C6

C7
eC7t + C3C7

t∫
0

eC7t

2π∫
0

(k
′
)4dθdt + c3

2π∫
0

(k
′
)4dθ + C8

≤ C6

C7
eC7t + C3 MeC7t + C3 M + C8,

where M is the bound of
∫ 2π

0 (k
′
)4dθ which is independent of t . So

∫ 2π

0 (k
′′
)2dθ is

uniformly bounded.
Then using similar argument as in lemma 5.7.8 of [7], we have ��

Lemma 4.4 ||k ′ ||∞ converges to 0 as t → ∞.

Similar to lemma 5.7.9 in [7], we have

Lemma 4.5 For any β ∈ (0, 1) we can choose A so that for t > A,

∫
(k

′′
)2dθ ≥ 4β

∫
(k

′
)2dθ.

The proof of lemma 4.5 is omitted.

Lemma 4.6 There is a constant C1 > 0 such that ||k ′ ||2 ≤ C1e−4C2t , where C is the
constant such that k → C as t → ∞.
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Proof Compute,

∂t

∫
(k

′
)2dθ = 2

∫
k

′
(k2k

′′ + k3 − αk2)
′
dθ

= −2
∫

k2(k
′′
)2dθ + 6

∫
k2(k

′
)2dθ − 4α

∫
k(k

′
)2dθ.

Since k → C, as t → ∞, we have

∂t

∫
(k

′
)2dθ ≤ −2C2

∫
(k

′′
)2dθ + 6C2

∫
(k

′
)2dθ − 4C2

∫
(k

′
)2dθ

≤ −8C2β

∫
(k

′
)2dθ + 6C2

∫
(k

′
)dθ − 4C2

∫
(k

′
)2dθ

≤ −4C2
∫

(k
′
)2dθ.

So we have completed the proof. In below, we shall obtain good exponential decay
bounds on the low order derivatives. ��
Lemma 4.7 For any β ∈ (0, 1), there is a uniform constant C > 0 such that ||k ′′ ||2 ≤
Ce−2βt .

Proof By a direct computation, we have

∂t

∫
(k

′′
)2dθ

= 2
∫

k
′′
(kt )

′′
dθ = 2

∫
k

′′
(k2k

′′ + k2(k − α))
′′
dθ

= −2
∫

k2(k
′′′
)2dθ − 4

∫
kk

′
k

′′
k

′′′
dθ − 6

∫
k2k

′
k

′′′
dθ

−4α

∫
(k

′
)2k

′′ − 4α

∫
k(k

′′
)2dθ

≤ −2
∫

k2(k
′′′
)2dθ + 4ε

∫
k2(k

′′′
)2dθ + 1/ε

∫
(k

′
)2(k

′′
)2dθ

+6(ε

∫
(kk

′′′
)2 + 1/4ε

∫
k2(k

′
)2) − 4α

∫
(k

′
)2k

′′
dθ

−4α

∫
k(k

′′
)2dθ.

We choose ε > 0 small such that

∂t

∫
(k

′′
)2dθ ≤ C1

∫
(k

′
)2(k

′′
)2dθ + C2

∫
k2(k

′
)2dθ

−4α

∫
(k

′
)2k

′′
dθ − 4α

∫
k(k

′′
)2dθ.
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Since ||k ′ ||∞ converges to 0, k → C, α → C as t → ∞, we have

∂t

∫
(k

′′
)2dθ ≤ −2C2

∫
(k

′′
)2dθ + C2Ce−C3t .

We denote
∫
(k

′′
)2dθ by f (and we may repeat the use of the same f to denote various

quantities in different lemmas). Then we have

∂t f ≤ −2C2 f + C2Ce−C3t .

Using lemma 5.7.5 of [7], we complete the proof. ��

Lemma 4.8 For any β ∈ (0, 1), we can find a uniform constant C such that ||k ′′ ||4 ≤
Ce−βt .

Proof Compute,

∂t

∫
(k

′′
)4dθ

= 4
∫

(k
′′
)3(k2k

′′ + k2(k − α))
′′
dθ

= −12
∫

k2(k
′′
)2(k

′′′
)2dθ − 24

∫
kk

′
(k

′′
)3k

′′′
dθ

−36
∫

k2k
′
(k

′′
)2k

′′′
dθ − 8α

∫
(k

′
)2(k

′′
)3dθ − 8α

∫
k(k

′′
)4dθ

≤ −12
∫

k2(k
′′
)2(k

′′′
)2dθ + 24

(
ε

∫
k2(k

′′
)2(k

′′′
)2 + 1/4ε

∫
(k

′
)2(k

′′
)4dθ

)

+36

(
ε

∫
k2(k

′′
)2(k

′′′
)2 + 1/4ε

∫
k2(k

′
)2(k

′′
)2dθ

)

−8α

∫
(k

′
)2(k

′′
)3dθ − 8α

∫
k(k

′′
)4dθ

≤ C1

∫
(k

′
)2(k

′′
)4dθ + C2

∫
k2(k

′
)2(k

′′
)2dθ

−8α

∫
(k

′
)2(k

′′
)3dθ − 8α

∫
k(k

′′
)4dθ.

By the Young inequality, we have

∫
(k

′
)2(k

′′
)3dθ ≤ ε

∫
(k

′
)4/3(k

′′
)4dθ + C(ε)

∫
(k

′
)4dθ,

∫
k2(k

′
)2(k

′′
)2dθ ≤ ε

∫
(k

′′
)4dθ + C(ε)

∫
k4(k

′
)4dθ.
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Since ||k ′ ||∞ → 0 as t → ∞, we have

∂t

∫
(k

′′
)4dθ ≤ −C1

∫
(k

′′
)4dθ + C2

∫
(k

′
)4dθ.

We denote
∫
(k

′′
)4dθ by f . Then we have

∂t f ≤ −C1 f + C2e−C3t .

By a use of lemma 5.7.5 in [7], we can complete the proof. ��
Lemma 4.9 For any β ∈ (0, 1), there is some uniform constant C such that ||k ′′′ ||2 ≤
Ce−2βt .

Proof Compute,

∂t

∫
(k

′′′
)2dθ = −2

∫
k2(k

′′′′
)2dθ − 8

∫
kk

′
k

′′′
k

′′′′
dθ

−4
∫

(k
′
)2k

′′
k

′′′′
dθ − 4

∫
k(k

′′
)2k

′′′′
dθ − 6

∫
k2k

′′
k

′′′′
dθ

−12
∫

k(k
′
)2k

′′′′
dθ − 4α

∫
k(k

′′′
)2dθ − 12α

∫
k

′
k

′′
k

′′′
dθ.

By the Young inequality, we have

∂t

∫
(k

′′′
)2dθ ≤ −2

∫
k2(k

′′′′
)2dθ + ε

∫
k2(k

′′′′
)2dθ + C1(ε)

∫
(k

′
)2(k

′′′
)2dθ

+C2(ε)

∫
(k

′
)4(k

′′
)2

k2 dθ + C3(ε)

∫
(k

′′
)4dθ

+C4(ε)

∫
(k

′
)4dθ + C5(ε)

∫
k2(k

′′
)2dθ − 4α

∫
k(k

′′′
)2dθ

+12α

(
ε

∫
(k

′′′
)2dθ + C6(ε)

∫
(k

′
)2(k

′′
)2dθ

)
.

By the above estimate of k
′

and k
′′
, for sufficiently large t , we have

∂t

∫
(k

′′′
)2dθ ≤ −C6

∫
(k

′′′
)2dθ + C7e−βt .

The result follows from lemma 5.7.5 in [7]. ��
In fact, the method in [7] can be applied to our case. The high order estimate of

k is similar to [7], so we omit the detail. By now, we have completed the proof of
Theorem 1.1.
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