Global existence and blow-up phenomena for a periodic 2-component Camassa–Holm equation

Qiaoyi Hu · Zhaoyang Yin

Received: 18 May 2010 / Accepted: 12 February 2011 / Published online: 27 February 2011 © Springer-Verlag 2011

Abstract We first establish local well-posedness for a periodic 2-component Camassa–Holm equation. We then present two global existence results for strong solutions to the equation. We finally obtain several blow-up results and the blow-up rate of strong solutions to the equation.

Keywords A periodic 2-component Camassa–Holm equation · Global existence · Blow-up · Blow-up rate

Mathematics Subject Classification (2000) 35G40 · 35L05

1 Introduction

In the paper we consider the Cauchy problem of the following periodic 2-component Camassa–Holm equation

Communicated by Adrian Constantin.

Q. Hu

Department of Mathematics, South China Agricultural University, Guangzhou 510642, China e-mail: huqiaoyi@scau.edu.cn

Q. Hu \cdot Z. Yin (\boxtimes) Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, China e-mail: mcsyzy@mail.sysu.edu.cn

where $y = u - u_{xx}$, $\sigma = \pm 1$. (The Camassa–Holm equation can be obtained via the obvious reduction $\rho \equiv 0.$)

The 2-component generalization of Camassa–Holm equation [\(1.1\)](#page-0-0) was recently derived by Constantin and Ivanov [\[17\]](#page-17-0) in the context of shallow water theory. $u(t, x)$ describes the horizontal velocity of the fluid and $\rho(t, x)$ is in connection with the horizontal deviation of the surface from equilibrium, all measured in dimensionless units [\[17\]](#page-17-0).

Equation [\(1.1\)](#page-0-0) with $\sigma = -1$ corresponds to the situation in which the gravity acceleration points upwards. For $\sigma = -1$ in Eq. [\(1.1\)](#page-0-0) was introduced by Chen et al. in [\[2](#page-17-1)[,7](#page-17-2),[24\]](#page-18-0) and Falqui in [\[24\]](#page-18-0). Similar to the Camassa–Holm equation, Eq. [\(1.1\)](#page-0-0) can be identified with the first negative flow of the AKNS hierarchy and possesses the interesting peakon and multi-kink solutions, cf. $[7]$ $[7]$. Moreover Eq. (1.1) is connected with the time dependent Schrödinger spectral problem [\[1](#page-17-3),[7\]](#page-17-2). Popowicz has been observed that Eq. (1.1) is related to the bosonic sector of an $N = 2$ supersymmetric extension of the classical Camassa–Holm equation [\[34\]](#page-18-1). There are many further works to study its mathematical properties, cf. [\[7,](#page-17-2)[17](#page-17-0)[,23](#page-18-2)[,31](#page-18-3)].

With $\rho \equiv 0$ in Eq. [\(1.1\)](#page-0-0), we find the Camassa–Holm equation, which models the wave motion on shallow water, $u(t, x)$ representing the fluid's free surface above a flat bottom (or equivalently the fluid velocity at time $t \geq 0$ in the spatial *x* direction) [\[6](#page-17-4)[,22](#page-18-4),[32](#page-18-5)]. Many interesting phenomena like solitons [\[3](#page-17-5)[,21](#page-18-6)], bi-Hamiltonian structure [\[8](#page-17-6)[,25](#page-18-7)], integrability [\[6](#page-17-4)[,10](#page-17-7)] and wave breaking [\[9](#page-17-8)[,13](#page-17-9)[–15](#page-17-10)[,19](#page-17-11),[33,](#page-18-8)[35,](#page-18-9)[38\]](#page-18-10) are found in the Camassa–Holm equation. And there is a geometric interpretation of Eq. [\(1.1\)](#page-0-0) in terms of geodesic flow on the diffeomorphism group of the circle [\[18\]](#page-17-12). There are numerous papers to study the Camassa–Holm equation on its mathematical issues, such as local well-posedness [\[11,](#page-17-13)[14](#page-17-14)[,33](#page-18-8)[,35](#page-18-9)], global existence of strong solutions modeling permanent waves [\[14](#page-17-14)[,16](#page-17-15)[,19](#page-17-11)], the existence and uniqueness of global weak solutions with initial data $u_0 \in H^1(\mathbb{R})$ [\[4,](#page-17-16)[5](#page-17-17)[,20](#page-17-18)[,37](#page-18-11)], and the behavior of compactly supported solutions [\[12](#page-17-19),[27\]](#page-18-12).

For $\rho \neq 0$, the Cauchy problem of Eq. [\(1.1\)](#page-0-0) on the line (nonperiodic case) with $\sigma = -1$ and with $\sigma = 1$ has been discussed in [\[23](#page-18-2)] and [\[17](#page-17-0)[,26](#page-18-13)], respectively. In [\[23](#page-18-2)], Escher et al. establish the local well-posedness and present the precise blow-up scenarios and several blow-up results of strong solutions to Eq. [\(1.1\)](#page-0-0) with $\sigma = -1$ on the line. In [\[17\]](#page-17-0), Constantin and Ivanov investigate the global existence and blow-up phenomena of strong solutions of Eq. [\(1.1\)](#page-0-0) with $\sigma = 1$ on the line. Later, Guan and Yin obtain a new global existence result for strong solutions to Eq. [\(1.1\)](#page-0-0) with $\sigma = 1$ and get several blow-up results [\[26](#page-18-13)] which improve the recent results in [\[17\]](#page-17-0). Henry studies the infinite propagation speed for Eq. [\(1.1\)](#page-0-0) with $\sigma = 1$ in [\[28](#page-18-14)]. The blow-up phenomena of Eq. [\(1.1\)](#page-0-0) with $\sigma = -1$ on the circle have been studied in [\[30\]](#page-18-15). However, Eq. [\(1.1\)](#page-0-0) with $\sigma = 1$ on the circle (periodic case) has not been studied yet. The aim of this paper is to present two global existence results for strong solutions to Eq. (1.1) with $\sigma = 1$, and to show that it has solutions which blow up in finite time, provided their initial data satisfy certain conditions.

The paper is organized as follows. In Sect. [2,](#page-2-0) we briefly give some needed results including the local well-posedness of Eq. (1.1) , the precise blow-up scenarios and some useful lemmas to study global existence and blow-up phenomena. In Sect. [3,](#page-6-0) we address the global existence of Eq. (1.1) by introducing a continuous family of diffeomorphisms of the line and using an important conservation law. In Sect. [4,](#page-9-0) we give several blow-up criteria and the precise blow-up rate, which exhibit that Eq. (1.1) has blow-up solutions modeling wave breaking.

2 Preliminaries

In the section, we briefly give the needed results to pursue our goal. We first present the local well-posedness for the Cauchy problem of Eq. [\(1.1\)](#page-0-0) in $H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S}), s > 2$, with $\mathbb{S} = \mathbb{R}/\mathbb{Z}$ (the circle of unit length) by applying Kato's theory.

Let us introduce some notations. Let *X* and *Y* be Hilbert spaces such that *Y* is continuously and densely embedded in *X* and let $Q: Y \to X$ be a topological isomorphism. $L(Y, X)$ denotes the space of all bounded linear operators from Y to $X(L(X), Y)$ $X = Y$.). $\|\cdot\|_X$ denotes the norm of Banach space X . $G(X, 1, \beta)$ denotes the set of all linear operators *A* in *X*, such that $-A$ generates a C_0 −semigroup $T(t)$ on *X* and that $||T(t)||_{L(X)} \leq e^{t\beta}$ for all $t \geq 0$.

Let $G(x) := \frac{\cosh(x - [x] - 1/2)}{2 \sinh(1/2)}, x \in \mathbb{R}$. Then $(1 - \partial_x^2)^{-1} f = G * f$ for all $f \in L^2(\mathbb{S})$ and $G * y = u$. Here, we denote by $*$ the convolution. By a direct calculation, one can rewrite Eq. [\(1.1\)](#page-0-0) with $\sigma = 1$ as follows:

$$
\begin{cases}\n u_t + uu_x + \partial_x G * (u^2 + \frac{1}{2}u_x^2 + \frac{1}{2}\rho^2) = 0, & t > 0, x \in \mathbb{R}, \\
\rho_t + u\rho_x + u_x \rho = 0, & t > 0, x \in \mathbb{R}, \\
u(0, x) = u_0(x), & x \in \mathbb{R}, \\
\rho(0, x) = \rho_0(x), & x \in \mathbb{R}, \\
u(t, x) = u(t, x + 1), & t \ge 0, x \in \mathbb{R}, \\
\rho(t, x) = \rho(t, x + 1), & t \ge 0, x \in \mathbb{R}.\n\end{cases}
$$
\n(2.1)

Or the equivalent form:

$$
\begin{cases}\n u_t + uu_x = -\partial_x (1 - \partial_x^2)^{-1} (u^2 + \frac{1}{2}u_x^2 + \frac{1}{2}\rho^2), & t > 0, x \in \mathbb{R}, \\
\rho_t + u\rho_x + u_x \rho = 0, & t > 0, x \in \mathbb{R}, \\
u(0, x) = u_0(x), & x \in \mathbb{R}, \\
\rho(0, x) = \rho_0(x), & x \in \mathbb{R}, \\
u(t, x) = u(t, x + 1), & t \ge 0, x \in \mathbb{R}, \\
\rho(t, x) = \rho(t, x + 1), & t \ge 0, x \in \mathbb{R}.\n\end{cases}
$$
\n(2.2)

We now have the following local well-posedness result.

Theorem 2.1 *Given* $z_0 = \begin{pmatrix} u_0 \\ u_0 \end{pmatrix}$ ρ_0 $\Big\}$ ∈ *H*^{*s*}(\mathbb{S}) × *H*^{*s*-1}(\mathbb{S}), *s* ≥ 2*, there exists a maximal* $T = T(z_0) > 0$, and a unique solution $z = \begin{pmatrix} u & v \end{pmatrix}$ ρ $\bigg\}$ to Eq. (2.1) *such that*

$$
z = z(., z_0) \in C([0, T); Hs(\mathbb{S}) \times Hs-1(\mathbb{S})) \cap C1([0, T); Hs-1(\mathbb{S}) \times Hs-2(\mathbb{S})).
$$

Moreover, the solution depends continuously on the initial data, i.e. the mapping $z_0 \rightarrow$ $z(., z_0): H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S}) \to C([0, T); H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S})) \cap C^1([0, T); H^{s-1}(\mathbb{S}) \times$ *Hs*−2(S)) *is continuous.*

The proof of Theorem [2.1](#page-2-2) is similar to that of Theorem 2.2 in [\[23\]](#page-18-2), we omit it here.

By the local well-posedness in Theorem [2.1](#page-2-2) and the energy method, one can get the following precise blow-up scenario of strong solutions to Eq. [\(2.1\)](#page-2-1).

Theorem 2.2 [\[23](#page-18-2)] *Let* $z_0 = \begin{pmatrix} u_0 \\ v_0 \end{pmatrix}$ ρ_0 $\left\{ \begin{array}{l} \in H^{s}(\mathbb{S}) \times H^{s-1}(\mathbb{S}), s > \frac{5}{2}, \text{ and let } T \text{ be the } \end{array} \right\}$ *maximal existence time of the solution* $z = \int_{a}^{u}$ ρ $\left| \int$ *to Eq.* [\(2.1\)](#page-2-1) *with the initial data* z_0 *. Then the corresponding solution blows up in finite time if and only if*

$$
\lim_{t \to T} \inf_{x \in \mathbb{S}} \{ u_x(t, x) \} = -\infty \quad or \quad \limsup_{t \to T} \{ ||\rho_x(t, \cdot)||_{L^{\infty}(\mathbb{S})} \} = +\infty.
$$

The proof of Theorem [2.2](#page-3-0) is similar to that of Theorem 3.2 in [\[23\]](#page-18-2), we omit it here.

For initial data $z_0 = \begin{pmatrix} u_0 \\ u_0 \end{pmatrix}$ ρ_0 $\Big\} \in H^2(\mathbb{S}) \times H^1(\mathbb{S})$, we have the following precise blow-up scenario.

Theorem 2.3 [\[23](#page-18-2)] *Let* $z_0 = \begin{pmatrix} u_0 \\ u_0 \end{pmatrix}$ ρ_0 $\Big\} \in H^2(\mathbb{S}) \times H^1(\mathbb{S})$, and let T be the maximal *existence time of the solution* $z = \int z^2$ ρ *to Eq.* [\(2.1\)](#page-2-1) *with the initial data z*0*. Then the corresponding solution blows up in finite time if and only if*

$$
\lim_{t \to T} \inf_{x \in \mathbb{S}} \{ u_x(t, x) \} = -\infty.
$$

The proof of the theorem is similar to the proof of Theorem 3.3 in [\[23\]](#page-18-2), we omit it here.

Remark 2.1 If $\rho \equiv 0$, then Theorems [2.2–](#page-3-0)[2.3](#page-3-1) cover the corresponding results for the Camassa–Holm equation in [\[33,](#page-18-8)[35\]](#page-18-9).

Given initial data $z_0 = \begin{pmatrix} u_0 \\ u_0 \end{pmatrix}$ ρ_0 $\left\{ \in H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S}), s \geq 2, \text{ Theorem 2.1 ensures} \right\}$ $\left\{ \in H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S}), s \geq 2, \text{ Theorem 2.1 ensures} \right\}$ $\left\{ \in H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S}), s \geq 2, \text{ Theorem 2.1 ensures} \right\}$ the existence and uniqueness of strong solutions to Eq. (2.1) .

Consider the following initial value problem

$$
\begin{cases} q_t = u(t, q), & t \in [0, T), \ x \in \mathbb{R}, \\ q(0, x) = x, & x \in \mathbb{R}, \end{cases}
$$
 (2.3)

where u denotes the first component of the solution z to Eq. (2.1) with the initial data *z*₀. Since $u(t,.) \in H^2(\mathbb{S}) \subset C^m(\mathbb{S})$ with $0 \le m \le \frac{3}{2}$, it follows that $u \in$ $C^1([0, T) \times \mathbb{R}, \mathbb{R})$. Applying the classical results in the theory of ordinary differential equations, one can obtain the following results of *q* which is the key in the proof of global existence of solutions to Eq. [\(2.1\)](#page-2-1) in Theorem [3.2.](#page-7-0)

Lemma 2.1 [\[17,](#page-17-0)[23](#page-18-2)[,26](#page-18-13)] *Let* $z_0 = \begin{pmatrix} u_0 \\ u_0 \end{pmatrix}$ ρ_0 $\Big)$ ∈ *H^s*(*S*) × *H^{s-1}*(*S*)*, s* ≥ 2*, and let T* > 0

be the maximal existence time of corresponding solution $z = \begin{pmatrix} u & v \end{pmatrix}$ ρ *to Eq.* [\(2.1\)](#page-2-1) *with the initial data z₀. Then Eq.* [\(2.3\)](#page-3-2) *has a unique solution* $q \in C^1([0, T) \times \mathbb{R}, \mathbb{R})$ *. Moreover, the map* $q(t, \cdot)$ *is an increasing diffeomorphism of* $\mathbb R$ *with*

$$
q_x(t,x) = \exp\left(\int\limits_0^t u_x(s,q(s,x))ds\right) > 0, \quad (t,x) \in [0,T) \times \mathbb{R}.
$$

Lemma 2.2 [\[23,](#page-18-2) [26\]](#page-18-13) *Let* $z_0 = \begin{pmatrix} u_0 \\ u_0 \end{pmatrix}$ ρ_0 $\left\{ \in H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S}), s \geq 2, \text{ and let } T > 0 \text{ be } \right\}$

the maximal existence time of corresponding solution $z = \begin{pmatrix} u & v \end{pmatrix}$ ρ *to Eq.* [\(2.1\)](#page-2-1) *with the initial data z*0*. Then we have*

$$
\rho(t, q(t, x))q_x(t, x) = \rho_0(x), \quad (t, x) \in [0, T) \times \mathbb{R}.
$$
 (2.4)

Moreover if there exists $x_0 \in \mathbb{S}$ *such that* $\rho_0(x_0) = 0$ *, then* $\rho(t, q(t, x_0)) = 0$ *for all* $t \in [0, T)$.

We then give several useful conservation laws of strong solutions to Eq. (2.1) .

Lemma 2.3 *Let* $z_0 = \begin{pmatrix} u_0 \\ u_1 \end{pmatrix}$ ρ_0 $\Big\}$ ∈ *H*^{*s*}(\mathbb{S}) × *H*^{*s*-1}(\mathbb{S}), *s* ≥ 2, *and let T be the maximal existence time of the solution* $z = \begin{pmatrix} u & v \end{pmatrix}$ ρ $\left(\begin{array}{c} 0 \end{array} \right)$ *to Eq.* [\(2.1\)](#page-2-1) with the initial data z_0 *. Then for all* $t \in [0, T)$ *, we have*

$$
\int_{S} u(t, x)dx = \int_{S} u_0(x)dx,
$$

$$
\int_{S} \rho(t, x)dx = \int_{S} \rho_0(x)dx.
$$

Proof Integrating the first equation in [\(2.1\)](#page-2-1) by parts, in view of the periodicity of *u* and *G*, we get

$$
\frac{d}{dt} \int_{S} u dx = - \int_{S} u u_x dx - \int_{S} \partial_x G * \left(u^2 + \frac{1}{2} u_x^2 + \frac{1}{2} \rho^2 \right) dx = 0.
$$

On the other hand, integrating the second equation in [\(2.1\)](#page-2-1) by parts, in view of the periodicity of *u* and ρ, we get

$$
\frac{d}{dt} \int\limits_{\mathbb{S}} \rho dx = - \int\limits_{\mathbb{S}} (\mu \rho)_x dx = 0.
$$

This completes the proof of the lemma.

Lemma 2.4 *Let* $z_0 = \begin{pmatrix} u_0 \\ v_0 \end{pmatrix}$ ρ_0 $\Big\}$ ∈ *H^s*(\mathbb{S}) × *H^{s-1}*(\mathbb{S})*, s* ≥ 2*, and let T be the maximal existence time of the solution* $z = \begin{pmatrix} u & v \end{pmatrix}$ ρ *to Eq.* [\(2.1\)](#page-2-1) *with the initial data z*0*. Then for all* $t \in [0, T)$ *, we have*

$$
\int_{\mathbb{S}} \left(u^2(t,x) + u_x^2(t,x) + \rho^2(t,x) \right) dx = \int_{\mathbb{S}} \left(u_0^2(x) + u_{0x}^2(t,x) + \rho_0^2(x) \right) dx.
$$

Proof Multiplying the first equation in [\(2.1\)](#page-2-1) by *u* and integrating by parts, we have

$$
\frac{d}{dt} \int\limits_{\mathbb{S}} \left(u^2(t,x) + u_x^2(t,x) \right) dx = \int\limits_{\mathbb{S}} u_x(t,x) \rho^2(t,x) dx.
$$

Multiplying the second equation in [\(2.1\)](#page-2-1) by ρ and integrating by parts, we get

$$
\frac{d}{dt} \int_{\mathbb{S}} \rho^2(t, x) dx = - \int_{\mathbb{S}} u_x(t, x) \rho^2(t, x) dx.
$$

Adding the above two equalities, we obtain

$$
\frac{d}{dt} \int\limits_{\mathbb{S}} \left(u^2(t,x) + u_x^2(t,x) + \rho^2(t,x) \right) dx = 0.
$$

This completes the proof of the lemma.

Lemma 2.5 [\[13\]](#page-17-9) *Let* $T > 0$ *and* $v \in C^1([0, T); H^2(\mathbb{R}))$ *. Then for every* $t \in [0, T)$ *, there exists at least one point* $\xi(t) \in \mathbb{R}$ *with*

$$
m(t) := \inf_{x \in \mathbb{R}} [v_x(x, t)] = v_x(t, \xi(t)).
$$

The function m(*t*) *is almost everywhere differentiable on* (0, *t*) *with*

$$
\frac{dm(t)}{dt} = v_{tx}(t, \xi(t)), \quad a.e. \text{ on } (0, t).
$$

 $\bigcircled{2}$ Springer

Lemma 2.6 [\[36,](#page-18-16)[38\]](#page-18-10) (i) *For every f* ∈ H^1 (S)*, we have*

$$
\max_{x \in [0,1]} f^2(x) \le \frac{e+1}{2(e-1)} \|f\|_{H^1(\mathbb{S})}^2,
$$

where the constant $\frac{e+1}{2(e-1)}$ *is sharp.* (ii) *For every* $f \in H^3(\mathbb{S})$ *, we have*

$$
\max_{x \in [0,1]} f^2(x) \le c \|f\|_{H^1(\mathbb{S})}^2,
$$

with the best possible constant c lying within the range $(1, \frac{13}{12}]$ *. Moreover, the best* $constant \ c \ is \ \frac{e+1}{2(e-1)}$.

By the conservation law stated in Lemma [2.4](#page-5-0) and Lemma [2.6](#page-5-1) (i), we have the following corollary.

Corollary 2.1 *Let* $z_0 = \begin{pmatrix} u_0 \\ v_0 \end{pmatrix}$ ρ_0 $\Big\}$ ∈ *H*^{*s*}(\mathbb{S}) × *H*^{*s*-1}(\mathbb{S}), *s* ≥ 2 *be given and assume that T* is the maximal existence time of the corresponding solution $z = \begin{pmatrix} u & v \end{pmatrix}$ ρ *to Eq.* (2.1)

with the initial data z_0 *. Then for all* $t \in [0, T)$ *, we have*

$$
||u(t,\cdot)||_{L^{\infty}(\mathbb{S})}^2 \leq \frac{e+1}{2(e-1)}||u(t,\cdot)||_{H^1(\mathbb{S})}^2 \leq \frac{e+1}{2(e-1)} (||u_0||_{H^1(\mathbb{S})}^2 + ||\rho_0||_{L^2(\mathbb{S})}^2).
$$

Lemma 2.7 [\[29\]](#page-18-17) *If* $f \in H^3(\mathbb{S})$ *is such that* $\int_{\mathbb{S}} f(x) dx = \frac{a_0}{2}$ *, then for every* $\epsilon > 0$ *, we have*

$$
\max_{x \in [0,1]} f^2(x) \le \frac{\epsilon + 2}{24} \int\limits_{\mathbb{S}} f_x^2 dx + \frac{\epsilon + 2}{4\epsilon} a_0^2.
$$

Moreover,

$$
\max_{x \in [0,1]} f^{2}(x) \le \frac{\epsilon + 2}{24} ||f||_{H^{1}(\mathbb{S})}^{2} + \frac{\epsilon + 2}{4\epsilon} a_{0}^{2}.
$$

3 Global existence

In the section, we give two global existence results for strong solutions to Eq. [\(2.1\)](#page-2-1).

Theorem 3.1 [\[23](#page-18-2)] *Let* $z_0 = \begin{pmatrix} u_0 \\ u_1 \end{pmatrix}$ ρ_0 $\Big)$ ∈ *H*^{*s*}(\mathbb{S}) × *H*^{*s*-1}(\mathbb{S}), *s* ≥ 2 *be given and assume that T is the maximal existence time of the corresponding solution* $z = \begin{pmatrix} u & v \end{pmatrix}$ ρ $\bigg)$ to *Eq.* [\(2.1\)](#page-2-1) with the initial data z_0 *. If there exits M* > 0 *such that*

$$
||u_x(t,\cdot)||_{L^{\infty}(\mathbb{S})} + ||\rho(t,\cdot)||_{L^{\infty}(\mathbb{S})} + ||\rho_x(t,\cdot)||_{L^{\infty}(\mathbb{S})} \leq M, \ t \in [0,T),
$$

then the H^{<i>s}(\mathbb{S}) × *H^{s-1}*(\mathbb{S})*-norm of z*(*t*, ·) *does not blow up on* [0, *T*).

The proof of the theorem is similar to that of Theorem 3.1 *in* [\[23](#page-18-2)]*, so we omit it.*

By Lemmas [2.1–](#page-3-3)[2.2](#page-4-0) and Lemma [2.4,](#page-5-0) we obtain a new global existence of strong solutions of Eq. (2.1) .

Theorem 3.2 Let
$$
z_0 = \begin{pmatrix} u_0 \\ \rho_0 \end{pmatrix} \in H^2(\mathbb{S}) \times H^1(\mathbb{S})
$$
 be given. If $\rho_0(x) \neq 0$ for all $x \in \mathbb{S}$,

then the corresponding strong solution $z = \int_{a}^{b}$ ρ *to Eq.* [\(2.1\)](#page-2-1) with the initial data z_0 *exists globally in time.*

Proof Assumed that *T* is the maximal existence time of the corresponding solution *z* to Eq. (2.1) with the initial data $z₀$. In view of Theorem [2.3,](#page-3-1) it suffices to prove that there exits $M > 0$, such that inf $\chi \in \mathbb{S} u_x(t, x) \geq -M$ for all $t \in [0, T)$.

By Lemmas [2.1–](#page-3-3)[2.2,](#page-4-0) we know that $\rho(0, x)$ has the same sign with $\rho(t, q(t, x))$. Since $\rho(0, x) \neq 0$ for all $x \in \mathbb{S}$, it follows that $\rho(t, q(t, x)) \neq 0$ for all $(t, x) \in$ $[0, T) \times \mathbb{S}$.

By Lemma [2.1,](#page-3-3) we have that the map $q(t, \cdot)$ is an increasing diffeomorphism of R. By the periodicity of u_x and the property of $q(t, \cdot)$, we have $\inf_{x \in \mathbb{R}} u_x(t, q(t, x)) =$ inf_{*x*∈ℝ} $u_x(t, x) = \inf_{x \in \mathbb{S}} u_x(t, x)$. Set $m(t, x) = u_x(t, q(t, x))$.

Next, we consider the function introduced in [\[17\]](#page-17-0),

$$
w(t,x) = \rho(0,x)\rho(t,q(t,x)) + \frac{\rho(0,x)}{\rho(t,q(t,x))}(1+m^2(t,x)).
$$

By Sobolev imbedding theorem, we have

 $0 < w(0, x) \leq ||\rho_0||^2_{L^{\infty}(\mathbb{S})} + ||u_0||^2_{H^1(\mathbb{S})} + 1 \leq ||z_0||_{H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S})} + 1.$

By the definition of $m(t, x)$ and the first equation in (2.1) , we have

$$
\frac{\partial m}{\partial t} = (u_{tx} + uu_{xx})(t, q(t, x)). \tag{3.1}
$$

By Eq. (2.3) and the second equation in (2.1) , we obtain

$$
\frac{\partial \rho(t, q(t, x))}{\partial t} = -\rho(t, q(t, x))m(t, x). \tag{3.2}
$$

Differentiating the first equation in (2.1) with respect to *x*, we get

$$
u_{tx} = -\frac{1}{2}u_x^2 - uu_{xx} + u^2 + \frac{1}{2}\rho^2 - G * \left(u^2 + \frac{1}{2}u_x^2 + \frac{1}{2}\rho^2\right).
$$
 (3.3)

Substituting $(t, q(t, x))$ into (3.3) , we obtain

$$
\frac{\partial m}{\partial t} = -\frac{1}{2}m^2(t) + u^2(t, q(t, x)) + \frac{1}{2}\rho^2(t, q(t, x))
$$

$$
-G * \left(u^2 + \frac{1}{2}u_x^2 + \frac{1}{2}\rho^2\right)(t, q(t, x)).
$$
(3.4)

Differentiating $w(t, x)$ with respect to *t* and using [\(3.2\)](#page-7-2) and [\(3.4\)](#page-7-3), we have

$$
\frac{dw}{dt} = \frac{2\rho(0, x)}{\rho(t, q(t, x))} m(t, x) \left[u^2 - G * \left(u^2 + \frac{1}{2} u_x^2 + \frac{1}{2} \rho^2 \right) + \frac{1}{2} \right] \n\leq \frac{\rho(0, x)}{\rho(t, q(t, x))} (1 + m^2(t, x)) \left[u^2 - G * \left(u^2 + \frac{1}{2} u_x^2 + \frac{1}{2} \rho^2 \right) + \frac{1}{2} \right] \n\leq \left| u^2 - G * \left(u^2 + \frac{1}{2} u_x^2 + \frac{1}{2} \rho^2 \right) + \frac{1}{2} \right| w(t, x) \n\leq \left(\frac{e + 1}{2(e - 1)} \| u \|^2_{H^1(\mathbb{S})} + \| G \|_{L^{\infty}(\mathbb{S})} \| u^2 + \frac{1}{2} u_x^2 + \frac{1}{2} \rho^2 \|_{L^1(\mathbb{S})} + \frac{1}{2} \right) w(t, x) \n\leq \left(\frac{e + 1}{2(e - 1)} E_0 + \frac{\cosh(1/2)}{2 \sinh(1/2)} E_0 + \frac{1}{2} \right) w(t, x),
$$

where $E_0 = ||u_0||^2_{H^1(\mathbb{S})} + ||\rho_0||^2_{L^2(\mathbb{S})}$. Here we use Young's inequality, Corollary [2.1](#page-6-1) and the fact that $\frac{1}{2\sinh(1/2)} \le G(x) \le \frac{\cosh(1/2)}{2\sinh(1/2)}$.

By Gronwall's inequality, we have

$$
w(t,x) \leq w(0,x)e^{Kt} \leq (\|z_0\|_{H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S})} + 1)e^{KT},
$$

where $K = \left(\frac{e+1}{2(e-1)}E_0 + \frac{\cosh(1/2)}{2\sinh(1/2)}E_0 + \frac{1}{2}\right)$. On the other hand, we get

$$
w(t,x) \ge 2\sqrt{\rho^2(0,x)(1+m^2)} \ge 2a|m(t,x)|,
$$

where $a = \inf_{x \in \mathbb{S}} |\rho_0(x)| > 0$.

Thus, we deduce that

$$
m(t,x) \geq -\frac{1}{2a}w(t,x) \geq -\frac{1}{2a}((\|z_0\|_{H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S})} + 1)e^{KT}) := -M.
$$

This completes the proof of the theorem.

From the proof of Theorem [3.2,](#page-7-0) we have the following corollary immediately.

Corollary 3.1 *Let* $z_0 = \begin{pmatrix} u_0 \\ u_1 \end{pmatrix}$ ρ_0 $\left\{ \begin{array}{l} \in H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S}), s > \frac{5}{2}, \text{ and assume that } T \text{ is } \end{array} \right\}$ *the maximal existence time of the corresponding solution* $z = \begin{pmatrix} u & v \end{pmatrix}$ ρ *to Eq.* [\(2.1\)](#page-2-1) *with the initial data* z_0 *. If* $\rho_0(x) \neq 0$ *for all* $x \in \mathbb{S}$ *, then* $u_x(t, x)$ *has a lower bound for all* $(t, x) \in [0, T) \times \mathbb{S}$, *i.e. the corresponding solution blows up in finite time if and only if*

$$
\limsup_{t\to T} \{\|\rho_x(t,\cdot)\|_{L^{\infty}(\mathbb{S})}\}=+\infty.
$$

4 Blow-up phenomena

In the section we investigate the blow-up phenomena of strong solutions to Eq. (2.1) . We now present the first blow-up result.

Theorem 4.1 *Let* $z_0 = \begin{pmatrix} u_0 \\ v_0 \end{pmatrix}$ ρ_0 $\left\{ \begin{array}{l} \in H^{s}(\mathbb{S}) \times H^{s-1}(\mathbb{S}), s > \frac{5}{2}, \text{ and let } T \text{ be the maximal} \end{array} \right\}$ *existence time of solution* $z = \begin{pmatrix} u & v \end{pmatrix}$ ρ *to Eq.* [\(2.1\)](#page-2-1) *with the initial data z*0. *Assume that* $E_0 := ||u_0||^2_{H^1(\mathbb{S})} + ||\rho_0||^2_{L^2(\mathbb{S})} \neq 0$ and $\int_{\mathbb{S}} \rho_0(x) dx = 0$. If there exists some $x_0 \in \mathbb{S}$ *and* $K_0 = K_0(E_0) > 0$ *such that*

$$
\int\limits_{\mathbb{S}} u_{0x}^3 dx < -K_0,
$$

then the corresponding solution to Eq. [\(2.1\)](#page-2-1) *blows up in finite time.*

Proof Let *z* be the solution to Eq. [\(2.1\)](#page-2-1) with the initial data $z_0 \in H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S})$, $s > \frac{5}{2}$, and let $T > 0$ be the maximal time of existence of the solution *z* with the initial data *z*₀. If the statement is not true, then by Theorem [2.2](#page-3-0) it follows that there exists $M > 0$, such that $u_x(t, x) > -M$ for any $(t, x) \in [0, T) \times \mathbb{S}$, and $\|\rho_x(t, \cdot)\|_{L^{\infty}(\mathbb{S})} \leq M$ for all $t \in [0, T)$.

Applying $u_x^2 \partial_x$ to both side of the first equation in [\(2.2\)](#page-2-3) and integrating by parts, we get

$$
\frac{d}{dt} \int_{S} u_x^3 dx + \frac{1}{2} \int_{S} u_x^4 dx = 3 \int_{S} u_x^2 (u^2 + \frac{1}{2} \rho^2) dx
$$

$$
-3 \int_{S} u_x^2 G * (u^2 + \frac{1}{2} u_x^2 + \frac{1}{2} \rho^2) dx. \tag{4.1}
$$

Note that

$$
\left|\int_{\mathbb{S}} u_x^3 dx\right| \leq \left(\int_{\mathbb{S}} u_x^4 dx\right)^{\frac{1}{2}} \left(\int_{\mathbb{S}} u_x^2 dx\right)^{\frac{1}{2}}.
$$

By Lemma [2.4,](#page-5-0) we have $||u_0||^2_{H^1(\mathbb{S})} \leq E_0$. Thus we get

$$
\int_{\mathbb{S}} |u_{x}|^{4} dx \geq \frac{1}{\|u\|_{H^{1}(\mathbb{S})}^{2}} \left(\int_{\mathbb{S}} u_{x}^{3} dx\right)^{2} \geq \frac{1}{E_{0}} \left(\int_{\mathbb{S}} u_{x}^{3} dx\right)^{2}.
$$

By the above inequality and (4.1) , we obtain

$$
\frac{d}{dt} \int_{S} u_x^3 dx + \frac{\left(\int_{S} u_x^3 dx\right)^2}{2E_0} \le 3 \int_{S} u_x^2 \left(u^2 + \frac{1}{2}\rho^2\right) dx
$$

$$
-3 \int_{S} u_x^2 G * \left(u^2 + \frac{1}{2}u_x^2 + \frac{1}{2}\rho^2\right) dx
$$

$$
\le \frac{3}{2} \int_{S} u_x^2 u^2 dx + \frac{3}{2} \int_{S} u_x^2 \rho^2 dx, \tag{4.2}
$$

where we use the relations $\int_{\mathbb{S}} u_x^2 G * \rho^2 dx \ge 0$ and $G * (u^2 + \frac{1}{2}u_x^2) \ge \frac{1}{2}u^2$. Using Young's inequality and Corollary [2.1,](#page-6-1) we have

$$
\left| \int_{\mathbb{S}} u_x^2 u^2 dx \right| \le \|u\|_{L^{\infty}(\mathbb{S})}^2 \left| \int_{\mathbb{S}} u_x^2 dx \right| \le \frac{e+1}{2(e-1)} E_0.
$$
 (4.3)

By the assumption $\int_{\mathbb{S}} \rho_0(x) dx = 0$ and Lemma [2.3,](#page-4-1) we have

$$
\int_{\mathbb{S}} \rho(t, x) dx = \int_{\mathbb{S}} \rho_0(x) dx = 0.
$$

It then follows that for any $t \in [0, T)$, $\rho(t, \cdot)$ has a zero point η_t . Thus we have

$$
\rho(t,x) = \int_{\eta_t}^x \rho_x(t,s)ds, \quad x \in [\eta_t, \eta_t + 1],
$$

which implies that

$$
|\rho(t,x)| = \left| \int_{\eta_t}^{x} \rho_x(t,s)ds \right| \le M,
$$

$$
\left| \int_{\mathbb{S}} u_x^2 \rho^2 dx \right| \le M^2 \int_{\mathbb{S}} u_x^2 dx \le M^2 E_0.
$$
 (4.4)

By (4.2) – (4.4) , we obtain

$$
\frac{d}{dt} \int_{\mathbb{S}} u_x^3 dx \le -\frac{1}{2E_0} \left(\int_{\mathbb{S}} u_x^3 dx \right)^2 + \frac{3}{2} \int_{\mathbb{S}} u_x^2 u^2 dx + \frac{3}{2} \int_{\mathbb{S}} u_x^2 \rho^2 dx
$$

$$
\le -\frac{1}{2E_0} \left(\int_{\mathbb{S}} u_x^3 dx \right)^2 + \frac{3(e+1)}{4(e-1)} E_0 + \frac{3}{2} M^2 E_0.
$$

² Springer

Set $m(t) = \int_{\mathbb{S}} u_x^3 dx$ and $K = \left(\frac{3(e+1)}{4(e-1)}E_0 + \frac{3}{2}M^2E_0\right)^{\frac{1}{2}}$. Note that if $m(0) < -\sqrt{2E_0}K$, then $m(t) < -\sqrt{2E_0}K$. Therefore, we can solve the above inequality to obtain

$$
\frac{m(0) + \sqrt{2E_0}K}{m(0) - \sqrt{2E_0}K}e^{\sqrt{2/E_0}Kt} - 1 \le \frac{2\sqrt{2E_0}K}{m(t) - \sqrt{2E_0}K} \le 0.
$$

Due to $0 < \frac{m(0)+\sqrt{2E_0}K}{m(0)-\sqrt{2E_0}K} < 1$, then there exists T_1 satisfying

$$
0 < T_1 < \frac{1}{\sqrt{2/E_0}K} \ln(\frac{m(0) - \sqrt{2E_0}K}{m(0) + \sqrt{2E_0}K}),
$$

such that $\lim_{t \uparrow T_1} m(t) = -\infty$. This contradicts the assumption $u_x(t, x) > -M$ for all $(t, x) \in [0, T) \times \mathbb{S}$. Let $K_0 = \sqrt{2E_0}K$. Applying Theorem [2.2,](#page-3-0) we deduce that the solution *z* blows up in finite time. This completes the proof of the theorem. \Box

Next, we give the second blow-up result.

Theorem 4.2 *Let* $z_0 = \begin{pmatrix} u_0 \\ v_0 \end{pmatrix}$ ρ_0 $\Big\}$ ∈ *H*^{*s*}(\mathbb{S}) × *H*^{*s*-1}(\mathbb{S}), *s* ≥ 2, *and let T be the maximal existence time of solution* $z = \begin{pmatrix} u & v \end{pmatrix}$ ρ *to Eq.* [\(2.1\)](#page-2-1) *with the initial data z*0. *If there is some* $x_0 \in \mathbb{S}$ *such that* $\rho_0(x_0) = 0$ *and*

$$
u'_0(x_0) < -\left[\frac{e+1}{2(e-1)}(\|u_0\|_{H^1(\mathbb{S})}^2 + \|\rho_0\|_{L^2(\mathbb{S})}^2)\right]^{\frac{1}{2}},
$$

then the corresponding solution to Eq. [\(2.1\)](#page-2-1) *blows up in finite time.*

Proof Let *z* be the solution to Eq. [\(2.1\)](#page-2-1) with the initial data $z_0 \in H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S}), s \geq 0$ 2, and let $T > 0$ be the maximal time of existence of the solution *z* with the initial data *z*₀. Note that $\partial_x^2 G * f = G * f - f$. Differentiating the first equation in [\(2.1\)](#page-2-1) with respect to *x*, we get

$$
u_{tx} = -\frac{1}{2}u_x^2 - uu_{xx} + u^2 + \frac{1}{2}\rho^2 - G * \left(u^2 + \frac{1}{2}u_x^2 + \frac{1}{2}\rho^2\right).
$$
 (4.5)

Define $m(t) = u_x(t, q(t, x_0))$ and $h(t) = \rho(t, q(t, x_0))$. By Eq. [\(2.1\)](#page-2-1) and Eq. [\(2.3\)](#page-3-2), we have

$$
\frac{dm}{dt} = (u_{tx} + u_{xx}q_t)(t, q(t, x_0)) = (u_{tx} + u u_{xx})(t, q(t, x_0))
$$

and

$$
\frac{dh}{dt} = \rho_t + \rho_x q_t = -hm.
$$

Substituting $(t, q(t, x_0))$ into Eq. [\(4.5\)](#page-11-0), we obtain

$$
m'(t) = -\frac{1}{2}m^2(t) + u^2(t, q(t, x_0)) + \frac{1}{2}h^2 - G * \left(u^2 + \frac{1}{2}u_x^2 + \frac{1}{2}\rho^2\right)(t, q(t, x_0))
$$

$$
\leq -\frac{1}{2}m^2(t) + \left(\frac{1}{2}u^2\right)(t, q(t, x_0)) + \frac{1}{2}h^2.
$$
 (4.6)

Here we use the relation $G * (u^2 + \frac{1}{2}u_x^2) \ge \frac{1}{2}u^2$, and $G * \rho^2 \ge 0$.

Recalling Corollary [2.1,](#page-6-1) we have

$$
||u||_{L^{\infty}(\mathbb{S})} \leq \sqrt{\frac{e+1}{2(e-1)}} \left(||u_0||_{H^1(\mathbb{S})}^2 + ||\rho_0||_{L^2(\mathbb{S})}^2 \right)^{\frac{1}{2}}.
$$

Note that $h(0) = \rho(0, q(0, x_0)) = \rho_0(x_0) = 0$. By Lemma [2.2,](#page-4-0) we have $h(t) = 0$ for all $t \in [0, T)$. Thus, we deduce that

$$
m'(t) \leq -\frac{1}{2}m^2(t) + \frac{e+1}{4(e-1)} \left(||u_0||^2_{H^1(\mathbb{S})} + ||\rho_0||^2_{L^2(\mathbb{S})} \right).
$$

Set $E_0 = ||u_0||^2_{H^1(\mathbb{S})} + ||\rho_0||^2_{L^2(\mathbb{S})}$ and $K = \left(\frac{e+1}{4(e-1)}E_0\right)^{\frac{1}{2}}$. Note that if $m(0) < -\sqrt{2}K$, then $m(t) < -\sqrt{2}K$, for all $t \in [0, T)$. Therefore, we can solve the above inequality to obtain

$$
\frac{m(0) + \sqrt{2}K}{m(0) - \sqrt{2}K}e^{\sqrt{2}Kt} - 1 \le \frac{2\sqrt{2}K}{m(t) - \sqrt{2}K} \le 0.
$$

Due to $0 < \frac{m(0) + \sqrt{2}K}{m(0) - \sqrt{2}K}$ $\frac{m(0)+\sqrt{2}K}{m(0)-\sqrt{2}K}$ < 1, there exists *T*₁, and 0 < *T*₁ < $\frac{1}{\sqrt{2}}$ $\frac{1}{2K}$ ln($\frac{m(0)-\sqrt{2}K}{m(0)+\sqrt{2}K}$ $\frac{m(0)-\sqrt{2}K}{m(0)+\sqrt{2}K}$, such that $\lim_{t \uparrow T_1} m(t) = -\infty$. Applying Theorem [2.3,](#page-3-1) the solution *z* does not exist globally in time . \Box

Note that ρ_0 is periodic. If ρ_0 is odd, then $\int_{\mathbb{S}} \rho_0(x) dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} \rho_0(x) dx = 0$. Since $\int_{\mathbb{S}} \rho_0(x) dx = 0$, this implies that there is some $x_0 \in \mathbb{S}$ such that $\rho_0(x_0) = 0$. By Theorem [4.2,](#page-11-1) we have the following corollary immediately.

Corollary 4.1 *Let* $z_0 = \begin{pmatrix} u_0 \\ v_1 \end{pmatrix}$ ρ_0 $\Big\} \in H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S}), s \geq 2$, and let T be the max*imal existence time of solution* $z = \int z^2 \, dz$ ρ $\left\{ \right\}$ to Eq. [\(2.1\)](#page-2-1) with the initial data z_0 . If $\int_{\mathbb{S}} \rho_0(x) dx = 0$ or ρ_0 *is odd, and*

$$
u'_0(x_0) < -\left[\frac{e+1}{2(e-1)}(\|u_0\|_{H^1(\mathbb{S})}^2 + \|\rho_0\|_{L^2(\mathbb{S})}^2)\right]^{\frac{1}{2}},
$$

then the corresponding solution to Eq. [\(2.1\)](#page-2-1) *blows up in finite time.*

We now give the third blow-up result.

Theorem 4.3 *Let* $z_0 = \begin{pmatrix} u_0 \\ v_0 \end{pmatrix}$ ρ_0 $\Big\}$ ∈ *H*^{*s*}(\mathbb{S}) × *H*^{*s*-1}(\mathbb{S}), *s* ≥ 3, *and let T be the maximal existence time of solution* $z = \begin{pmatrix} u & v \end{pmatrix}$ ρ *to Eq.* [\(2.1\)](#page-2-1) *with the initial data z*0. *Assume that* $\int_{\mathbb{S}} u_0 dx = \frac{a_0}{2}$. If there is some $x_0 \in \mathbb{S}$ such that $\rho_0(x_0) = 0$ and for any $\epsilon > 0$

$$
u'_0(x_0) < -\left(\frac{\epsilon+2}{24}E_0 + \frac{\epsilon+2}{4\epsilon}a_0^2\right)^{\frac{1}{2}},
$$

where $E_0 = ||u_0||^2_{H^1(\mathbb{S})} + ||\rho_0||^2_{L^2(\mathbb{S})}$, then the corresponding solution to Eq. [\(2.1\)](#page-2-1) *blows up in finite time.*

Proof By Lemma [2.3,](#page-4-1) we have $\int_{\mathbb{S}} u(t, x) dx = \int_{\mathbb{S}} u_0(x) dx = \frac{a_0}{2}$. Using Lemma [2.7,](#page-6-2) Corollary [2.1](#page-6-1) and the above conservation law, we have

$$
||u||_{L^{\infty}(\mathbb{S})} \le \sqrt{\frac{\epsilon+2}{24}} \left(||u_0||_{H^1(\mathbb{S})}^2 + ||\rho_0||_{L^2(\mathbb{S})}^2 \right) + \frac{\epsilon+2}{4\epsilon}a_0^2.
$$

Let $m(t)$ and $h(t)$ be the same as those defined in Theorem [4.2.](#page-11-1) Using [\(4.6\)](#page-12-0) and the above inequality, we have

$$
m'(t) \leq -\frac{1}{2}m^2(t) + \left(\frac{\epsilon+2}{48}\left(\|u_0\|_{H^1(\mathbb{S})}^2 + \|\rho_0\|_{L^2(\mathbb{S})}^2\right) + \frac{\epsilon+2}{8\epsilon}a_0^2\right).
$$

Set $K = \left(\frac{\epsilon+2}{48} \left(\|u_0\|_{H^1(\mathbb{S})}^2 + \|\rho_0\|_{L^2(\mathbb{S})}^2 \right) + \frac{\epsilon+2}{8\epsilon} a_0^2 \right)^{\frac{1}{2}}$. Following the same argument in Theorem [4.2,](#page-11-1) we deduce that the solution *z* blows up in finite time.

Letting $a_0 = 0$ and $\epsilon \to 0$ in Theorem [4.3,](#page-13-0) we have the following corollary immediately.

Corollary 4.2 *Let* $z_0 = \begin{pmatrix} u_0 \\ u_1 \end{pmatrix}$ ρ_0 $\Big\} \in H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S}), s \geq 3$, and let T be the maximal *existence time of solution* $z = \begin{pmatrix} u & v \end{pmatrix}$ ρ *to Eq.* [\(2.1\)](#page-2-1) *with the initial data z*0. *Assume that* $\int_{\mathbb{S}} u_0 dx = 0$. If there is some $x_0 \in \mathbb{S}$ such that $\rho_0(x_0) = 0$ and

$$
u'_0(x_0) < -\frac{\sqrt{3}}{6} \left(\|u_0\|_{H^1(\mathbb{S})}^2 + \|\rho_0\|_{L^2(\mathbb{S})}^2 \right)^{\frac{1}{2}},
$$

then the corresponding solution to Eq. [\(2.1\)](#page-2-1) *blows up in finite time.*

Remark 4.1 If u_0 is odd, then by the perodicity of u_0 , we have $\int_{\mathbb{S}} u_0 dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} u_0 dx =$ 0. If ρ_0 is odd, we also have $\int_{\mathbb{S}} \rho_0 dx = 0$, which implies that there is some $x_0 \in \mathbb{S}$ such that $\rho_0(x_0) = 0$. Thus Corollary [4.2](#page-13-1) is also true for u_0 and ρ_0 being odd.

Next, we give a blow-up result if u_0 is odd and ρ_0 is even.

Theorem 4.4 *Let* $z_0 = \begin{pmatrix} u_0 \\ v_0 \end{pmatrix}$ ρ_0 $\Big\}$ ∈ *H*^{*s*}(\mathbb{S}) × *H*^{*s*−1}(\mathbb{S}), *s* ≥ 2, *and let T be the maximal existence time of solution* $z = \begin{pmatrix} u & v \end{pmatrix}$ ρ *to Eq.* [\(2.1\)](#page-2-1) *with the initial data z*0. *Assume that u*₀ *is odd,* ρ_0 *is even,* $\rho_0(0) = 0$ *and* $u'_0(0) < 0$ *, then the corresponding solution to Eq.* [\(2.1\)](#page-2-1) *blows up in finite time and* $T < -2/u_0'(0)$ *.*

Proof Let *z* be the solution to Eq. [\(2.1\)](#page-2-1) with the initial data $z_0 \in H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S}), s \geq 0$ 2, and let $T > 0$ be the maximal time of existence of the solution *z* with the initial data *z*₀. Note that $\partial_x^2 G * f = G * f - f$. Differentiating the first equation in [\(2.1\)](#page-2-1) with respect to *x*, we get

$$
u_{tx} = -\frac{1}{2}u_x^2 - uu_{xx} + u^2 + \frac{1}{2}\rho^2 - G * \left(u^2 + \frac{1}{2}u_x^2 + \frac{1}{2}\rho^2\right).
$$
 (4.7)

Note that Eq. [\(2.1\)](#page-2-1) is invariant under the transformation $(u, x) \rightarrow (-u, -x)$ and $(\rho, x) \rightarrow (\rho, -x)$. Thus, we deduce that if $u_0(x)$ is odd and $\rho_0(x)$ is even, then $u(t, x)$ is odd and $\rho(t, x)$ is even for any $t \in [0, T)$. By the oddness of $u(t, x)$, we have that $u(t, 0) = 0$. Define $m(t) = u_x(t, 0)$ and $h(t, x) = \rho(t, q(t, x))$. Note that $h(0, 0) = \rho(0, q(0, 0)) = \rho_0(0) = 0$. By Eq. [\(2.3\)](#page-3-2) and the second equation in [\(2.1\)](#page-2-1), we have

$$
\frac{dh}{dt} = \rho_t + \rho_x q_t = -h(t, x)u_x(t, q(t, x)).
$$

In view of Eq. [\(2.3\)](#page-3-2), we deduce that if $u(t, x)$ is odd with respect to x, then $q(t, x)$ is also odd with respect to *x*. Then we have $q(t, 0) = 0$. By Lemma [2.2,](#page-4-0) we have $h(t, 0) = \rho(t, q(t, 0)) = \rho(t, 0) = 0$ for all $t \in [0, T)$.

Substituting $(t, 0)$ into Eq. (4.7) , we obtain

$$
m'(t) = -\frac{1}{2}m^2(t) + u^2(t, 0) + \frac{1}{2}h^2(t, 0) - G * \left(u^2 + \frac{1}{2}u_x^2 + \frac{1}{2}\rho^2\right)(t, 0)
$$

$$
\leq -\frac{1}{2}m^2(t).
$$
 (4.8)

Here we use the relations $u(t, 0) = 0$, $h(t, 0) = 0$ and $G * (u^2 + \frac{1}{2}u_x^2 + \frac{1}{2}\rho^2) \ge 0$.

Note that $m(0) = u'_0(0) < 0$ and $m'(t) \le 0$. We deduce that $m(t) < 0$ for all $t > 0$. Solving [\(4.8\)](#page-14-1), we have

$$
\frac{1}{m(0)} + \frac{1}{2}t \le \frac{1}{m(t)} < 0.
$$

The above inequality implies that $T < -\frac{2}{m(0)}$, and $u_x(t, 0)$ tends to negative infinity as *t* goes to *T*. This completes the proof of the theorem.

Remark 4.2 If the condition $u'_0(0) < 0$ in Theorem [4.4](#page-14-2) is replaced by the conditions $u'_0(0) \le 0$ and $u_0 \ne 0$, then one can also deduce that the solution of Eq. [\(2.1\)](#page-2-1) blows up in finite time.

Finally we give more insight into the blow-up rate for the wave breaking solutions to Eq. [\(2.1\)](#page-2-1). In view of [\(2.4\)](#page-4-2), if there exists $M > 0$ such that $u_x(t, x) \geq -M$ for all $(t, x) \in [0, T] \times \mathbb{S}$, then for all $t \in [0, T)$, we have

$$
\|\rho(t,\cdot)\|_{L^{\infty}(\mathbb{S})}=\|\rho(t,\cdot)\|_{L^{\infty}(\mathbb{R})}\leq e^{MT}\|\rho_0(\cdot)\|_{L^{\infty}(\mathbb{R})}=e^{MT}\|\rho_0(\cdot)\|_{L^{\infty}(\mathbb{S})}.
$$

This implies that if $\rho(t, x)$ becomes unbounded in finite time, then $u_x(t, x)$ must be unbounded from below in finite time. Thus we might assume that $\rho(t, x)$ is bounded for all $t \in [0, T)$ in the following theorem.

Theorem 4.5 *Let* $z = \begin{pmatrix} u & v \end{pmatrix}$ ρ *be the solution to Eq.* [\(2.1\)](#page-2-1) with the initial data $z_0 =$ $\int u_0$ ρ_0 $\Big)$ ∈ *H*²(S) × *H*¹(S) and let *T* > 0 *be the maximal time of existence of the solution z. Assume that there exists* $M_1 > 0$ *such that* $\|\rho(t, \cdot)\|_{L^{\infty}(\mathbb{S})} \leq M_1$ *for all* $t \in [0, T)$ *. If* $T < \infty$ *, we have*

$$
\lim_{t\to\infty} (\inf_{x\in\mathbb{S}} u_x(t,x)(T-t)) = -2,
$$

while the solution remains uniformly bounded.

Proof By Corollary [2.1,](#page-6-1) we get the uniform bound of *u*. Define $m(t) = u_x(t, \xi(t)) =$ inf_{*x*∈S} $u_x(t, x)$. Note that $u_{xx}(t, \xi(t)) = 0$ for all $t \in [0, T)$. Substituing $(t, \xi(t))$ into Eq. (4.5) , we have

$$
m'(t) = -\frac{1}{2}m^2(t) + \left(u^2 + \frac{1}{2}\rho^2 - G * (u^2 + \frac{1}{2}u_x^2 + \frac{1}{2}\rho^2)\right)(t, \xi(t))
$$

$$
\leq -\frac{1}{2}m^2(t) + \left(\frac{1}{2}u^2 + \frac{1}{2}\rho^2\right)(t, \xi(t)).
$$
 (4.9)

Here we use the relation $G * (u^2 + \frac{1}{2}u_x^2) \ge \frac{1}{2}u^2$, and $G * \rho^2 \ge 0$.

By Corollary [2.1](#page-6-1) and the assumption $\|\rho(t, \cdot)\|_{L^{\infty}} \leq M_1$ for all $t \in [0, T)$, we have

$$
|m'(t) + \frac{1}{2}m^2| \le \frac{e+1}{4(e-1)} \left(\|u_0\|_{H^1(\mathbb{S})}^2 + \|\rho_0\|_{L^2(\mathbb{S})}^2 \right) + \frac{1}{2}M_1^2 := K.
$$

It follows that

$$
- K \le m'(t) + \frac{1}{2}m^2 \le K \quad a.e. \text{ on } (0, T). \tag{4.10}
$$

Choose $\epsilon \in (0, \frac{1}{2})$. Since $\liminf_{t \to T} \{\inf_{x \in \mathbb{S}} u_x(t, x)\} = -\infty$ by Theorem [2.3,](#page-3-1) there is some $t_0 \in (0, T)$ with $m(t_0) < 0$ and $m^2(t_0) > \frac{K}{\epsilon}$. Let us first prove that

$$
m^{2}(t) > \frac{K}{\epsilon} \quad t \in [t_{0}, T). \tag{4.11}
$$

Since *m* is locally Lipschitz (it belongs to $W_{loc}^{1,\infty}(\mathbb{R})$ by Lemma [2.5\)](#page-5-2), there is some $\delta > 0$ such that

$$
m^2(t) > \frac{K}{\epsilon} \quad t \in (t_0, t_0 + \delta).
$$

Pick $\delta > 0$ maximal with this property. If $\delta < T - t_0$ we would have $m^2(t_0 + \delta) = \frac{K}{\epsilon}$ while

$$
m'(t) \le -\frac{1}{2}m^2 + K < -\frac{1}{2}m^2 + \epsilon m^2 \quad a.e. \text{ on } (t_0, t_0 + \delta).
$$

Note that *m* is locally Lipschitz and therefore absolutely continuous. Integrating the previous relation on $[t_0, t_0 + \delta]$ yields that

$$
m(t_0+\delta)\leq m(t_0)<0.
$$

It follows from the above inequality that

$$
m^2(t_0+\delta)\geq m^2(t_0)>\frac{K}{\epsilon}.
$$

The obtained contradiction completes the proof of the relation [\(4.10\)](#page-15-0).

By (4.9) – (4.10) , we infer

$$
\frac{1}{2} - \epsilon \le -\frac{m'(t)}{m^2} \le \frac{1}{2} + \epsilon \quad a.e. \text{ on } (0, T). \tag{4.12}
$$

Since *m* is locally Lipschtiz on [0, *T*) and [\(4.10\)](#page-15-0) holds, it is easy to check $\frac{1}{m}$ is locally Lipschtiz on (t_0, T) . Differentiating the relation $m(t) \cdot \frac{1}{m(t)} = 1$, $t \in (t_0, T)$, we get

$$
\frac{d}{dt}\frac{1}{m(t)} = -\frac{m'(t)}{m^2(t)} \quad a.e. on (0, T).
$$

For $t \in (t_0, T)$, integrating [\(4.11\)](#page-16-0) on (t, T) to get

$$
\left(\frac{1}{2}-\epsilon\right)(T-t) \le -\frac{1}{m(t)} \le \left(\frac{1}{2}+\epsilon\right)(T-t), \quad t \in (t_0, T).
$$

Since $m(t) < 0$ on $[t_0, T)$, it follows that

$$
\frac{1}{\frac{1}{2}+\epsilon} \leq -m(t)(T-t) \leq \frac{1}{\frac{1}{2}+\epsilon}, \quad t \in (t_0, T).
$$

By the arbitraryness of $\epsilon \in (0, \frac{1}{2})$, the statement of the theorem follows.

Acknowledgments This work was partially supported by NNSFC (No. 10971235), RFDP (No. 200805580014), NCET-08-0579 and the key project of Sun Yat-sen University. The authors thank the referee for valuable comments and suggestions.

References

- 1. Antonowicz, M., Fordy, A.P.: Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems. Comm. Math. Phys. **124**, 465–486 (1989)
- 2. Aratyn, H., Gomes, J.F., Zimerman, A.H.: On negative flows of the AKNS hierarchy and a class of deformations of bihamiltonian structure of hydrody-namical type. J. Phys. A: Math. Gen. **39**, 1099– 1114 (2006)
- 3. Beals, R., Sattinger, D., Szmigielski, J.: Multipeakons and a theorem of Stieltjes. Inverse Probl. **15**, 1–4 (1999)
- 4. Bressan, A., Constantin, A.: Global conservative solutions of the Camassa–Holm equation. Arch. Rat. Mech. Anal. **183**, 215–239 (2007)
- 5. Bressan, A., Constantin, A.: Global dissipative solutions of the Camassa–Holm equation. Anal. Appl. **5**, 1–27 (2007)
- 6. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. **71**, 1661–1664 (1993)
- 7. Chen, M., Liu, S., Zhang, Y.: A 2-component generalization of the Camassa–Holm equation and its solutions. Lett. Math. Phys. **75**, 1–15 (2006)
- 8. Constantin, A.: The Hamiltonian structure of the Camassa–Holm equation. Expo. Math. **15**, 53–85 (1997)
- 9. Constantin, A.: On the blow-up of solutions of a periodic shallow water equation. J. Nonlinear Sci. **10**, 391–399 (2000)
- 10. Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. A **457**, 953–970 (2001)
- 11. Constantin, A.: The Cauchy problem for the periodic Camassa–Holm equation. J. Differ. Equ. **141**, 218–235 (1997)
- 12. Constantin, A.: Finite propagation speed for the Camassa–Holm equation. J. Math. Phys. **46**, 023506 (2005)
- 13. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. **181**, 229–243 (1998)
- 14. Constantin, A., Escher, J.: Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math. **51**, 475–504 (1998)
- 15. Constantin, A., Escher, J.: On the structure of a family of quasilinear equations arising in a shallow water theory. Math. Ann. **312**, 403–416 (1998)
- 16. Constantin, A., Escher, J.: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z. **233**, 75–91 (2000)
- 17. Constantin, A., Ivanov, R.: On an integrable two-component Camassa–Holm shallow water system. Phys. Lett. A **372**, 7129–7132 (2008)
- 18. Constantin, A., Kolev, B.: Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. **78**, 787–804 (2003)
- 19. Constantin, A., McKean, H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. **52**, 949–982 (1999)
- 20. Constantin, A., Molinet, L.: Global weak solutions for a shallow water equation. Comm. Math. Phys. **211**, 45–61 (2000)
- 21. Constantin, A., Strauss, W.A.: Stability of peakons. Comm. Pure Appl. Math. **53**, 603–610 (2000)
- 22. Dullin, H.R., Gottwald, G.A., Holm, D.D.: An integrable shallow water equation with linear and nonlinear dispersion. Phys. Rev. Lett. **87**, 4501–4504 (2001)
- 23. Escher, J., Lechtenfeld, O., Yin, Z.: Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation. Discret. Contin. Dyn. Syst. **19**, 493–513 (2007)
- 24. Falqui, G.: On the Camassa–Holm type equation with two dependent variables. J. Phys. A: Math. Gen. **39**, 327–342 (2006)
- 25. Fokas, A., Fuchssteiner, B.: Symplectic structures, their Bäcklund transformation and hereditary symmetries. Phys. D **4**, 47–66 (1981)
- 26. Guan, C., Yin, Z.: Global existence and blow-up phenomena for an integrable two-component Camassa–Holm shallow water system. J. Differ. Equ. **248**, 2003–2014 (2010)
- 27. Henry, D.: Compatctly supported solutions of the Camassa–Holm equation. J. Nonlinear Math. Phys. **12**, 342–347 (2005)
- 28. Henry, D.: Infinite propagation speed for a two component Camassa–Holm equation. Discret. Contin. Dyn. Syst. Ser. B **12**, 597–606 (2009)
- 29. Hu, Q., Yin, Z.: Blowup phenomena for a new periodic nonlinearly dispersive wave equation. Math. Nachr. **283**(11), 1613–1628 (2010)
- 30. Hu, Q., Yin, Z.: Well-posedness and blowup phenomena for the periodic 2-component Camassa–Holm equation. Proc. Roy. Soc. Edinburgh Sect. A **141**(1), 93–107 (2011)
- 31. Ivanov, R.: Extended Camassa–Holm hierarchy and conserved quantities. Z. Naturforsch. **133**, 133– 138 (2006)
- 32. Johnson, R.S.: Camassa–Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. **457**, 63–82 (2002)
- 33. Li, Y., Olver, P.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. **162**, 27–63 (2000)
- 34. Popowicz, Z.: A 2-component or *N* = 2 supersymmetric Camassa–Holm equation. Phys. Lett. A **354**, 110–114 (2006)
- 35. Rodriguez-Blanco, G.: On the Cauchy problem for the Camassa–Holm equation. Nonlinear Anal. **46**, 309–327 (2001)
- 36. Wahlén, E.: On the blow-up solutions to the periodic Camassa–Holm equation. NoDEA Nonlinear Differ. Equ. Appl. **13**, 643–653 (2007)
- 37. Xin, Z., Zhang, P.: On the weak solutions to a shallow water equation. Comm. Pure Appl. Math. **53**, 1411–1433 (2000)
- 38. Yin, Z.: On the blow-up of solutions of the periodic Camassa–Holm equation. Dyn. Cont. Discret. Impuls. Syst. Ser. A Math. Anal. **12**, 375–381 (2005)