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Abstract We first establish local well-posedness for a periodic 2-component
Camassa–Holm equation. We then present two global existence results for strong
solutions to the equation. We finally obtain several blow-up results and the blow-up
rate of strong solutions to the equation.
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1 Introduction

In the paper we consider the Cauchy problem of the following periodic 2-component
Camassa–Holm equation

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yt + yx u + 2yux + σρρx = 0, t > 0, x ∈ R,

ρt + (ρu)x = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

u(t, x) = u(t, x + 1), t ≥ 0, x ∈ R,

ρ(t, x) = ρ(t, x + 1), t ≥ 0, x ∈ R,

(1.1)
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218 Q. Hu, Z. Yin

where y = u − uxx , σ = ±1. (The Camassa–Holm equation can be obtained via the
obvious reduction ρ ≡ 0.)

The 2-component generalization of Camassa–Holm equation (1.1) was recently
derived by Constantin and Ivanov [17] in the context of shallow water theory. u(t, x)

describes the horizontal velocity of the fluid and ρ(t, x) is in connection with the
horizontal deviation of the surface from equilibrium, all measured in dimensionless
units [17].

Equation (1.1) with σ = −1 corresponds to the situation in which the gravity accel-
eration points upwards. For σ = −1 in Eq. (1.1) was introduced by Chen et al. in
[2,7,24] and Falqui in [24]. Similar to the Camassa–Holm equation, Eq. (1.1) can be
identified with the first negative flow of the AKNS hierarchy and possesses the inter-
esting peakon and multi-kink solutions, cf. [7]. Moreover Eq. (1.1) is connected with
the time dependent Schrödinger spectral problem [1,7]. Popowicz has been observed
that Eq. (1.1) is related to the bosonic sector of an N = 2 supersymmetric extension
of the classical Camassa–Holm equation [34]. There are many further works to study
its mathematical properties, cf. [7,17,23,31].

With ρ ≡ 0 in Eq. (1.1), we find the Camassa–Holm equation, which models the
wave motion on shallow water, u(t, x) representing the fluid’s free surface above a
flat bottom (or equivalently the fluid velocity at time t ≥ 0 in the spatial x direction)
[6,22,32]. Many interesting phenomena like solitons [3,21], bi-Hamiltonian structure
[8,25], integrability [6,10] and wave breaking [9,13–15,19,33,35,38] are found in the
Camassa–Holm equation. And there is a geometric interpretation of Eq. (1.1) in terms
of geodesic flow on the diffeomorphism group of the circle [18]. There are numer-
ous papers to study the Camassa–Holm equation on its mathematical issues, such as
local well-posedness [11,14,33,35], global existence of strong solutions modeling
permanent waves [14,16,19], the existence and uniqueness of global weak solutions
with initial data u0 ∈ H1(R) [4,5,20,37], and the behavior of compactly supported
solutions [12,27].

For ρ �= 0, the Cauchy problem of Eq. (1.1) on the line (nonperiodic case) with
σ = −1 and with σ = 1 has been discussed in [23] and [17,26], respectively. In
[23], Escher et al. establish the local well-posedness and present the precise blow-up
scenarios and several blow-up results of strong solutions to Eq. (1.1) with σ = −1 on
the line. In [17], Constantin and Ivanov investigate the global existence and blow-up
phenomena of strong solutions of Eq. (1.1) with σ = 1 on the line. Later, Guan and
Yin obtain a new global existence result for strong solutions to Eq. (1.1) with σ = 1
and get several blow-up results [26] which improve the recent results in [17]. Henry
studies the infinite propagation speed for Eq. (1.1) with σ = 1 in [28]. The blow-up
phenomena of Eq. (1.1) with σ = −1 on the circle have been studied in [30]. However,
Eq. (1.1) with σ = 1 on the circle (periodic case) has not been studied yet. The aim
of this paper is to present two global existence results for strong solutions to Eq. (1.1)
with σ = 1, and to show that it has solutions which blow up in finite time, provided
their initial data satisfy certain conditions.

The paper is organized as follows. In Sect. 2, we briefly give some needed results
including the local well-posedness of Eq. (1.1), the precise blow-up scenarios and
some useful lemmas to study global existence and blow-up phenomena. In Sect. 3,
we address the global existence of Eq. (1.1) by introducing a continuous family of
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Global existence and blow-up phenomena for a periodic 219

diffeomorphisms of the line and using an important conservation law. In Sect. 4, we
give several blow-up criteria and the precise blow-up rate, which exhibit that Eq. (1.1)
has blow-up solutions modeling wave breaking.

2 Preliminaries

In the section, we briefly give the needed results to pursue our goal. We first present the
local well-posedness for the Cauchy problem of Eq. (1.1) in Hs(S)× Hs−1(S), s ≥ 2,
with S = R/Z (the circle of unit length) by applying Kato’s theory.

Let us introduce some notations. Let X and Y be Hilbert spaces such that Y is
continuously and densely embedded in X and let Q : Y → X be a topological isomor-
phism. L(Y, X) denotes the space of all bounded linear operators from Y toX (L(X), if
X = Y.). ‖ · ‖X denotes the norm of Banach space X.G(X, 1, β) denotes the set of all
linear operators A in X , such that −A generates a C0−semigroup T (t) on X and that
‖T (t)‖L(X) ≤ etβ for all t ≥ 0.

Let G(x) := cosh(x−[x]−1/2)
2 sinh(1/2)

, x ∈ R. Then (1 − ∂2
x )−1 f = G ∗ f for all f ∈ L2(S)

and G ∗ y = u. Here, we denote by ∗ the convolution. By a direct calculation, one can
rewrite Eq. (1.1) with σ = 1 as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut + uux + ∂x G ∗ (u2 + 1
2 u2

x + 1
2ρ2) = 0, t > 0, x ∈ R,

ρt + uρx + uxρ = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

u(t, x) = u(t, x + 1), t ≥ 0, x ∈ R,

ρ(t, x) = ρ(t, x + 1), t ≥ 0, x ∈ R.

(2.1)

Or the equivalent form:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut + uux = −∂x (1 − ∂2
x )−1(u2 + 1

2 u2
x + 1

2ρ2), t > 0, x ∈ R,

ρt + uρx + uxρ = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

u(t, x) = u(t, x + 1), t ≥ 0, x ∈ R,

ρ(t, x) = ρ(t, x + 1), t ≥ 0, x ∈ R.

(2.2)

We now have the following local well-posedness result.

Theorem 2.1 Given z0 =
(

u0
ρ0

)

∈ Hs(S)× Hs−1(S), s ≥ 2, there exists a maximal

T = T (z0) > 0, and a unique solution z =
(

u
ρ

)

to Eq. (2.1) such that

z = z(., z0) ∈ C([0, T ); Hs(S) × Hs−1(S)) ∩ C1([0, T ); Hs−1(S) × Hs−2(S)).
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Moreover, the solution depends continuously on the initial data, i.e. the mapping z0 →
z(., z0) : Hs(S)× Hs−1(S) → C([0, T ); Hs(S)× Hs−1(S))∩C1([0, T ); Hs−1(S)×
Hs−2(S)) is continuous.

The proof of Theorem 2.1 is similar to that of Theorem 2.2 in [23], we omit it here.
By the local well-posedness in Theorem 2.1 and the energy method, one can get

the following precise blow-up scenario of strong solutions to Eq. (2.1).

Theorem 2.2 [23] Let z0 =
(

u0
ρ0

)

∈ Hs(S) × Hs−1(S), s > 5
2 , and let T be the

maximal existence time of the solution z =
(

u
ρ

)

to Eq. (2.1) with the initial data z0.

Then the corresponding solution blows up in finite time if and only if

lim
t→T

inf
x∈S

{ux (t, x)} = −∞ or lim sup
t→T

{‖ρx (t, ·)‖L∞(S)} = +∞.

The proof of Theorem 2.2 is similar to that of Theorem 3.2 in [23], we omit it here.

For initial data z0 =
(

u0
ρ0

)

∈ H2(S) × H1(S), we have the following precise

blow-up scenario.

Theorem 2.3 [23] Let z0 =
(

u0
ρ0

)

∈ H2(S) × H1(S), and let T be the maximal

existence time of the solution z =
(

u
ρ

)

to Eq. (2.1) with the initial data z0. Then the

corresponding solution blows up in finite time if and only if

lim
t→T

inf
x∈S

{ux (t, x)} = −∞.

The proof of the theorem is similar to the proof of Theorem 3.3 in [23], we omit it
here.

Remark 2.1 If ρ ≡ 0, then Theorems 2.2–2.3 cover the corresponding results for the
Camassa–Holm equation in [33,35].

Given initial data z0 =
(

u0
ρ0

)

∈ Hs(S) × Hs−1(S), s ≥ 2, Theorem 2.1 ensures

the existence and uniqueness of strong solutions to Eq. (2.1).
Consider the following initial value problem

{
qt = u(t, q), t ∈ [0, T ), x ∈ R,

q(0, x) = x, x ∈ R,
(2.3)

where u denotes the first component of the solution z to Eq. (2.1) with the initial
data z0. Since u(t, .) ∈ H2(S) ⊂ Cm(S) with 0 ≤ m ≤ 3

2 , it follows that u ∈
C1([0, T )×R, R). Applying the classical results in the theory of ordinary differential
equations, one can obtain the following results of q which is the key in the proof of
global existence of solutions to Eq. (2.1) in Theorem 3.2.
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Lemma 2.1 [17,23,26] Let z0 =
(

u0
ρ0

)

∈ Hs(S) × Hs−1(S), s ≥ 2, and let T > 0

be the maximal existence time of corresponding solution z =
(

u
ρ

)

to Eq. (2.1) with

the initial data z0. Then Eq. (2.3) has a unique solution q ∈ C1([0, T ) × R, R).

Moreover, the map q(t, ·) is an increasing diffeomorphism of R with

qx (t, x) = exp

⎛

⎝

t∫

0

ux (s, q(s, x))ds

⎞

⎠ > 0, (t, x) ∈ [0, T ) × R.

Lemma 2.2 [23,26] Let z0 =
(

u0
ρ0

)

∈ Hs(S) × Hs−1(S), s ≥ 2, and let T > 0 be

the maximal existence time of corresponding solution z =
(

u
ρ

)

to Eq. (2.1) with the

initial data z0. Then we have

ρ(t, q(t, x))qx (t, x) = ρ0(x), (t, x) ∈ [0, T ) × R. (2.4)

Moreover if there exists x0 ∈ S such that ρ0(x0) = 0, then ρ(t, q(t, x0)) = 0 for all
t ∈ [0, T ).

We then give several useful conservation laws of strong solutions to Eq. (2.1).

Lemma 2.3 Let z0 =
(

u0
ρ0

)

∈ Hs(S) × Hs−1(S), s ≥ 2, and let T be the maximal

existence time of the solution z =
(

u
ρ

)

to Eq. (2.1) with the initial data z0. Then for

all t ∈ [0, T ), we have

∫

S

u(t, x)dx =
∫

S

u0(x)dx,

∫

S

ρ(t, x)dx =
∫

S

ρ0(x)dx .

Proof Integrating the first equation in (2.1) by parts, in view of the periodicity of u
and G, we get

d

dt

∫

S

udx = −
∫

S

uux dx −
∫

S

∂x G ∗
(

u2 + 1

2
u2

x + 1

2
ρ2

)

dx = 0.
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On the other hand, integrating the second equation in (2.1) by parts, in view of the
periodicity of u and ρ, we get

d

dt

∫

S

ρdx = −
∫

S

(uρ)x dx = 0.

This completes the proof of the lemma. 
�

Lemma 2.4 Let z0 =
(

u0
ρ0

)

∈ Hs(S) × Hs−1(S), s ≥ 2, and let T be the maximal

existence time of the solution z =
(

u
ρ

)

to Eq. (2.1) with the initial data z0. Then for

all t ∈ [0, T ), we have

∫

S

(
u2(t, x) + u2

x (t, x) + ρ2(t, x)
)

dx =
∫

S

(
u2

0(x) + u2
0x (t, x) + ρ2

0 (x)
)

dx .

Proof Multiplying the first equation in (2.1) by u and integrating by parts, we have

d

dt

∫

S

(
u2(t, x) + u2

x (t, x)
)

dx =
∫

S

ux (t, x)ρ2(t, x)dx .

Multiplying the second equation in (2.1) by ρ and integrating by parts, we get

d

dt

∫

S

ρ2(t, x)dx = −
∫

S

ux (t, x)ρ2(t, x)dx .

Adding the above two equalities, we obtain

d

dt

∫

S

(
u2(t, x) + u2

x (t, x) + ρ2(t, x)
)

dx = 0.

This completes the proof of the lemma. 
�
Lemma 2.5 [13] Let T > 0 and v ∈ C1([0, T ); H2(R)). Then for every t ∈ [0, T ),
there exists at least one point ξ(t) ∈ R with

m(t) := inf
x∈R

[vx (x, t)] = vx (t, ξ(t)).

The function m(t) is almost everywhere differentiable on (0, t) with

dm(t)

dt
= vt x (t, ξ(t)), a.e. on (0, t).
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Lemma 2.6 [36,38] (i) For every f ∈ H1(S), we have

max
x∈[0,1] f 2(x) ≤ e + 1

2(e − 1)
‖ f ‖2

H1(S)
,

where the constant e+1
2(e−1)

is sharp.

(ii) For every f ∈ H3(S), we have

max
x∈[0,1] f 2(x) ≤ c‖ f ‖2

H1(S)
,

with the best possible constant c lying within the range (1, 13
12 ]. Moreover, the best

constant c is e+1
2(e−1)

.

By the conservation law stated in Lemma 2.4 and Lemma 2.6 (i), we have the
following corollary.

Corollary 2.1 Let z0 =
(

u0
ρ0

)

∈ Hs(S)× Hs−1(S), s ≥ 2 be given and assume that

T is the maximal existence time of the corresponding solution z =
(

u
ρ

)

to Eq. (2.1)

with the initial data z0. Then for all t ∈ [0, T ), we have

‖u(t, ·)‖2
L∞(S) ≤ e + 1

2(e − 1)
‖u(t, ·)‖2

H1(S)
≤ e + 1

2(e − 1)
(‖u0‖2

H1(S)
+ ‖ρ0‖2

L2(S)
).

Lemma 2.7 [29] If f ∈ H3(S) is such that
∫

S
f (x)dx = a0

2 , then for every ε > 0,
we have

max
x∈[0,1] f 2(x) ≤ ε + 2

24

∫

S

f 2
x dx + ε + 2

4ε
a2

0 .

Moreover,

max
x∈[0,1] f 2(x) ≤ ε + 2

24
‖ f ‖2

H1(S)
+ ε + 2

4ε
a2

0 .

3 Global existence

In the section, we give two global existence results for strong solutions to Eq. (2.1).

Theorem 3.1 [23] Let z0 =
(

u0
ρ0

)

∈ Hs(S) × Hs−1(S), s ≥ 2 be given and assume

that T is the maximal existence time of the corresponding solution z =
(

u
ρ

)

to

Eq. (2.1) with the initial data z0. If there exits M > 0 such that

‖ux (t, ·)‖L∞(S) + ‖ρ(t, ·)‖L∞(S) + ‖ρx (t, ·)‖L∞(S) ≤ M, t ∈ [0, T ),

then the Hs(S) × Hs−1(S)-norm of z(t, ·) does not blow up on [0, T ).
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The proof of the theorem is similar to that of Theorem 3.1 in [23], so we omit it.

By Lemmas 2.1–2.2 and Lemma 2.4, we obtain a new global existence of strong
solutions of Eq. (2.1).

Theorem 3.2 Let z0 =
(

u0
ρ0

)

∈ H2(S)× H1(S) be given. If ρ0(x) �= 0 for all x ∈ S,

then the corresponding strong solution z =
(

u
ρ

)

to Eq. (2.1) with the initial data z0

exists globally in time.

Proof Assumed that T is the maximal existence time of the corresponding solution z
to Eq. (2.1) with the initial data z0. In view of Theorem 2.3, it suffices to prove that
there exits M > 0, such that infx∈S ux (t, x) ≥ −M for all t ∈ [0, T ).

By Lemmas 2.1–2.2, we know that ρ(0, x) has the same sign with ρ(t, q(t, x)).
Since ρ(0, x) �= 0 for all x ∈ S, it follows that ρ(t, q(t, x)) �= 0 for all (t, x) ∈
[0, T ) × S.

By Lemma 2.1, we have that the map q(t, ·) is an increasing diffeomorphism of R.
By the periodicity of ux and the property of q(t, ·), we have inf x∈R ux (t, q(t, x)) =
infx∈R ux (t, x) = infx∈S ux (t, x). Set m(t, x) = ux (t, q(t, x)).

Next, we consider the function introduced in [17],

w(t, x) = ρ(0, x)ρ(t, q(t, x)) + ρ(0, x)

ρ(t, q(t, x))
(1 + m2(t, x)).

By Sobolev imbedding theorem, we have

0 < w(0, x) ≤ ‖ρ0‖2
L∞(S) + ‖u0‖2

H1(S)
+ 1 ≤ ‖z0‖Hs (S)×Hs−1(S) + 1.

By the definition of m(t, x) and the first equation in (2.1), we have

∂m

∂t
= (utx + uuxx )(t, q(t, x)). (3.1)

By Eq. (2.3) and the second equation in (2.1), we obtain

∂ρ(t, q(t, x))

∂t
= −ρ(t, q(t, x))m(t, x). (3.2)

Differentiating the first equation in (2.1) with respect to x , we get

utx = −1

2
u2

x − uuxx + u2 + 1

2
ρ2 − G ∗

(

u2 + 1

2
u2

x + 1

2
ρ2

)

. (3.3)

Substituting (t, q(t, x)) into (3.3), we obtain

∂m

∂t
= −1

2
m2(t) + u2(t, q(t, x)) + 1

2
ρ2(t, q(t, x))

−G ∗
(

u2 + 1

2
u2

x + 1

2
ρ2

)

(t, q(t, x)). (3.4)
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Differentiating w(t, x) with respect to t and using (3.2) and (3.4), we have

dw

dt
= 2ρ(0, x)

ρ(t, q(t, x))
m(t, x)

[

u2 − G ∗
(

u2 + 1

2
u2

x + 1

2
ρ2

)

+ 1

2

]

≤ ρ(0, x)

ρ(t, q(t, x))
(1 + m2(t, x))

[

u2 − G ∗
(

u2 + 1

2
u2

x + 1

2
ρ2

)

+ 1

2

]

≤
∣
∣
∣
∣u

2 − G ∗
(

u2 + 1

2
u2

x + 1

2
ρ2

)

+ 1

2

∣
∣
∣
∣w(t, x)

≤
(

e + 1

2(e − 1)
‖u‖2

H1(S)
+ ‖G‖L∞(S)‖u2 + 1

2
u2

x + 1

2
ρ2‖L1(S) + 1

2

)

w(t, x)

≤
(

e + 1

2(e − 1)
E0 + cosh(1/2)

2 sinh(1/2)
E0 + 1

2

)

w(t, x),

where E0 = ‖u0‖2
H1(S)

+ ‖ρ0‖2
L2(S)

. Here we use Young’s inequality, Corollary 2.1

and the fact that 1
2 sinh(1/2)

≤ G(x) ≤ cosh(1/2)
2 sinh(1/2)

.
By Gronwall’s inequality, we have

w(t, x) ≤ w(0, x)eK t ≤ (‖z0‖Hs (S)×Hs−1(S) + 1)eK T ,

where K =
(

e+1
2(e−1)

E0 + cosh(1/2)
2 sinh(1/2)

E0 + 1
2

)
.

On the other hand, we get

w(t, x) ≥ 2
√

ρ2(0, x)(1 + m2) ≥ 2a|m(t, x)|,

where a = infx∈S |ρ0(x)| > 0.
Thus, we deduce that

m(t, x) ≥ − 1

2a
w(t, x) ≥ − 1

2a
((‖z0‖Hs (S)×Hs−1(S) + 1)eK T ) := −M.

This completes the proof of the theorem. 
�
From the proof of Theorem 3.2, we have the following corollary immediately.

Corollary 3.1 Let z0 =
(

u0
ρ0

)

∈ Hs(S) × Hs−1(S), s > 5
2 , and assume that T is

the maximal existence time of the corresponding solution z =
(

u
ρ

)

to Eq. (2.1) with

the initial data z0. If ρ0(x) �= 0 for all x ∈ S, then ux (t, x) has a lower bound for all
(t, x) ∈ [0, T ) × S, i.e. the corresponding solution blows up in finite time if and only
if

lim sup
t→T

{‖ρx (t, ·)‖L∞(S)} = +∞.
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4 Blow-up phenomena

In the section we investigate the blow-up phenomena of strong solutions to Eq. (2.1).
We now present the first blow-up result.

Theorem 4.1 Let z0 =
(

u0
ρ0

)

∈ Hs(S)× Hs−1(S), s > 5
2 , and let T be the maximal

existence time of solution z =
(

u
ρ

)

to Eq. (2.1) with the initial data z0. Assume that

E0 := ‖u0‖2
H1(S)

+ ‖ρ0‖2
L2(S)

�= 0 and
∫

S
ρ0(x)dx = 0. If there exists some x0 ∈ S

and K0 = K0(E0) > 0 such that

∫

S

u3
0x dx < −K0,

then the corresponding solution to Eq. (2.1) blows up in finite time.

Proof Let z be the solution to Eq. (2.1) with the initial data z0 ∈ Hs(S) × Hs−1(S),

s > 5
2 , and let T > 0 be the maximal time of existence of the solution z with the initial

data z0. If the statement is not true, then by Theorem 2.2 it follows that there exists
M > 0, such that ux (t, x) > −M for any (t, x) ∈ [0, T )×S, and ‖ρx (t, ·)‖L∞(S) ≤ M
for all t ∈ [0, T ).

Applying u2
x∂x to both side of the first equation in (2.2) and integrating by parts,

we get

d

dt

∫

S

u3
x dx + 1

2

∫

S

u4
x dx = 3

∫

S

u2
x (u

2 + 1

2
ρ2)dx

−3
∫

S

u2
x G ∗ (u2 + 1

2
u2

x + 1

2
ρ2)dx . (4.1)

Note that

∣
∣
∣
∣
∣
∣

∫

S

u3
x dx

∣
∣
∣
∣
∣
∣
≤

⎛

⎝

∫

S

u4
x dx

⎞

⎠

1
2
⎛

⎝

∫

S

u2
x dx

⎞

⎠

1
2

.

By Lemma 2.4, we have ‖u0‖2
H1(S)

≤ E0. Thus we get

∫

S

|ux |4dx ≥ 1

‖u‖2
H1(S)

⎛

⎝

∫

S

u3
x dx

⎞

⎠

2

≥ 1

E0

⎛

⎝

∫

S

u3
x dx

⎞

⎠

2

.
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By the above inequality and (4.1), we obtain

d

dt

∫

S

u3
x dx +

(∫

S
u3

x dx
)2

2E0
≤ 3

∫

S

u2
x

(

u2 + 1

2
ρ2

)

dx

−3
∫

S

u2
x G ∗

(

u2 + 1

2
u2

x + 1

2
ρ2

)

dx

≤ 3

2

∫

S

u2
x u2dx + 3

2

∫

S

u2
xρ

2dx, (4.2)

where we use the relations
∫

S
u2

x G ∗ ρ2dx ≥ 0 and G ∗ (u2 + 1
2 u2

x ) ≥ 1
2 u2.

Using Young’s inequality and Corollary 2.1, we have
∣
∣
∣
∣
∣
∣

∫

S

u2
x u2 dx

∣
∣
∣
∣
∣
∣
≤ ‖u‖2

L∞(S)

∣
∣
∣
∣
∣
∣

∫

S

u2
x dx

∣
∣
∣
∣
∣
∣
≤ e + 1

2(e − 1)
E0. (4.3)

By the assumption
∫

S
ρ0(x)dx = 0 and Lemma 2.3, we have

∫

S

ρ(t, x)dx =
∫

S

ρ0(x)dx = 0.

It then follows that for any t ∈ [0, T ), ρ(t, ·) has a zero point ηt . Thus we have

ρ(t, x) =
x∫

ηt

ρx (t, s)ds, x ∈ [ηt , ηt + 1],

which implies that

|ρ(t, x)| =
∣
∣
∣
∣
∣
∣

x∫

ηt

ρx (t, s)ds

∣
∣
∣
∣
∣
∣
≤ M,

∣
∣
∣
∣
∣
∣

∫

S

u2
xρ

2 dx

∣
∣
∣
∣
∣
∣
≤ M2

∫

S

u2
x dx ≤ M2 E0.

(4.4)

By (4.2)–(4.4), we obtain

d

dt

∫

S

u3
x dx ≤ − 1

2E0

⎛

⎝

∫

S

u3
x dx

⎞

⎠

2

+ 3

2

∫

S

u2
x u2dx + 3

2

∫

S

u2
xρ

2 dx

≤ − 1

2E0

⎛

⎝

∫

S

u3
x dx

⎞

⎠

2

+ 3(e + 1)

4(e − 1)
E0 + 3

2
M2 E0.
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Set m(t)=∫

S
u3

x dx and K =
(

3(e+1)
4(e−1)

E0+ 3
2 M2 E0

) 1
2
. Note that if m(0)<−√

2E0 K ,

then m(t) < −√
2E0 K . Therefore, we can solve the above inequality to obtain

m(0) + √
2E0 K

m(0) − √
2E0 K

e
√

2/E0 K t − 1 ≤ 2
√

2E0 K

m(t) − √
2E0 K

≤ 0.

Due to 0 <
m(0)+√

2E0 K
m(0)−√

2E0 K
< 1, then there exists T1 satisfying

0 < T1 <
1√

2/E0 K
ln(

m(0) − √
2E0 K

m(0) + √
2E0 K

),

such that limt↑T1 m(t) = −∞. This contradicts the assumption ux (t, x) > −M for
all (t, x) ∈ [0, T ) × S. Let K0 = √

2E0 K . Applying Theorem 2.2, we deduce that
the solution z blows up in finite time. This completes the proof of the theorem. 
�

Next, we give the second blow-up result.

Theorem 4.2 Let z0 =
(

u0
ρ0

)

∈ Hs(S)× Hs−1(S), s ≥ 2, and let T be the maximal

existence time of solution z =
(

u
ρ

)

to Eq. (2.1) with the initial data z0. If there is

some x0 ∈ S such that ρ0(x0) = 0 and

u′
0(x0) < −

[
e + 1

2(e − 1)
(‖u0‖2

H1(S)
+ ‖ρ0‖2

L2(S)
)

] 1
2

,

then the corresponding solution to Eq. (2.1) blows up in finite time.

Proof Let z be the solution to Eq. (2.1) with the initial data z0 ∈ Hs(S)×Hs−1(S), s ≥
2, and let T > 0 be the maximal time of existence of the solution z with the initial
data z0. Note that ∂2

x G ∗ f = G ∗ f − f . Differentiating the first equation in (2.1)
with respect to x , we get

utx = −1

2
u2

x − uuxx + u2 + 1

2
ρ2 − G ∗

(

u2 + 1

2
u2

x + 1

2
ρ2

)

. (4.5)

Define m(t) = ux (t, q(t, x0)) and h(t) = ρ(t, q(t, x0)). By Eq. (2.1) and Eq. (2.3),
we have

dm

dt
= (utx + uxx qt )(t, q(t, x0)) = (utx + uuxx )(t, q(t, x0))

and

dh

dt
= ρt + ρx qt = −hm.
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Substituting (t, q(t, x0)) into Eq. (4.5), we obtain

m′(t) = −1

2
m2(t) + u2(t, q(t, x0)) + 1

2
h2 − G ∗

(

u2 + 1

2
u2

x + 1

2
ρ2

)

(t, q(t, x0))

≤ −1

2
m2(t) +

(
1

2
u2

)

(t, q(t, x0)) + 1

2
h2. (4.6)

Here we use the relation G ∗ (u2 + 1
2 u2

x ) ≥ 1
2 u2, and G ∗ ρ2 ≥ 0.

Recalling Corollary 2.1, we have

‖u‖L∞(S) ≤
√

e + 1

2(e − 1)

(
‖u0‖2

H1(S)
+ ‖ρ0‖2

L2(S)

) 1
2
.

Note that h(0) = ρ(0, q(0, x0)) = ρ0(x0) = 0. By Lemma 2.2, we have h(t) = 0 for
all t ∈ [0, T ). Thus, we deduce that

m′(t) ≤ −1

2
m2(t) + e + 1

4(e − 1)

(
‖u0‖2

H1(S)
+ ‖ρ0‖2

L2(S)

)
.

Set E0 = ‖u0‖2
H1(S)

+‖ρ0‖2
L2(S)

and K =
(

e+1
4(e−1)

E0

) 1
2
. Note that if m(0) < −√

2K ,

then m(t) < −√
2K , for all t ∈ [0, T ). Therefore, we can solve the above inequality

to obtain

m(0) + √
2K

m(0) − √
2K

e
√

2K t − 1 ≤ 2
√

2K

m(t) − √
2K

≤ 0.

Due to 0 <
m(0)+√

2K
m(0)−√

2K
< 1, there exists T1, and 0 < T1 < 1√

2K
ln(

m(0)−√
2K

m(0)+√
2K

), such

that limt↑T1 m(t) = −∞. Applying Theorem 2.3, the solution z does not exist globally
in time . 
�

Note that ρ0 is periodic. If ρ0 is odd, then
∫

S
ρ0(x)dx = ∫ 1

2

− 1
2
ρ0(x)dx = 0. Since

∫

S
ρ0(x)dx = 0, this implies that there is some x0 ∈ S such that ρ0(x0) = 0. By

Theorem 4.2, we have the following corollary immediately.

Corollary 4.1 Let z0 =
(

u0
ρ0

)

∈ Hs(S) × Hs−1(S), s ≥ 2, and let T be the max-

imal existence time of solution z =
(

u
ρ

)

to Eq. (2.1) with the initial data z0. If
∫

S
ρ0(x)dx = 0 or ρ0 is odd, and

u′
0(x0) < −

[
e + 1

2(e − 1)
(‖u0‖2

H1(S)
+ ‖ρ0‖2

L2(S)
)

] 1
2

,

then the corresponding solution to Eq. (2.1) blows up in finite time.
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We now give the third blow-up result.

Theorem 4.3 Let z0 =
(

u0
ρ0

)

∈ Hs(S)× Hs−1(S), s ≥ 3, and let T be the maximal

existence time of solution z =
(

u
ρ

)

to Eq. (2.1) with the initial data z0. Assume that
∫

S
u0dx = a0

2 . If there is some x0 ∈ S such that ρ0(x0) = 0 and for any ε > 0

u′
0(x0) < −

(
ε + 2

24
E0 + ε + 2

4ε
a2

0

) 1
2

,

where E0 = ‖u0‖2
H1(S)

+ ‖ρ0‖2
L2(S)

, then the corresponding solution to Eq. (2.1)
blows up in finite time.

Proof By Lemma 2.3, we have
∫

S
u(t, x)dx = ∫

S
u0(x)dx = a0

2 . Using Lemma 2.7,
Corollary 2.1 and the above conservation law, we have

‖u‖L∞(S) ≤
√

ε + 2

24

(
‖u0‖2

H1(S)
+ ‖ρ0‖2

L2(S)

)
+ ε + 2

4ε
a2

0 .

Let m(t) and h(t) be the same as those defined in Theorem 4.2. Using (4.6) and the
above inequality, we have

m′(t) ≤ −1

2
m2(t) +

(
ε + 2

48

(
‖u0‖2

H1(S)
+ ‖ρ0‖2

L2(S)

)
+ ε + 2

8ε
a2

0

)

.

Set K =
(

ε+2
48

(
‖u0‖2

H1(S)
+ ‖ρ0‖2

L2(S)

)
+ ε+2

8ε
a2

0

) 1
2
. Following the same argument

in Theorem 4.2, we deduce that the solution z blows up in finite time. 
�
Letting a0 = 0 and ε → 0 in Theorem 4.3, we have the following corollary

immediately.

Corollary 4.2 Let z0 =
(

u0
ρ0

)

∈ Hs(S)× Hs−1(S), s ≥ 3, and let T be the maximal

existence time of solution z =
(

u
ρ

)

to Eq. (2.1) with the initial data z0. Assume that
∫

S
u0dx = 0. If there is some x0 ∈ S such that ρ0(x0) = 0 and

u′
0(x0) < −

√
3

6

(
‖u0‖2

H1(S)
+ ‖ρ0‖2

L2(S)

) 1
2
,

then the corresponding solution to Eq. (2.1) blows up in finite time.

Remark 4.1 If u0 is odd, then by the perodicity of u0, we have
∫

S
u0dx = ∫ 1

2

− 1
2

u0dx =
0. If ρ0 is odd, we also have

∫

S
ρ0dx = 0, which implies that there is some x0 ∈ S

such that ρ0(x0) = 0. Thus Corollary 4.2 is also true for u0 and ρ0 being odd.
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Next, we give a blow-up result if u0 is odd and ρ0 is even.

Theorem 4.4 Let z0 =
(

u0
ρ0

)

∈ Hs(S)× Hs−1(S), s ≥ 2, and let T be the maximal

existence time of solution z =
(

u
ρ

)

to Eq. (2.1) with the initial data z0. Assume that

u0 is odd, ρ0 is even, ρ0(0) = 0 and u′
0(0) < 0, then the corresponding solution to

Eq. (2.1) blows up in finite time and T < −2/u′
0(0).

Proof Let z be the solution to Eq. (2.1) with the initial data z0 ∈ Hs(S)×Hs−1(S), s ≥
2, and let T > 0 be the maximal time of existence of the solution z with the initial
data z0. Note that ∂2

x G ∗ f = G ∗ f − f . Differentiating the first equation in (2.1)
with respect to x , we get

utx = −1

2
u2

x − uuxx + u2 + 1

2
ρ2 − G ∗

(

u2 + 1

2
u2

x + 1

2
ρ2

)

. (4.7)

Note that Eq. (2.1) is invariant under the transformation (u, x) → (−u,−x) and
(ρ, x) → (ρ,−x). Thus, we deduce that if u0(x) is odd and ρ0(x) is even, then
u(t, x) is odd and ρ(t, x) is even for any t ∈ [0, T ). By the oddness of u(t, x), we
have that u(t, 0) = 0. Define m(t) = ux (t, 0) and h(t, x) = ρ(t, q(t, x)). Note that
h(0, 0) = ρ(0, q(0, 0)) = ρ0(0) = 0. By Eq. (2.3) and the second equation in (2.1),
we have

dh

dt
= ρt + ρx qt = −h(t, x)ux (t, q(t, x)).

In view of Eq. (2.3), we deduce that if u(t, x) is odd with respect to x , then q(t, x)

is also odd with respect to x . Then we have q(t, 0) = 0. By Lemma 2.2, we have
h(t, 0) = ρ(t, q(t, 0)) = ρ(t, 0) = 0 for all t ∈ [0, T ).

Substituting (t, 0) into Eq. (4.7), we obtain

m′(t) = −1

2
m2(t) + u2(t, 0) + 1

2
h2(t, 0) − G ∗

(

u2 + 1

2
u2

x + 1

2
ρ2

)

(t, 0)

≤ −1

2
m2(t). (4.8)

Here we use the relations u(t, 0) = 0, h(t, 0) = 0 and G ∗ (u2 + 1
2 u2

x + 1
2ρ2) ≥ 0.

Note that m(0) = u′
0(0) < 0 and m′(t) ≤ 0. We deduce that m(t) < 0 for all t > 0.

Solving (4.8), we have

1

m(0)
+ 1

2
t ≤ 1

m(t)
< 0.

The above inequality implies that T < − 2
m(0)

, and ux (t, 0) tends to negative infinity
as t goes to T . This completes the proof of the theorem. 
�
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Remark 4.2 If the condition u′
0(0) < 0 in Theorem 4.4 is replaced by the conditions

u′
0(0) ≤ 0 and u0 �= 0, then one can also deduce that the solution of Eq. (2.1) blows

up in finite time.

Finally we give more insight into the blow-up rate for the wave breaking solutions
to Eq. (2.1). In view of (2.4), if there exists M > 0 such that ux (t, x) ≥ −M for all
(t, x) ∈ [0, T ) × S, then for all t ∈ [0, T ), we have

‖ρ(t, ·)‖L∞(S) = ‖ρ(t, ·)‖L∞(R) ≤ eMT ‖ρ0(·)‖L∞(R) = eMT ‖ρ0(·)‖L∞(S).

This implies that if ρ(t, x) becomes unbounded in finite time, then ux (t, x) must be
unbounded from below in finite time. Thus we might assume that ρ(t, x) is bounded
for all t ∈ [0, T ) in the following theorem.

Theorem 4.5 Let z =
(

u
ρ

)

be the solution to Eq. (2.1) with the initial data z0 =
(

u0
ρ0

)

∈ H2(S) × H1(S) and let T > 0 be the maximal time of existence of the

solution z. Assume that there exists M1 > 0 such that ‖ρ(t, ·)‖L∞(S) ≤ M1 for all
t ∈ [0, T ). If T < ∞, we have

lim
t→∞(inf

x∈S

ux (t, x)(T − t)) = −2,

while the solution remains uniformly bounded.

Proof By Corollary 2.1, we get the uniform bound of u. Define m(t) = ux (t, ξ(t)) =
infx∈S ux (t, x). Note that uxx (t, ξ(t)) = 0 for all t ∈ [0, T ). Substituing (t, ξ(t)) into
Eq. (4.5), we have

m′(t) = −1

2
m2(t) +

(

u2 + 1

2
ρ2 − G ∗ (u2 + 1

2
u2

x + 1

2
ρ2)

)

(t, ξ(t))

≤ −1

2
m2(t) +

(
1

2
u2 + 1

2
ρ2

)

(t, ξ(t)). (4.9)

Here we use the relation G ∗ (u2 + 1
2 u2

x ) ≥ 1
2 u2, and G ∗ ρ2 ≥ 0.

By Corollary 2.1 and the assumption ‖ρ(t, ·)‖L∞ ≤ M1 for all t ∈ [0, T ), we have

|m′(t) + 1

2
m2| ≤ e + 1

4(e − 1)

(
‖u0‖2

H1(S)
+ ‖ρ0‖2

L2(S)

)
+ 1

2
M2

1 := K .

It follows that

− K ≤ m′(t) + 1

2
m2 ≤ K a.e. on (0, T ). (4.10)
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Global existence and blow-up phenomena for a periodic 233

Choose ε ∈ (0, 1
2 ). Since lim inf t→T {infx∈S ux (t, x)} = −∞ by Theorem 2.3, there

is some t0 ∈ (0, T ) with m(t0) < 0 and m2(t0) > K
ε
. Let us first prove that

m2(t) >
K

ε
t ∈ [t0, T ). (4.11)

Since m is locally Lipschitz (it belongs to W 1,∞
loc (R) by Lemma 2.5), there is some

δ > 0 such that

m2(t) >
K

ε
t ∈ (t0, t0 + δ).

Pick δ > 0 maximal with this property. If δ < T − t0 we would have m2(t0 + δ) = K
ε

while

m′(t) ≤ −1

2
m2 + K < −1

2
m2 + εm2 a.e. on (t0, t0 + δ).

Note that m is locally Lipschitz and therefore absolutely continuous. Integrating the
previous relation on [t0, t0 + δ] yields that

m(t0 + δ) ≤ m(t0) < 0.

It follows from the above inequality that

m2(t0 + δ) ≥ m2(t0) >
K

ε
.

The obtained contradiction completes the proof of the relation (4.10).
By (4.9)–(4.10), we infer

1

2
− ε ≤ −m′(t)

m2 ≤ 1

2
+ ε a.e. on (0, T ). (4.12)

Since m is locally Lipschtiz on [0, T ) and (4.10) holds, it is easy to check 1
m is locally

Lipschtiz on (t0, T ). Differentiating the relation m(t) · 1
m(t) = 1, t ∈ (t0, T ), we get

d

dt

1

m(t)
= − m′(t)

m2(t)
a.e. on (0, T ).

For t ∈ (t0, T ), integrating (4.11) on (t, T ) to get

(
1

2
− ε

)

(T − t) ≤ − 1

m(t)
≤

(
1

2
+ ε

)

(T − t), t ∈ (t0, T ).
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234 Q. Hu, Z. Yin

Since m(t) < 0 on [t0, T ), it follows that

1
1
2 + ε

≤ −m(t)(T − t) ≤ 1
1
2 + ε

, t ∈ (t0, T ).

By the arbitraryness of ε ∈ (0, 1
2 ), the statement of the theorem follows. 
�
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