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On the number of pairs of positive integers
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Abstract It is not difficult to find an asymptotic formula for the number of pairs of
positive integers x, y ≤ H such that x2 + y2 +1 is squarefree. In the present paper we
improve the estimate for the error term in this formula using the properties of certain
exponential sums. A.Weils’s estimate for the Kloosterman sum plays the major role
in our analysis.
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1 Notations

Let H be a sufficiently large positive number. By the letters k, m, n we denote integers
and by d, r, l, h, q, x, y—positive integers. The letters t and D denote real numbers
and the letter p is reserved for primes. By ε we denote an arbitrary small positive
number, not necessarily the same in different occurrences. This convention allows us
to write qε log q � qε, for example. If it is not explicitly stated the opposite, the
constants in the Vinogradov and Landau symbols are absolute or depend on ε.

We denote by μ(n) the Möbius function and by τ(n) the number of positive divi-
sors of n. We write (n1, . . . , nk) for the greatest common divisor of n1, . . . , nk . As
usual [t] and {t} denote the integer part, respectively, the fractional part of t . We put
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558 D. I. Tolev

ρ(t) = 1
2 − {t} and let ||t || be the distance from t to the nearest integer. Further

e(t) = exp (2π i t) and eq(t) = e(t/q). For any q and k such that (q, k) = 1 we
denote by (k)q the inverse of k modulo q. If the value of the modulus is clear form the

context then we write for simplicity k. For any odd q we denote by
( ·

q

)
the Jacobi

symbol. By � we mark an end of a proof or its absence.
In this paper we use the properties of the Gauss sum and the Kloosterman sum.

They are defined by

G(q; n, m) =
∑

1≤x≤q

eq

(
nx2 + mx

)
, G(q; n) = G(q; n, 0) (1)

and, respectively, by

K (q; n, m) =
∑

1≤x≤q
(x,q)=1

eq (nx + mx). (2)

2 Introduction and statement of the result

Suppose that f (t1, . . . , tr ) is a polynomial with integer coefficients and denote
by S f (H) the number of r -tuples of positive integers n1, . . . , nr ≤ H such that
f (n1, . . . , nr ) is squarefree. The problem is to evaluate S f (H) when H is large.
A lot of articles are devoted to problems of this type. We point out the papers of
Estermann [1], Filaseta [3], Greaves [4], Heath-Brown [5], Hooley [7,8], (see also the
book [6], Chapter 4) and Poonen [11], but many other similar results can be found in
literature.

In certain cases one can obtain an asymptotic formula for S f (H). For example
Estermann [1] proved that

∑
1≤x≤H

μ2
(

x2 + 1
)

= c0 H + O
(

H
2
3 +ε

)
,

where c0 > 0 is a constant. We should mention that using his “square sieve” Heath-
Brown’s [5] considered S f (H) for the polynomial f (t) = t (t + 1) and found an

asymptotic formula with error term O
(

H
7

11 +ε
)

.

In the present paper we consider S f (H) for the polynomial f (t1, t2) = t2
1 + t2

2 +1.
We write for simplicity

S(H) =
∑

1≤x,y≤H

μ2(x2 + y2 + 1)

and denote

λ(q; n, m) =
∑

x, y: (4)

eq(nx + my), (3)
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On the number of pairs of positive integers 559

where the summation is taken over the integers x, y satisfying the conditions

1 ≤ x, y ≤ q, x2 + y2 + 1 ≡ 0 (mod q). (4)

We denote also

λ(q) = λ(q; 0, 0). (5)

Our result is the following

Theorem For the sum S(H) we have

S(H) = cH2 + O
(

H
4
3 +ε

)
, (6)

where

c =
∏

p

(
1 − λ

(
p2

)

p4

)
. (7)

We note that if we apply simplest elementary methods only then we will find an

asymptotic formula for S(H) with an error term O
(

H
3
2 +ε

)
. Our better result is a con-

sequence of the estimate for λ(q; n, m) established in Lemma 3, which can be obtained
using the properties of the Gauss sum and A.Weil’s estimate for the Kloosterman sum.

We may apply the same method for studying S f (H) with any quadratic polyno-
mial f in two variables. (Of course trivial cases like f (t1, t2) = (t1 + t2)2 have to be
excluded.) Then the exponential sum

λ f (q; n, m) =
∑

1≤x,y≤q
f (x,y)≡0 (mod q)

eq(nx + my) (8)

naturally appears. It is closely connected with the Kloosterman sum (and in the case
f (t1, t2) = t1t2 − 1 the sum (8) coincides with the Kloosterman sum), therefore
we may use again A.Weil’s estimate in order to estimate (8). However we shall not
consider this more general problem here.

3 Lemmas

Our first lemma includes the basic properties of the Gauss sum. The proofs are available
in Sect. 6 of [2] and Chapter 7 of [9].

Lemma 1 For the Gauss sum we have

(i) If (q, n) = d then

G(q; n, m) =
{

d G(q/d; n/d, m/d) if d | m,

0 if d � m.
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(i i) If (q, 2n) = 1 then

G(q; n, m) = eq

(
−(4n) m2

) (
n

q

)
G(q; 1).

(i i i) If (q, 2) = 1 then

G2(q; 1) = (−1)
q−1

2 q.

In the next lemma we present A.Weil’s estimate for the Kloosterman sum. For the
proof we refer the reader to Chapter 11 of [10].

Lemma 2 We have

|K (q; n, m)| ≤ τ(q) q
1
2 (q, n, m)

1
2 .

Next we establish the following

Lemma 3 If 8 � q then

|λ(q; n, m)| ≤ 16 τ 2(q) q
1
2 (q, n, m)

1
2 . (9)

In particular we have

λ(q) � q1+ε. (10)

Remark 1 An estimate of type (9) holds for any positive integer q. We impose the
condition 8 � q because in this case the proof is slightly simpler and because in our
analysis only such q appear.

Proof First we consider the case 2 � q. It is clear that from (1), (3) and (4) it follows

λ(q; n, m) =
∑

1≤x,y≤q

eq(nx + my) q−1
∑

1≤h≤q

eq(h(x2 + y2 + 1))

= q−1
∑

1≤h≤q

eq(h) G(q; h, n) G(q; h, m).

= q−1
∑
l|q

∑
1≤h≤q
(h,q)= q

l

eq(h) G(q; h, n) G(q; h, m).
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On the number of pairs of positive integers 561

Now we apply Lemma 1, our assumption 2 � q and the definition (2). We get

λ(q; n, m) = q
∑
l|q

q
l |(m,n)

l−2
∑

1≤r≤l
(r,l)=1

el(r) G
(

l; r, nlq−1
)

G
(

l; r, mlq−1
)

= q
∑
l|q

q
l |(m,n)

l−2 G2(l, 1)
∑

1≤r≤l
(r,l)=1

el

(
r − (4r)(n2 + m2)l2q−2

)

= q
∑
l|q

q
l |(m,n)

(−1)
l−1

2 l−1 K
(

l; 1, 4(n2 + m2)l2q−2
)
.

From the last formula and Lemma 2 we find that if 2 � q then

|λ(q; n, m)| ≤ q
∑
l|q

q
l |(m,n)

τ (l) l−
1
2 ≤ q τ(q)

∑
r |(q,n,m)

q− 1
2 r

1
2 ≤ τ 2(q) q

1
2 (q, n, m)

1
2 .

(11)

Next we note that the function λ(q; n, m) possesses a multiplicative property. More
precisely, one can establish that if (q1, q2) = 1 then

λ(q1q2; n, m) = λ
(

q1; n(q2)q1
, m(q2)q1

)
λ

(
q2; n(q1)q2

, m(q1)q2

)
. (12)

(The proof is elementary and we leave it to the reader.) Now, in the general case,
we represent q = 2hq1, where 2 � q1 and h ≤ 2. We apply (11), (12) and the trivial
estimate |λ(2h; n, m)| ≤ 22h and obtain (9).

Finally, it is clear that (10) follows directly from (9). ��
Lemma 4 Suppose that 8 � q and D ≥ 2. Then for the sums

U =
∑

1≤n≤D

|λ(q; n, 0)|
n

, V =
∑

1≤n,m≤D

|λ(q; n, m)|
n m

.

we have

U � q
1
2 +ε Dε, V � q

1
2 +ε Dε. (13)

Proof From Lemma 3 it follows that

U � q
1
2 +ε

∑
1≤n≤D

(q, n)
1
2

n
= q

1
2 +ε �0,
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562 D. I. Tolev

say. Obviously

�0 �
∑
r |q

r
1
2

∑
n≤D

n≡0 (mod r)

1

n
�

∑
r |q

r− 1
2 log D � (q D)ε (14)

and the first inequality in (13) follows. To prove the second one we apply again
Lemma 3 and use (14) to get

V �q
1
2 +ε

∑
1≤n,m≤D

(q, n, m)
1
2

n m
�q

1
2 +ε

∑
1≤n,m≤D

(q, n)
1
2 (q, m)

1
2

n m
=q

1
2 +ε �2

0 �q
1
2 +ε Dε.

��

Lemma 5 For any D ≥ 2 we have

ρ(t) =
∑

1≤|n|≤D

e(nt)

2π in
+ O (g(D, t)), (15)

where g(D, t) is a positive, infinitely many times differentiable and periodic with
period one function of t . It can be represented as a Fourier series

g(D, t) =
∑
n∈Z

cD(n) e(nt),

with coefficients cD(n) satisfying

cD(n) � log D

D
for all n,

and

∑

|n|>D1+ε

|cD(n)| � D−A.

Here A > 0 is arbitrarily large and the constant in the �–symbol depends on A and ε.

Proof It is well-known that ρ(t) can be represented in a form similar to (15), but with
a different form of the error term—with the function min

(
1, (D||t ||)−1) rather than

g(D, t). (For a proof we refer the reader to Chapter 2 of [6].) The proof of the present
formula for ρ(t) is available in [12]. ��
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On the number of pairs of positive integers 563

4 Proof of the theorem

We use the well-known identity μ2(n) = ∑
d2|n μ(d) to write

S(H) =
∑

1≤d≤√
2H2+1

μ(d) T
(

H, d2
)
,

where T (H, q) is the number of pairs of positive integers x, y ≤ H satisfying the
congruence x2 + y2 + 1 ≡ 0 (mod q). We choose a parameter z satisfying

√
H ≤ z ≤ H (16)

and denote by S′ the contribution to S(H) coming from the terms with z < d ≤√
2H2 + 1. It is clear that

T
(

H, d2
)

=
∑

1≤l≤(2H2+1) d−2

∑
1≤x,y≤H

x2+y2=ld2−1

1 � H2+εd−2.

Hence we obtain S′ � H2+εz−1 and therefore

S(H) =
∑

1≤d≤z

μ(d) T
(

H, d2
)

+ O
(

H2+εz−1
)
. (17)

From this point onwards we assume that q = d2, where d is squarefree and d ≤ z.
Denote by M(H, q, x) the number of positive integers h ≤ H satisfying h ≡ x
(mod q). Obviously

M(H, q, x) = H q−1 + O (1). (18)

It is clear that

T (H, q) =
∑

x,y: (4)

M(H, q, x) M(H, q, y). (19)

If we use (17)–(19) and choose z = √
H then we may find an asymptotic formula for

S(H) with an error term O(H
3
2 +ε). To establish our sharper result we represent the

error term in (18) in an explicit form. First we write

M(H, q, y) =
[

H − y

q

]
−

[−y

q

]
= H

q
+ ρ

(
H − y

q

)
− ρ

(−y

q

)
. (20)

We substitute the last expression for M(H, q, y) in (19) and denote by T ′ the contri-
bution to T (H, q) coming from the last term in the right-hand side of (20). Next we
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564 D. I. Tolev

represent T ′ as

T ′ = T ′′ + T ′′′, (21)

where T ′′ consists of the terms for which x2 + 1 ≡ 0 (mod q) and T ′′′ is the contri-
bution of the other terms. We have

T ′′′ = −
∑

1≤x≤q
x2+1 �≡0 (mod q)

M(H, q, x)
∑

1≤y≤q
y2≡−x2−1 (mod q)

ρ

(−y

q

)
= 0 (22)

because the last sum over y vanishes. Indeed, it does not contain terms with y = q
2 and

y = q. Further, for any y satisfying the congruence condition and such that 1 ≤ y <
q
2

the integer q−y satisfies the same congruence and we have ρ
(−y

q

)
+ρ

(−(q−y)
q

)
= 0.

Consider now T ′′. We have

T ′′ = −
∑

1≤x≤q
x2+1≡0 (mod q)

M(H, q, x)
∑

1≤y≤q
y2≡0 (mod q)

ρ

(−y

q

)
� H ε

(
Hq−1 + 1

)
.

(23)

Indeed, the last sum over y equals O(1) because, according to the above arguments,
it reduces to a sum with at most two terms (corresponding to y = q

2 and y = q).
Further, the number of solutions of the congruence x2 +1 ≡ 0 (mod q) equals O (qε)

and applying (18) we obtain (23).
From (21)–(23) we get T ′ � H ε

(
Hq−1 + 1

)
and therefore

T (H, q) =
∑

x,y: (4)

M(H, q, x)

(
H

q
+ ρ

(
H − y

q

))
+ O

(
H ε

(
Hq−1 + 1

))
.

We proceed with the quantity M(H, q, x) in a similar manner and we conclude that

T (H, q)=
∑

x,y: (4)

(
H

q
+ρ

(
H − x

q

)) (
H

q
+ρ

(
H − y

q

))
+O

(
H ε

(
Hq−1+1

))
.

Now we use (3) and (5) to find

T (H, q) = H2λ(q)

q2 + 2
H

q
T1(H, q) + T2(H, q) + O

(
H ε

(
Hq−1 + 1

))
, (24)
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where

T1(H, q) =
∑

x,y: (4)

ρ

(
H − x

q

)
, (25)

T2(H, q) =
∑

x,y: (4)

ρ

(
H − x

q

)
ρ

(
H − y

q

)
. (26)

Consider T1(H, q). We apply (3) and Lemma 5 with D = H to get

T1(H, q) = T ′
1(H, q) + O

(
T ∗

1 (H, q)
)
, (27)

where

T ′
1(H, q) =

∑
x,y: (4)

∑
1≤|n|≤H

eq (n(H − x))

2π in
=

∑
1≤|n|≤H

eq(nH) λ(q;−n, 0)

2π in
,

T ∗
1 (H, q) =

∑
x,y: (4)

g

(
H,

H − x

q

)
. (28)

From Lemma 4 it follows that

T ′
1(H, q) � H εq

1
2 . (29)

To estimate T ∗
1 (H, q) we apply (3) and Lemmas 3, 4 and 5 and obtain

T ∗
1 (H, q) =

∑
x,y: (4)

⎛
⎝cH (0) +

∑

1≤|n|≤H1+ε

cH (n) eq(n(H − x))

⎞
⎠ + O(1)

= cH (0)λ(q) +
∑

1≤|n|≤H1+ε

cH (n) eq(nH) λ(q;−n, 0) + O(1)

� H ε−1q + 1 + H ε−1
∑

1≤|n|≤H1+ε

|λ(q;−n, 0)|

� H ε−1q + 1 + H ε
∑

1≤n≤H1+ε

|λ(q; n, 0)|
n

� H ε−1q + H εq
1
2 . (30)

From (27), (29) and (30) we get

T1(H, q) � H ε−1 q + H ε q
1
2 . (31)
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566 D. I. Tolev

Consider now T2(H, q). We apply (26), (28), (30) and Lemmas 4 and 5, to get

T2(H, q) =
∑

x,y: (4)

∑
1≤|n|,|m|≤H

eq ((n + m)H) eq (−nx − my)

(2π i)2nm
+ O

(
H εT ∗

1 (H, q)
)

=
∑

1≤|n|,|m|≤H

eq ((n + m)H)

(2π i)2nm
λ(q;−n,−m) + O

(
H ε−1q + H εq

1
2

)

�
∑

1≤|n|,|m|≤H

|λ(q; n, m)|
|nm| + H ε−1q + H εq

1
2

� H ε−1q + H εq
1
2 . (32)

From (24), (31) and (32) it follows that

T (H, q) = H2 λ(q)

q2 + O
(

H ε(Hq− 1
2 + q

1
2 + H−1q)

)
.

We use the above formula, (16) and (17) and we get

S(H) = H2
∑

1≤d≤z

μ(d)λ
(
d2

)

d4 + O
(

H ε
(

H + z2 + H−1z3 + H2z−1
))

= c H2 + O
(

H ε
(

H2z−1 + z2
))

,

where c =
∞∑

d=1

μ(d)λ
(
d2

)
d4 . (Clearly this number coincides with the product at (7)). It

remains to choose z = H
2
3 and the proof of the theorem is complete.
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