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Abstract For higher order ordinary differential equations, new sufficient conditions
on the existence and uniqueness of periodic solutions are established. Results obtained
cover the case when the right-hand side of the equation is not of a constant sign with
respect to an independent variable.
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Introduction

In the present paper, for a higher order nonautonomous ordinary differential equation
we investigate the problem on the existence of a periodic solution with a prescribed
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236 I. Kiguradze, A. Lomtatidze

period. In Sect. 1, the optimal, in a certain sense, conditions are found guaranteeing
the existence of a unique ω-periodic solution of the linear differential equation

u(n) = p(t)u + q(t)

with ω-periodic coefficients p, q : R → R. In spite of previously known results (see
[1,10,13,17]), they also cover the case when the function p is not of a constant sign.
On the base of the results of Sect. 1, the sufficient conditions of the existence and
uniqueness of an ω-periodic solution of the nonlinear equation

u(n) = f
(

t, u, u′, . . . , u(n−1)
)

are established in Sect. 2. Here we suppose that the function f : R × R
n → R is

ω-periodic with respect to a time variable and satisfies the conditions

p1(t)|x1| − δ

(
t,

n∑
k=1

|xk |
)

≤ f (t,x1,x2, . . . ,xn) sgn x1

≤ p2(t)|x1| + δ

(
t,

n∑
k=1

|xk |
)

,

where δ : R × [0,+∞[ → [0,+∞[ is a sublinear function with respect to the second
variable. Moreover, in spite of previously known results (see [2–7], [11–20] and the
references therein), we do not restrict signs of the functions p1 and p2.

Throughout the paper, we assume that n ≥ 2 and ω > 0. We also use the following
notation.

[x]+ = 1

2
(|x| + x) , [x]− = 1

2
(|x| − x) .

ζ is the Riemann zeta-function, i.e.,

ζ(x) =
+∞∑
k=1

1

kx
for x > 1.

Lω is the space of all ω-periodic real functions which are Lebesgue integrable on
[0, ω].

L2
ω is the space of all ω-periodic real functions which are square Lebesgue integra-

ble on [0, ω].
Cω, resp. ACω, is the space of continuous, resp. absolutely continuous, ω-periodic

functions u : R → R,

‖u‖Cω = max {|u(t)| : t ∈ [0, ω]} .
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Periodic solutions of nonautonomous ordinary differential equations 237

ACk
ω denotes the space of ω-periodic functions u : R → R which are continuous

together with their first k derivatives and u(k) ∈ ACω.
Zω is the set of all nondecreasing in the second argument functions δ : R×[0,+∞[

→ [0,+∞[ such that δ(·, �) ∈ Lω for � ≥ 0 and

lim
�→+∞

1

�

ω∫

0

δ(t, �)dt = 0.

If p ∈ Lω and
∫ ω

0 p(t)dt �= 0, then

γ0(p) =
(

1 +
∫ ω

0 |p(t)|dt∣∣∫ ω

0 p(t)dt
∣∣
)2

, γ (p) = γ0(p)

ω∫

0

|p(t)|dt.

If p1, p2 ∈ Lω and
∫ ω

0 p2(t)dt �= 0, then

η0(p1, p2) =
(

1 +
∫ ω

0 p0(t)dt∣∣∫ ω

0 p2(t)dt
∣∣
)2

, η(p1, p2) = η0(p1, p2)

ω∫

0

p0(t)dt,

where

p0(t) = 1

2
(|p1(t)| + |p2(t)| + ||p1(t)| − |p2(t)||).

If u ∈ Lω, then the number c0 defined by the relation

c0 = 1

ω

ω∫

0

u(t)dt

is called the mean value of the function u.
For any x, y ∈ Lω, the writing x(t) �≡ y(t) means that the functions x and y differ

from each other on a set of positive measure.
Under the ω-periodic solution of the above-mentioned equations we understand

a function u ∈ ACn−1
ω which satisfies them almost everywhere on R.

1 Linear problem

In this section, we will consider the equation

u(n) = p(t)u + q(t), (1.1)

where p, q ∈ Lω.
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238 I. Kiguradze, A. Lomtatidze

The following lemma is well-known from the general theory of linear boundary
value problems (see, e.g., [9, Theorem 1.1]).

Lemma 1.1 Equation (1.1) has a unique ω-periodic solution iff the corresponding
homogeneous equation

u(n) = p(t)u (1.10)

has no nontrivial ω-periodic solution.

Except of this we will need the next three lemmas.

Lemma 1.2 Let � be a natural number,

u ∈ AC�−1
ω , u(�) ∈ L2

ω, (1.2)

and c0 be the mean value of the function u. Then

ω∫

0

|u(t) − c0|2dt ≤
( ω

2π

)2�
ω∫

0

∣∣∣u(�)(t)
∣∣∣
2

dt (1.3)

and

‖u − c0‖2
Cω

≤ ζ(2�)

π

( ω

2π

)2�−1
ω∫

0

∣∣∣u(�)(t)
∣∣∣
2

dt. (1.4)

Moreover, the equality

ω∫

0

|u(t) − c0|2dt =
( ω

2π

)2�
ω∫

0

∣∣∣u(�)(t)
∣∣∣
2

dt (1.5)

holds if and only if

u(t) ≡ c0 + c sin
2π

ω
(t − t0) (1.6)

for some c, t0 ∈ R, while the equality

‖u − c0‖2
Cω

= ζ(2�)

π

( ω

2π

)2�−1
ω∫

0

∣∣∣u(�)(t)
∣∣∣
2

dt (1.7)

is satisfied if and only if

u(t) ≡ c0 + c
+∞∑
k=1

1

k2�
cos

2kπ

ω
(t − t0) (1.8)

for some c, t0 ∈ R.
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Periodic solutions of nonautonomous ordinary differential equations 239

Proof On account of (1.2), it is clear that

u(t) = c0 +
+∞∑
k=1

hk(t) for t ∈ R (1.9)

and

u(�)(t) =
(

2π

ω

)� +∞∑
k=1

k�hk

(
t + �ω

4k

)
for t ∈ R,

where

hk(t) = c1k sin
2kπ

ω
t + c2k cos

2kπ

ω
t.

Hence, by virtue of Parseval’s equality, we get

ω∫

0

|u(t) − c0|2dt = ω

2

+∞∑
k=1

(
c2

1k + c2
2k

)
(1.10)

and

ω∫

0

∣∣∣u(�)(t)
∣∣∣
2

dt = ω

2

(
2π

ω

)2� +∞∑
k=1

k2�
(

c2
1k + c2

2k

)
. (1.11)

Inequality (1.3) now immediately follows from (1.10) and (1.11). Moreover, equality
(1.5) holds if and only if

c1k = 0 and c2k = 0 for k = 2, 3, . . . ,

i.e., when

u(t) ≡ c0 + c11 sin
2π t

ω
+ c21 cos

2π t

ω
.

However, the latter identity is equivalent to (1.6) for a suitable choice of c and t0.
Now we will prove inequality (1.4). Choose t0 ∈ [0, ω] such that

‖u − c0‖Cω = |u(t0) − c0|.

By virtue of Hölder’s inequality, it follows from (1.9) that

‖u − c0‖2
Cω

≤ ζ(2�)

+∞∑
k=1

k2�h2
k(t0). (1.12)
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240 I. Kiguradze, A. Lomtatidze

Moreover, the equality

‖u − c0‖2
Cω

= ζ(2�)

+∞∑
k=1

k2�h2
k(t0)

holds if and only if there exists c ∈ R such that

hk(t0) = c

k2�
for k = 1, 2, . . . . (1.13)

On the other hand,

h2
k(t0) = c2

1k + c2
2k −

(
c1k cos

2kπ t0
ω

− c2k sin
2kπ t0

ω

)2

.

Hence, from (1.11) and (1.12) we get (1.4). Moreover, equality (1.7) holds if and only
if (1.13) and

c1k cos
2kπ

ω
t0 − c2k sin

2kπ

ω
t0 = 0 for k = 1, 2, . . . (1.14)

are fulfilled. However, (1.13) and (1.14) imply that

c1k = c

k2�
sin

2kπ

ω
t0, c2k = c

k2�
cos

2kπ

ω
t0, for k = 1, 2, . . . ,

which, together with (1.9), yields (1.8). 
�
Remark 1.1 For � = 1, inequality (1.3) is well-known Wirtinger’s inequality (see,
e.g., [8, Theorem 258]).

Lemma 1.3 Let � be a natural number,

u ∈ AC2�−1
ω , u(t) �≡ c0, (1.15)

where c0 is the mean value of the function u. Then

‖u − c0‖2
Cω

<
ζ(2�)

π

( ω

2π

)2�−1
ω∫

0

∣∣∣u(�)(t)
∣∣∣
2

dt. (1.16)

Proof Assume the contrary that (1.16) does not hold. Then, by virtue of (1.15) and
Lemma 1.2, identity (1.8) is fulfilled with c �= 0. Hence,

u(2�−1)(t) = c(−1)�
(

2π

ω

)2�−1 +∞∑
k=1

1

k
sin

2kπ

ω
(t − t0) for 0 < t − t0 < ω.
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Periodic solutions of nonautonomous ordinary differential equations 241

Therefore,

u(2�−1)(t) = c(−1)�
π

ω

(
2π

ω

)2�−1

(ω − t + t0) for 0 < t − t0 < ω,

which contradicts the condition u(2�−1) ∈ Cω. 
�
Lemma 1.4 Let u be a nontrivial ω-periodic solution of the homogeneous equation
(1.10). Then

ω∫

0

p(t)u(t)dt = 0, (1.17)

ω∫

0

∣∣∣u(m)(t)
∣∣∣
2

dt = (−1)m

ω∫

0

p(t)u2(t)dt for n = 2m, (1.18)

and

ω∫

0

p(t)u2(t)dt = 0 for n = 2m + 1. (1.19)

If, moreover, p(t) �≡ 0, then for any k ∈ {1, 2, . . . , n},

u(k)(t) �≡ 0, (1.20)

while if

ω∫

0

p(t)dt �= 0, (1.21)

then for any c0 ∈ R, the inequality

‖u‖2
Cω

≤ γ0(p)‖u − c0‖2
Cω

(1.22)

holds.

Proof Let u be a nontrivial ω-periodic solution of (1.10). Integrating (1.10) from 0 to
ω we get (1.17).

Let now n = 2m (n = 2m + 1). Multiplying both sides of (1.10) by (−1)mu
(by u) and integrating it from 0 to ω we get relation (1.18) [relation (1.19)].

Suppose now that u(k)(t) ≡ 0 for some k ∈ {1, 2, . . . , n}. Then evidently u(t) ≡ c0,
where c0 �= 0. Hence, it follows from (1.10) that p(t) ≡ 0. Therefore, if p(t) �≡ 0,
then for each k ∈ {1, 2, . . . , n} relation (1.20) is fulfilled.
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242 I. Kiguradze, A. Lomtatidze

Now assume that (1.21) holds. By virtue of (1.17), for any c0 ∈ R we have

c0

ω∫

0

p(t)dt = −
ω∫

0

p(t) (u(t) − c0) dt.

Hence,

|c0| ≤
∫ ω

0 |p(t)|dt∣∣∫ ω

0 p(t)dt
∣∣ ‖u − c0‖Cω .

Taking now into account the inequality

‖u‖Cω ≤ ‖u − c0‖Cω + |c0|,

we easily get (1.22). 
�
Theorem 1.1 Let n = 2m and

p(t) �≡ 0, (−1)m

ω∫

0

p(t)dt ≥ 0. (1.23)

Let, moreover, one of the following two conditions

(−1)m p(t) ≤
(

2π

ω

)n

for t ∈ R, (−1)m p(t) �≡
(

2π

ω

)n

(1.24)

and

ω∫

0

[
(−1)m p(s)

]
+ ds ≤ π

ζ(n)

(
2π

ω

)n−1

(1.25)

be fulfilled. Then, (1.1) has one and only one ω-periodic solution.

Proof By virtue of Lemma 1.1, it is sufficient to show that the homogeneous equation
(1.10) has no nontrivial ω-periodic solution.

Assume the contrary that u is a nontrivial ω-periodic solution of (1.10). Then, by
virtue of Lemma 1.4, u(m)(t) �≡ 0 and relations (1.17) and (1.18) hold. Denote by c0
the mean value of the function u. Then, in view of (1.17), it easily follows from (1.18)
that

0 <

ω∫

0

∣∣∣u(m)(t)
∣∣∣
2

dt = (−1)m

ω∫

0

p(t) (u(t) − c0)
2 dt − (−1)mc2

0

ω∫

0

p(t)dt,
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Periodic solutions of nonautonomous ordinary differential equations 243

whence, on account of (1.23), we get

0 <

ω∫

0

∣∣∣u(m)(t)
∣∣∣
2

dt ≤
ω∫

0

[
(−1)m p(t)

]
+ (u(t) − c0)

2 dt. (1.26)

Suppose now that (1.24) holds. According to Lemma 1.2, either

ω∫

0

|u(t) − c0|2 dt <
( ω

2π

)n
ω∫

0

∣∣∣u(m)(t)
∣∣∣
2

dt,

or there exist c, t0 ∈ R such that (1.6) is fulfilled and, moreover, c �= 0. In both cases,
by virtue of (1.24) and (1.26), we obtain a contradiction

ω∫

0

∣∣∣u(m)(t)
∣∣∣
2

dt <

ω∫

0

∣∣∣(u(m)(t)
∣∣∣
2

dt.

Therefore, if (1.24) holds then (1.10) has no nontrivial ω-periodic solution.
Suppose now that (1.25) is fulfilled. Then, it follows from (1.26) that

ω∫

0

∣∣∣u(m)(t)
∣∣∣
2

dt ≤ π

ζ(n)

(
2π

ω

)n−1

‖u − c0‖2
Cω

.

But this is impossible since by Lemma 1.3,

‖u − c0‖2
Cω

<
ζ(n)

π

( ω

2π

)n−1
ω∫

0

|u(m)(t)|2 dt.

Therefore, (1.10) has no nontrivial ω-periodic solution. 
�

Remark 1.2 Condition (1.23) in Theorem 1.1 cannot be replaced by the condition

p(t) �≡ 0, (−1)m

ω∫

0

p(t)dt > −ε, (1.27)

no matter how small ε > 0 would be. Indeed, let

u(t) = 1 + ε + ε sin
2π t

ω
, p(t) = (−1)m

(
2π

ω

)n u(t) − 1 − ε

u(t)
,
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244 I. Kiguradze, A. Lomtatidze

where

0 < ε < min

{( ω

2π

)n 1

ω
,

1

2ζ(n)

}
.

Then conditions (1.24) and (1.25) hold, but instead of (1.23) condition (1.27) is ful-
filled. However, the function u is a nontrivial ω-periodic solution of (1.10). Therefore,
by virtue of Lemma 1.1, equation (1.1) either has no ω-periodic solution or has infi-
nitely many ω-periodic solutions.

Remark 1.3 Condition (1.24) is optimal and cannot be weakened. Indeed, if p(t) ≡
(−1)m

( 2π
ω

)n
, then for any c1, c2 ∈ R\{0} the function

u(t) = c1 sin
2π t

ω
+ c2 cos

2π t

ω

is a nontrivial ω-periodic solution of the homogeneous equation (1.10).

Remark 1.4 It follows from Theorem 1.1 that the second order equation

u′′ = p(t)u + q(t) (1.28)

possesses a unique ω-periodic solution provided

p(t) �≡ 0,

ω∫

0

p(t)dt ≤ 0, (1.29)

and

p(t) ≥ −
(

2π

ω

)2

for t ∈ R, p(t) �≡ −
(

2π

ω

)2

.

This result belongs to Mawhin [21] and Mawhin and Ward [22]. For n = 2, condition
(1.25) is not a new as well, since as it is shown by Lasota and Opial [17] condition
(1.29), together with

ω∫

0

[p(t)]−dt ≤ 16

ω
,

guarantee the existence and uniqueness of an ω-periodic solution of (1.28).

Remark 1.5 In the case when

(−1)m p(t) ≥ 0 for t ∈ R,
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Periodic solutions of nonautonomous ordinary differential equations 245

Theorem 1.1 implies a result stated in [18] and Theorem 1.1 established in [13]. Note
that in [18] the condition

ω∫

0

|p(t)|dt ≤ 2

π

(
2π

ω

)n−1

is supposed. However, (1.25) is more general, because

ζ(n) ≤ ζ(2) = π2

6
for n ≥ 2.

Theorem 1.2 Let n = 2m,

(−1)m

ω∫

0

p(t)dt < 0, (1.30)

and

γ0(p)

ω∫

0

[
(−1)m p(t)

]
+ dt ≤ π

ζ(n)

(
2π

ω

)n−1

. (1.31)

Then, (1.1) has one and only one ω-periodic solution.

Proof Let u be a nontrivial ω-periodic solution of (1.10). Denote by c0 the mean value
of the function u. By virtue of Lemma 1.4 and condition (1.30), u(m)(t) �≡ 0 and (1.18)
and (1.22) are fulfilled. Hence,

0 <

ω∫

0

∣∣∣u(m)(t)
∣∣∣
2

dt <

ω∫

0

[
(−1)m p(t)

]
+ u2(t)dt

≤ γ0(p)‖u − c0‖2
Cω

ω∫

0

[
(−1)m p(t)

]
+ dt.

On the other hand, by virtue of Lemma 1.3,

‖u − c0‖2
Cω

≤ ζ(n)

π

( ω

2π

)n−1
ω∫

0

∣∣∣u(m)(t)
∣∣∣
2

dt.

The latter two inequalities imply

ζ(n)

π

( ω

2π

)n−1
γ0(p)

ω∫

0

[
(−1)m p(t)

]
+ dt > 1,
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246 I. Kiguradze, A. Lomtatidze

which contradicts (1.31). Thus, (1.10) has no nontrivial ω-periodic solution. Therefore,
according to Lemma 1.1, (1.1) has one and only one ω-periodic solution. 
�
Lemma 1.5 If v ∈ ACω, then

‖v − c0‖Cω ≤ 1

2

ω∫

0

|v′(t)|dt, (1.32)

where c0 is the mean value of the function v.

Proof By virtue of the condition v ∈ ACω, there exist t0 ∈ [0, ω] and t1 ∈ (t0, t0 +ω)

such that

v(t0) = v(t0 + ω) = c0, |v(t1) − c0| = ‖v − c0‖Cω .

Thus

‖v − c0‖Cω =
∣∣∣∣∣∣

t1∫

t0

v′(s)ds

∣∣∣∣∣∣
≤

t1∫

t0

|v′(s)|ds,

‖v − c0‖Cω =
∣∣∣∣∣∣

t0+ω∫

t1

v′(s)ds

∣∣∣∣∣∣
≤

t0+ω∫

t1

|v′(s)|ds.

If we add these two inequalities, we obtain

2‖v − c0‖Cω ≤
t0+ω∫

t0

|v′(s)|ds =
ω∫

0

|v′(s)|ds.

Consequently, inequality (1.32) is valid. 
�
Theorem 1.3 Let n = 2m + 1, σ ∈ {−1, 1},

σ

ω∫

0

p(t)dt < 0, (1.33)

and

γ (p)

ω∫

0

[σ p(t)]+ dt ≤ 1

ζ(2n − 2)

(
2π

ω

)2n−2

. (1.34)

Then, (1.1) has one and only one ω-periodic solution.

Proof Let u be a nontrivial ω-periodic solution of (1.10). It follows from Lemmas 1.2
and 1.4, and condition (1.33) that (1.19) and (1.22) hold and
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Periodic solutions of nonautonomous ordinary differential equations 247

0 < ‖u − c0‖2
Cω

≤ 2ζ(2n − 2)

ω

( ω

2π

)2n−2
ω∫

0

∣∣∣u(n−1)(t)
∣∣∣
2

dt

< 2ζ(2n − 2)
( ω

2π

)2n−2 ‖u(n−1)‖2
Cω

, (1.35)

where c0 is the mean value of the function u.
By Lemma 1.5,

‖u(n−1)‖Cω ≤ 1

2

ω∫

0

∣∣∣u(n)(t)
∣∣∣ dt = 1

2

ω∫

0

|p(t)u(t)|dt.

Hence, by virtue of Schwartz’s inequality, we get

‖u(n−1)‖2
Cω

≤ �

4

ω∫

0

|p(t)|dt,

where

� =
ω∫

0

|p(t)|u2(t)dt.

Now it follows from (1.35) that

0 < ‖u − c0‖2
Cω

<
ζ(2n − 2)

2

( ω

2π

)2n−2
�

ω∫

0

|p(t)|dt. (1.36)

On the other hand, in view of (1.19) and (1.22),

� =
ω∫

0

(2[σ p(t)]+ − σ p(t)) u2(t)dt = 2

ω∫

0

[σ p(t)]+u2(t)dt

≤ 2‖u‖2
Cω

ω∫

0

[σ p(t)]+dt ≤ 2γ0(p)‖u − c0‖2
Cω

ω∫

0

[σ p(t)]+dt.

The latter inequality, together with (1.36), implies

γ (p)ζ(2n − 2)
( ω

2π

)2n−2
ω∫

0

[σ p(t)]+ dt > 1,
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248 I. Kiguradze, A. Lomtatidze

which contradicts (1.34). Thus, (1.10) has no nontrivial ω-periodic solution. Therefore,
by virtue of Lemma 1.1, (1.1) has one and only one ω-periodic solution. 
�
Remark 1.6 In the case when n = 2m, (−1)m p(t) ≤ 0 (n = 2m + 1, σ p(t) ≥ 0)
and p(t) �≡ 0, conditions (1.30) and (1.31) [conditions (1.33) and (1.34)] hold auto-
matically. In this case, Theorem 1.2 (Theorem 1.3) coincides with Proposition 1.1 in
[13]. Note also that if p is not of a constant sign, then Theorems 1.2 and 1.3 as well
as Theorem 1.1 are new.

2 Nonlinear problem

In this section, we consider the nonlinear differential equation

u(n) = f
(

t, u, u′, . . . , u(n−1)
)
, (2.1)

where the function f : R × R
n → R satisfies the local Carathéodory conditions and

is periodic in the first argument with the period ω > 0, i.e.,

f (t + ω,x1, . . . ,xn) ≡ f (t,x1, . . . ,xn).

Lemma 2.1 Let σ ∈ {−1, 1} and, on the set R × R
n, the inequalities

p1(t)|x1| − δ

(
t,

n∑
k=1

|xk |
)

≤ σ f (t,x1,x2, . . . ,xn) sgn x1

≤ p2(t)|x1| + δ

(
t,

n∑
k=1

|xk |
)

, (2.2)

be fulfilled, where p1, p2 ∈ Lω and δ ∈ Zω. Let, moreover, for any p ∈ Lω, satisfying
the condition

p1(t) ≤ σ p(t) ≤ p2(t) for t ∈ R, (2.3)

(1.10) have no nontrivial ω-periodic solution. Then, (2.1) has at least one ω-periodic
solution.

For σ = 1, this lemma is proved in [13]. For σ = −1, the lemma can be proved
analogously.

Theorem 2.1 Let n = 2m and, on the set R × R
n, the inequalities

p1(t)|x1| − δ

(
t,

n∑
k=1

|xk |
)

≤ (−1)m f (t,x1,x2, . . . ,xn) sgn x1

≤ p2(t)|x1| + δ

(
t,

n∑
k=1

|xk |
)

(2.4)
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be fulfilled, where p1, p2 ∈ Lω,

p1(t) �≡ 0,

ω∫

0

p1(t)dt ≥ 0, (2.5)

and δ ∈ Zω. Let, moreover, one of the following two conditions

p2(t) ≤
(

2π

ω

)n

for t ∈ R, p2(t) �≡
(

2π

ω

)n

(2.6)

and

ω∫

0

[p2(t)]+ dt ≤ π

ζ(n)

(
2π

ω

)n−1

(2.7)

hold. Then, (2.1) has at least one ω-periodic solution.

Proof By virtue of Lemma 2.1 with σ = (−1)m , it is sufficient to show that for any
p ∈ Lω, satisfying the condition

p1(t) ≤ (−1)m p(t) ≤ p2(t) for t ∈ R, (2.8)

(1.10) has no nontrivial ω-periodic solution.
It is clear that (2.5) and (2.8) imply (1.23), while conditions (2.6) and (2.8)

[conditions (2.7) and (2.8)] yield (1.24) [condition (1.25)]. Therefore, by virtue of
Theorem 1.1, (1.10) has no nontrivial ω-periodic solution for any p satisfying (2.8). 
�
Remark 2.1 For the second order equation

u′′ = f1(t, u) + f2(u)u′ + q(t)

the result close to Theorem 2.1 is contained in the paper by Mawhin [21] and Mawhin
and Ward [22].

Theorem 2.2 Let, on the set R×R
n, inequalities (2.2) be fulfilled, where p1, p2 ∈ Lω,

ω∫

0

p2(t)dt < 0, (2.9)

and δ ∈ Zω. Let, moreover, either n = 2m, σ = (−1)m, and

η0(p1, p2)

ω∫

0

[p2(t)]+dt ≤ π

ζ(n)

(
2π

ω

)n−1

, (2.10)

123



250 I. Kiguradze, A. Lomtatidze

or n = 2m + 1, σ ∈ {−1, 1}, and

η(p1, p2)

ω∫

0

[p2(t)]+dt ≤ 1

ζ(2n − 2)

(
2π

ω

)n−2

. (2.11)

Then, (2.1) has at least one ω-periodic solution.

Proof Let the function p ∈ Lω satisfy (2.3). Then clearly

|p(t)| ≤ max {|p1(t)|, |p2(t)|} = 1

2
(|p1(t)| + |p2(t)| + ||p1(t)| − |p2(t)||) .

On the other hand, in view of (2.9), we have

∣∣∣∣∣∣

ω∫

0

p(t)dt

∣∣∣∣∣∣
≥

∣∣∣∣∣∣

ω∫

0

p2(t)dt

∣∣∣∣∣∣
.

Hence,

γ0(p) ≤ η0(p1, p2) (2.12)

and

γ (p) ≤ η(p1, p2). (2.13)

Suppose now that n = 2m, σ = (−1)m (n = 2m + 1, σ ∈ {−1, 1}) and condition
(2.10) [condition (2.11)] holds. Then, in view of (2.3) and (2.12) [(2.3) and (2.13)],
inequalities (1.30) and (1.31) [(1.33) and (1.34)] hold as well. Hence, by virtue of
Theorem 1.2 (Theorem 1.3), (1.10) has no nontrivial ω-periodic solution. Therefore,
by virtue of Lemma 2.1, (2.1) has at least one ω-periodic solution. 
�

Let us now pass to the case where f (t,x1, . . . ,xn) ≡ f (t,x1), and thus (2.1) has
the form

u(n) = f (t, u). (2.14)

As above we assume that f : R × R → R satisfies the local Carathéodory conditions
and

f (t + ω,x) ≡ f (t,x).

Theorem 2.3 Let, on the set R × R, the inequalities

p1(t)|x − y| ≤ σ [ f (t,x) − f (t, y)] sgn(x − y) ≤ p2(t)|x − y| (2.15)

123



Periodic solutions of nonautonomous ordinary differential equations 251

be fulfilled, where p1, p2 ∈ Lω. Let, moreover, either n = 2m, σ = (−1)m, and
along with (2.5) one of conditions (2.6) and (2.7) hold, or n = 2m, σ = (−1)m, and
inequalities (2.9) and (2.10) hold, or n = 2m + 1, σ ∈ {−1, 1}, and inequalities (2.9)
and (2.11) be satisfied. Then, (2.14) has a unique ω-periodic solution.

Proof From (2.15) it follows (2.2), where f (t,x1, . . . ,xn) ≡ f (t,x1) and δ(t, �) ≡
| f (t, 0)|. Therefore, by virtue of Theorems 2.1 and 2.2, (2.14) has at least one
ω-periodic solution. To complete the proof of the theorem it remains to show that
this equation has no more then one ω-periodic solution.

Let u1 and u2 be any ω-periodic solutions of (2.14). Then the function u(t) =
u2(t) − u1(t) is an ω-periodic solution of (1.10), where

p(t) =
⎧⎨
⎩

f (t,u2(t))− f (t,u1(t))
u2(t)−u1(t)

if u2(t) �= u1(t),

σ p1(t) if u2(t) = u1(t).

By (2.15), the function p satisfies inequalities (2.3). However, as it is shown above,
the restrictions imposed on p1, p2, n, and σ imply that (1.10) with p, satisfying (2.3),
has no nontrivial ω-periodic solution. Consequently, u(t) ≡ 0, i.e., u1(t) ≡ u2(t). 
�
Remark 2.2 In the case when the functions p1 and p2 are not of constant signs, Theo-
rems 2.1–2.3 are new even for the second order equation (see, e.g., [3]). Note also that
if p1 and p2 are of constant signs, then Theorems 2.1–2.3 imply Theorems 2.1–2.4
established in [13].
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