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1. Introduction

Let N be a simply connected nilpotent Lie group and assume that N admits a
lattice � (i.e. a cocompact discrete subgroup). It is then natural to study in the
compact quotient N=� (nilmanifold), dynamics of automorphisms of N stabilizing
�, or geometry if one equips N with a left invariant Riemannian metric, complex
structure, symplectic structure, etc. Dynamical and geometric properties of the
nilmanifold often depend only on the commensurability class of the lattice �. It
is then when one runs into the following problem:

(�) To find all rational forms up to isomorphism of a given real nilpotent Lie
algebra n.

There is not much on this question in the literature, and a complete answer
seems quite difficult to obtain in explicit examples, even in low dimensional or 2-
step nilpotent cases. In [5, Theorem 1.3], the set of isomorphism classes of rational
forms of n is described by using Galois cohomology of the group GalðQ=QÞ with
values in AutðnÞ. The problem can also be described in terms of rational points in
the orbit space of an algebraic variety (see [2, Section 5] and (4)).

A diffeomorphism f of a compact differentiable manifold M is called Anosov if
the most perfect kind of global hyperbolic behavior for a dynamical system holds:
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the tangent bundle TM admits a continuous invariant splitting TM ¼ Eþ � E�

such that df expands Eþ and contracts E� exponentially. Simple examples are
obtained from the following algebraic construction. Let ’ be a hyperbolic auto-
morphism of N (i.e. all the eigenvalues of its derivative have absolute value
different from 1) such that ’ð�Þ ¼ � for some lattice � of N. Then ’ defines
an Anosov diffeomorphism on the nilmanifold M ¼ N=�, which is called an
Anosov automorphism.

Forty years have already passed since in the seminal paper [13], Smale raised
the problem of classifying all compact manifolds (up to homeomorphism) which
admit an Anosov diffeomorphism, and curiously enough, the only known exam-
ples so far up to finite quotient or topological conjugation are the Anosov auto-
morphisms described above. It is conjectured that these exhaust the class of
Anosov diffeomorphisms (see [12]). All this certainly highlights the problem of
classifying nilmanifolds admitting Anosov automorphisms, which are easily seen
to be in correspondence with the so called Anosov Lie algebras (see [6]), that is,
rational nilpotent Lie algebras admitting a hyperbolic automorphism A which is
also unimodular (i.e. its matrix with respect to some basis belongs to GLnðZÞ).

Unimodularity and hyperbolicity are, together, a quite strong condition to be
satisfied by an automorphism of a Lie algebra, and therefore the existence of an
Anosov automorphism only holds for very distinguished nilmanifolds. There is a
construction in [6] of an Anosov rational form for any Lie algebra of the form
n� n, where n is a real graded nilpotent Lie algebra admitting at least one rational
form. Such an abundance turns the classification into a wild problem for large
dimensions, but this is due to the great deal of nilpotent Lie algebras rather than to
the Anosov condition.

An explicit classification of Anosov Lie algebras of dimension at most 8 is
given in [8]. After a quite involved work carried out in [7, Section 4] and [8,
Section 3] on the real level, it follows that the only real nilpotent Lie algebras of
dimension at most 8 (without abelian factors) which admit at least one Anosov
rational form are h3 � h3, f3, g, h3 � h5, h and l4 � l4 (see Table 1). This is a really
short list if we bear in mind that there exist several continuous families and
hundreds of isolated examples of 7 and 8-dimensional nilpotent Lie algebras.
After this, it was crucial to know for each of these Lie algebras, a complete list
of all their rational forms up to isomorphism. This information has been obtained
in the present paper (see Table 2) and is part of the classification of nilmanifolds
admitting an Anosov diffeomorphism in dimension at most 8.

We recall that a rational form of n is a rational subspace nQ of n such that
nQ � R ¼ n and ½X;Y � 2nQ for all X; Y 2nQ. Two rational forms nQ1 , nQ2 of n are
said to be isomorphic if there exists A2AutðnÞ such that AnQ1 ¼ nQ2 , or equiva-
lently, if they are isomorphic as Lie algebras over Q. Not every real nilpotent Lie
algebra admits a rational form. By a result due to Malcev, the existence of a
rational form of n is equivalent to the corresponding Lie group N admits a lattice
(see [9]). Another difference with the semisimple case is that sometimes n has only
one rational form up to isomorphism.

For a 2-step nilpotent Lie algebra n with 2-dimensional center, Grunewald,
Segal and Sterling [4], [5] gave an answer to (�) in terms of isomorphism classes
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of binary forms. Such a binary form is the Pfaffian form of n, which is a homo-
geneous polynomial of degree m in k variables attached to any 2-step nilpotent
Lie algebra n of dimension 2mþ k and dim½n; n� ¼ k (see Definition 2.2). The
projective equivalence class of this form is an isomorphism invariant of n (see
also [10]).

In Section 4, we show how one can apply Pfaffian forms (Section 2), the results
from [4], [5] and Scheuneman duality (Section 3), to solve problem (�) in some
cases. We compute explicitly the set of isomorphism classes of rational forms for
the 2-step nilpotent Lie algebras h3 � h3, g, h3 � h5 and h. We also consider in
Section 5 the 3-step nilpotent algebra l4 � l4, for which the above techniques do
not apply.

2. Pfaffian form

Let n be a Lie algebra over the field K, which is assumed from now on to be of
characteristic zero. We are mainly interested in the cases K ¼ C;R;Q. Fix a non-
degenerate symmetric K-bilinear form h�; �i on n (i.e. an inner product). For each
Z 2n consider the K-linear transformation JZ : n�!n defined by

hJZX; Yi ¼ h½X; Y �; Zi; 8 X; Y 2n: ð1Þ
Recall that JZ is skew symmetric with respect to h�; �i and the map

J : n�! soðn;KÞ is K-linear, where n is the dimension of n. Equivalently, we
may define these maps by fixing a basis � ¼ fX1; . . . ;Xng of n rather than an
inner product in the following way: JZ is the K-linear transformation whose matrix
in terms of � has entry ij given byXn

k¼1

ckijxk; where ½Xi;Xj� ¼
Xn
k¼1

ckijXk; Z ¼
Xn
k¼1

xkXk:

It is easy to see that this definition coincides with the first one if we let
hXi;Xji ¼ �ij.

If n and n0 are two Lie algebras over K and J, J 0 are the corresponding maps,
relative to the inner products h�; �i and h�; �i0 respectively, then it is easy to see that
a linear map A : n�!n0 is a Lie algebra isomorphism if and only if

AtJ0ZA ¼ JAtZ ; 8 Z 2n0; ð2Þ
where At : n0 �!n is given by hAtX; Yi ¼ hX;AYi0 for all X2n0, Y 2n.

Definition 2.1. Consider the central descendent series of n defined by C0ðnÞ ¼
n, CiðnÞ ¼ ½n;Ci�1ðnÞ�. When CrðnÞ ¼ 0 and Cr�1ðnÞ 6¼ 0, n is said to be r-step
nilpotent, and we denote by ðn1; . . . ; nrÞ the type of n, where

ni ¼ dimCi�1ðnÞ=CiðnÞ:
We also take a decomposition n ¼ n1 � � � � � nr, a direct sum of vector spaces,
such that CiðnÞ ¼ niþ1 � � � � � nr for all i.

Assume now that n is 2-step nilpotent, or equivalently of type ðn1; n2Þ.
Consider any direct sum decomposition of the form n ¼ V � ½n; n�, that is,

Rational forms and Anosov diffeomorphisms 17



n1 ¼ V . If the inner product satisfies hV; ½n;n�i ¼ 0 then V is JZ-invariant for any
Z and JZ ¼ 0 if and only if Z 2V . We define f : ½n; n� �!K by

f ðZÞ ¼ PfðJZ jVÞ; Z 2 ½n; n�;
where Pf : soðV ;KÞ�!K is the Pfaffian, that is, the only polynomial function
satisfying PfðBÞ2 ¼ detB for all B2 soðV ;KÞ and PfðJÞ ¼ 1 for

J ¼
�

0 I

�I 0

�
:

Roughly speaking, f ðZÞ ¼ ðdet JZ jVÞ
1
2, and so we need dimV to be even in order

to get f 6¼ 0. For any A2glðV ;KÞ, B2 soðV;KÞ we have that PfðABAtÞ ¼
ðdetAÞPfðBÞ.

Definition 2.2. We call f the Pfaffian form of the 2-step nilpotent Lie algebra n.

If dimV ¼ 2m and dim½n; n� ¼ k then f ¼ f ðx1; . . . ; xkÞ is a homogeneous
polynomial of degree m in k variables with coefficients in K, where Z ¼Pk

i¼1 xiZi and fZ1; . . . ; Zkg is a fixed basis of ½n;n�. f is also called a form of
degree m, when k ¼ 2 or 3 one uses the words binary or ternary and for m ¼ 2 and
3, quadratic and cubic, respectively.

Let Pk;mðKÞ denote the set of all homogeneous polynomials of degree m in k
variables with coefficients in K. The group GLkðKÞ acts naturally on Pk;mðKÞ by

ðA � f Þðx1; . . . ; xkÞ ¼ f ðA�1ðx1; . . . ; xkÞÞ;
that is, by linear substitution of variables, and thus the action determines the usual
equivalence relation between forms, denoted by f ’ g. In the present paper, we
need to consider the following wider equivalence relation.

Definition 2.3. For f ; g2Pk;mðKÞ, we say that f is projectively equivalent to g,
and denote it by f ’K g, if there exists A2GLkðKÞ and c2K� such that

f ðx1; . . . ; xkÞ ¼ cgðAðx1; . . . ; xkÞÞ:
In other words, we are interested in projective equivalence classes of forms.

Proposition 2.4. Let n;n0 be two-step nilpotent Lie algebras over the field K. If
n and n0 are isomorphic then f ’K f 0, where f and f 0 are the Pfaffian forms of n
and n0, respectively.

Proof. Since n and n0 are isomorphic we can assume that n ¼ n0 and ½n; n� ¼
½n0; n0� as vector spaces, and then the decomposition n ¼ V � ½n; n� is valid for
both Lie brackets ½ ; � and ½ ; �0. Any isomorphism satisfies A½n; n� ¼ ½n0;n0�0, and it
is easy to see that there is always an isomorphism A between them satisfying
AV ¼ V . It follows from (2) that

AtJ0ZA ¼ JAtZ ; 8 Z 2 ½n;n�;
and since the subspaces V and ½n;n� are preserved by A and At we have that

f 0ðZÞ ¼ cf ðAt
2ZÞ;

where A2 ¼ Aj½n;n� and c�1 ¼ det AjV . This shows that f ’K f 0. &
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The above proposition says that the projective equivalence class of the form
f ðx1; . . . ; xkÞ is an isomorphism invariant of the Lie algebra n. We note that this
invariant was actually introduced by J. Scheuneman in [10], from a different point
of view.

What is known about the classification of forms? Unfortunately, much less
than one could naively expect. The case K ¼ C is as usual the most developed
one, and in such a case the understanding of the ring of invariant polynomials
C½Pk;m�SLkðCÞ is crucial. A set of generators and their relations for such a ring is
known only for small values of k and m, for instance for k ¼ 2 and m4 8, or
k ¼ 3 and m4 3. We refer to [1] and the references therein for several explicit
classification results.

The following result, which is easy to prove, will help us to distinguish be-
tween projective equivalence classes of forms, and in view of Proposition 2.4, to
recognize non-isomorphic two-step nilpotent Lie algebras.

Proposition 2.5. If f ; g2Pk;mðKÞ satisfy
f ðx1; . . . ; xkÞ ¼ cgðAðx1; . . . ; xkÞÞ

for some A2GLkðKÞ and c2K�, then

Hf ðx1; . . . ; xkÞ ¼ ckðdetAÞ2
HgðAðx1; . . . ; xkÞÞ;

where the Hessian Hf of the form f is defined by

Hf ðx1; . . . ; xkÞ ¼ det

�
@2f

@xi@xj

�
:

Pfaffian forms are also a very useful tool to study Anosov Lie algebras.

Proposition 2.6 [8]. Let n be a real 2-step nilpotent Lie algebra with
dim½n; n� ¼ k and admitting a rational form nQ which is Anosov. Then, if f is
the Pfaffian form of nQ, for any p2Z the set

Sp ¼ fðx1; . . . ; xkÞ2Zk : f ðx1; . . . ; xkÞ ¼ pg

is either empty or infinite.

The first non-abelian example of an Anosov Lie algebra, due to Borel (see
[13]), is a rational form of h3 � h3. Rational Lie algebras of type (4,2) are
parametrized by the set of square free numbers k2Z and their Pfaffian forms
are fkðx; yÞ ¼ x2 � ky2 (see paragraph before Proposition 3.2). Thus the set of
solutions

fðx; yÞ2Z2 : fkðx; yÞ ¼ 1g

is infinite if and only if k> 1 or k ¼ 0 (Pell equation). By Proposition 2.6, the
Lie algebra nQk can never be Anosov for k< 0 or k ¼ 1. This implies that the
rational form nQ1 of h3 � h3 is not Anosov and also that nilmanifolds covered
by the nilpotent Lie group with Lie algebra hC3 can never admit Anosov
automorphisms.
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3. Rational forms

Let n be a nilpotent Lie algebra over R of dimension n.

Definition 3.1. A rational form of n is an n-dimensional rational subspace nQ

of n such that

½X;Y � 2nQ; 8 X; Y 2nQ:

Two rational forms nQ1 , nQ2 of n are said to be isomorphic if there exists A2AutðnÞ
such that AnQ1 ¼ nQ2 , or equivalently, if they are isomorphic as Lie algebras over Q
(recall that nQ � R ¼ nÞ. In an analogous way, by considering R and C (resp. Q
and C) instead of Q and R, one defines a real form (resp. a rational form) of a
complex Lie algebra.

The problem of finding all isomorphism classes of rational forms for a given
real nilpotent Lie algebra is a very difficult one, even in the low dimensional or
two-step cases. Very little is known about this problem in the literature (see [2,
Section 5] and [11]).

We now give a first example on how to use Pfaffian forms to study rational
forms of 2-step nilpotent Lie algebras. Let nQ be a rational nilpotent Lie algebra
of type (4, 2). If nQ ¼ n1 � n2 is the decomposition such that dim n1 ¼ 4,
dimn2 ¼ 2 and ½nQ;nQ� ¼ n2, then we consider the Pfaffian form f of nQ. Thus
f is a binary quadratic form, say f ðx; yÞ ¼ ax2 þ bxyþ cy2, with a; b; c2Q. It is
proved in [4] that the converse of Proposition 2.4 is valid in this case, that is, there
is a one-to-one correspondence between isomorphism classes of non-degenerate
(i.e. with center equal to n2) rational Lie algebras of type (4,2) and projective
equivalence classes of binary quadratic forms with coefficients in Q. It is well
known that these last classes can be parametrized by

ffkðx; yÞ ¼ x2 � ky2 : k is a square free integer numberg:
Recall that an integer number is called square free if p2 -k for any prime p. The set
of all square free numbers parametrizes the equivalence classes of the relation in Q
defined by r� s if and only if r ¼ q2s for some q2Q�. We are considering k ¼ 0 a
square free number too. If fk ’K fk0 then it follows from Proposition 2.5 that
�4k ¼ �4q2k0 for some q2Q�, which implies that k ¼ k0 if k and k0 are square
free.

It is easy to check that the Pfaffian form of the Lie algebra nQk ¼ n1 � n2

defined by

½X1;X3� ¼ Z1; ½X1;X4� ¼ Z2; ½X2;X3� ¼ kZ2; ½X2;X4� ¼ Z1 ð3Þ
is fk. For K ¼ R, these Lie algebras can be distinguished only by the sign of the
discriminant of fk, which says that there are only three real Lie algebras of type (4,
2), namely, those of the form nQk � R with k> 0, k ¼ 0 and k< 0, respectively. It
is easy to check that nQ1 � R ’ h3 � h3, where h3 denotes the real 3-dimensional
Heisenberg algebra and nQ�1 � R ’ hC3 , the complex 3-dimensional Heisenberg
algebra viewed as real. On the other hand, we obtain that there are only two
complexifications nQk � C, those with k 6¼ 0 and the one with k ¼ 0.
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Proposition 3.2. The set of isomorphism classes of rational forms of the Lie
algebras h3 � h3, hC3 and nQ0 � R is respectively parametrized by

fnQk : k> 0 is square freeg; fnQ�k : k> 0 is square freeg; fnQ0 g:
Proof. The Lie bracket of h3 � h3 is

½X1;X2� ¼ Z1; ½X3;X4� ¼ Z2;

and one can easily check that the rational subspace generated by the set

fX1 þ X3;
ffiffiffi
k

p
ðX1 � X3Þ;

ffiffiffi
k

p
ðX2 þ X4Þ; X2 � X4;

ffiffiffi
k

p
ðZ1 þ Z2Þ; Z1 � Z2g;

is a rational subalgebra of h3 � h3 isomorphic to nQk . For hC3 , we argue in an

analogous way by using f
ffiffiffiffiffiffi
�k

p
X1;X2;X3;

ffiffiffiffiffiffi
�k

p
X4;

ffiffiffiffiffiffi
�k

p
Z1;�kZ2g. &

We now describe the results in [5] for the general case (see also [3]). Consider
n ¼ n1 � n2 a vector space over K such that n1 and n2 are subspaces of dimension
n and 2 respectively. Every 2-step nilpotent Lie algebra of dimension nþ 2 with a
2-dimensional center can be represented by a bilinear form � : n1 � n1 �!n2

which is non-degenerate in the following way: for any nonzero X2n1 there
exists Y 2n1 such that �ðX;YÞ 6¼ 0. If we fix bases fX1; . . . ;Xng and fZ1;Z2g of
n1 and n2 respectively, then each � has an associated Pfaffian binary form f�
defined by

f�ðx; yÞ ¼ PfðJ�xZ1þyZ2
Þ

(see Definition 2.2). A central decomposition of � is given by a decomposition of
n1 in a direct sum of subspaces n1 ¼ V1 � � � � � Vr such that �ðVi;VjÞ ¼ 0 for all
i 6¼ j. We say that � is indecomposable when the only possible central decomposi-
tion has r ¼ 1. Every � has a central decomposition into indecomposables con-
stituents and such a decomposition is unique up to an automorphism of �; in
particular, the constituents Vi � n2 are unique up to isomorphism.

There is only one indecomposable � for n odd and it can be defined by

J
�
xZ1þyZ2

¼

�x �y 0
0 �x �y

0 . .
. . .

.

0 �x �y

x 0 0
y x

0 y . .
.

0
. .
.

x
0 y

2
6666666666664

3
7777777777775
:

Recall that f� ¼ 0 in this case. When n is even the situation is much more abun-
dant: two indecomposables � and � are isomorphic if and only if f� ’K f�. If
n ¼ 2m and f�ðx; yÞ ¼ xm � a1x

m�1y� � � � � amy
m, then

J
�
xZ1þyZ2

¼
�

0 �Bt

B 0

�
;
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where

B ¼

x y 0 � � � 0

0 x y ..
.

..

. . .
. . .

.
0

0 � � � 0 x y

amy am�1y � � � a2y a1yþ x

2
6666664

3
7777775
:

We note that here f� is always nonzero, and in order to get � indecomposable one
needs the form f� to be primitive (i.e. a power of an irreducible one). For decom-
posable � and � with respective central decompositions n1 ¼ V1 � � � � � Vr and
n1 ¼ W1 � � � � �Ws into indecomposables constituents, we have that � is isomor-
phic to � if and only if r ¼ s and after a suitable reordering one has that

(i) for some t4 r, dimVi ¼ dimWi for all i ¼ 1; . . . ; t and they are all even
numbers;

(ii) if �i ¼ �jVi �Vi
, �i ¼ �jWi �Wi

then there exist A2GL2ðKÞ and
c1; . . . ; ct 2K� such that

f�i
ðx; yÞ ¼ cif�i

ðAðx; yÞÞ 8 i ¼ 1; . . . ; t;

(iii) dimVi ¼ dimWi is odd for all i ¼ t þ 1; . . . ; r.

Concerning our search for all rational forms up to isomorphism of a given real
nilpotent Lie algebra, these results say that the picture in the 2-step nilpotent with
2-dimensional center case is as follows. Let ðnQ ¼ n1 � n2; �Þ be one of such Lie
algebras over Q, and consider the corresponding Pfaffian form f�2P2;mðQÞ. The
isomorphism classes of rational forms of nQ � R are then parametrized by

ððR� �GL2ðRÞÞ � f� \ P2;mðQÞÞ=ðQ� �GL2ðQÞÞ: ð4Þ
In other words, the rational points of the orbit ðR� �GL2ðRÞÞ � f� (f� viewed as

an element of P2;mðRÞ) is a ðQ� �GL2ðQÞÞ-invariant set and we have to consider
the orbit space for this action. Such a description shows the high difficulty of the
problem. Recall that we have to consider the action of R� �GL2ðRÞ instead of just
that of GL2ðRÞ only when m is even.

We now describe a duality for 2-step nilpotent Lie algebras over any field of
characteristic zero introduced by J. Scheuneman [10] (see also [3] and [4, Section 8]),
which assigns to each Lie algebra of type ðn; kÞ another one of type

�
n; nðn�1Þ

2
� k

�
.

The dual of a Lie algebra n ¼ n1 � n2 of type ðn; kÞ can be defined as follows:
consider the maps fJZ : Z 2n2g 	 soðnÞ corresponding to a fixed inner prod-
uct h�; �i on n (see (1)). Let ~nn2 	 soðnÞ be the orthogonal complement of the
k-dimensional subspace fJZ : Z 2n2g in soðnÞ relative to the inner product
ðA;BÞ ¼ �trAB. Now, we define the 2-step nilpotent Lie algebra ~nn ¼ n1 � ~nn2

whose Lie bracket is determined by

ð½X; Y �;ZÞ ¼ hZðXÞ;Yi; Z 2 ~nn2:

In other words, the maps eJJZ’s for this Lie algebra are the Z’s themselves. Recall
that dim ~nn2 ¼ nðn�1Þ

2
� k, and so the dual ~nn of n is of type

�
n; nðn�1Þ

2
� k

�
. It is
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proved in [10] that n1 is isomorphic to n2 if and only if ~nn1 is isomorphic to ~nn2, so
that any classification for algebras of type ðn; kÞ simultaneously determines the
algebras of type

�
n; nðn�1Þ

2
� k

�
.

4. Applications

In this section, we determine the set of all rational forms up to isomorphism for
some 2-step 8-dimensional nilpotent Lie algebras, as an application of the results
described in Sections 2 and 3. We refer to Tables 1 and 2 for a summary of the
results obtained.

Let g be the 8-dimensional 2-step nilpotent Lie algebra of type (6, 2) defined by

½X1;X2� ¼ Z1; ½X1;X3� ¼ Z2; ½X4;X5� ¼ Z1; ½X4;X6� ¼ Z2: ð5Þ
It is easy to see that its Pfaffian form f is zero. Let gQ be a rational form of g,

for which we can assume that gQ ¼ hX1; . . . ;X6iQ � hZ1; Z2iQ. Since the Pfaffian
form g of gQ satisfies g ’R f ¼ 0 we obtain that g ¼ 0. It follows that gQ can not
be indecomposable, and so hX1; . . . ;X6iQ ¼ V1 � � � � � Vr with ½Vi;Vj� ¼ 0 for all
i 6¼ j. Now, hX1; . . . ;X6iR ¼ V1 � R� � � � � Vr � R is also a central decomposi-
tion for g, proving that r ¼ 2 and dimV1 ¼ dimV2 ¼ 3 by the uniqueness of such
a decomposition. But 3 is odd, and hence we obtain the following result.

Proposition 4.1. The Lie algebra g of type (6, 2) given in (5) has only one
rational form up to isomorphism, denoted by gQ.

Remark 4.2. Clearly, the same proof is valid if one need to find all real forms of
the complex Lie algebra gC ¼ g� C. Thus g is the only real form of gC up to
isomorphism.

As another application of the correspondence with binary forms given above, we
now study rational forms of the real Lie algebra h3 � h5 of type (6, 2). It has central
decomposition n1 ¼ V1 � V2 � V3 with dimVi ¼ 2 for all i as a real Lie algebra and
its Pfaffian form is f ðx; yÞ ¼ xy2. Let � : n1 � n1 �!n2 be a rational form of
h3 � h5 with Pfaffian form f�. If � is decomposable then n1 ¼ W1 �W2,
dimW1 ¼ 2, dimW2 ¼ 4; or n1 ¼ W1 �W2 �W3, dimWi ¼ 2 for all i. In any case,
f�i

’Q x; y or y2 proving that � must be isomorphic to the canonical rational form

�0ðX1;X2Þ ¼ Z1; �0ðX3;X4Þ ¼ Z2; �0ðX5;X6Þ ¼ Z2;

for which f�0
¼ f . We then assume that � is indecomposable. We shall prove that

there is only one GL2ðQÞ-orbit of rational points in GL2ðRÞ � f , and so � will have

Table 1. Notation for some real nilpotent Lie algebras

Notation Type Lie brackets

h2kþ1 ð2k; 1Þ ½x1; x2� ¼ z1; . . . ; ½x2k�1; x2k� ¼ z1

f3 ð3; 3Þ ½x1; x2� ¼ z1; ½x1; x3� ¼ z2; ½x2; x3� ¼ z3

g ð6; 2Þ ½x1; x2� ¼ z1; ½x1; x3� ¼ z2; ½x4; x5� ¼ z1; ½x4; x6� ¼ z2

h ð4; 4Þ ½x1; x3� ¼ z1; ½x1; x4� ¼ z2; ½x2; x3� ¼ z3; ½x2; x4� ¼ z4

l4 ð2; 1; 1Þ ½x1; x2� ¼ x3; ½x1; x3� ¼ x4
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to be isomorphic to �0. There exists A2GL2ðRÞ such that f� ¼ A�1 � f , that is,

f�ðx; yÞ ¼ ac2x3 þ cð2ad þ bcÞx2yþ dðad þ 2bcÞxy2 þ bd2y3; A ¼
�
a b

c d

�
:

Since � is rational we have that

q :¼ ac2; r :¼ cð2ad þ bcÞ; s :¼ dðad þ 2bcÞ; t :¼ bd2

are all in Q. If c ¼ 0 then q ¼ r ¼ 0 and s ¼ ad2, t ¼ bd2, which implies that s 6¼ 0
and hence

f� ¼ B�1 � f ; for B ¼
�
s t

0 1

�
2GL2ðQÞ:

If c 6¼ 0 then one can check by a straightforward computation that

d

c
¼ 9qst þ rs2 � 6r2t

6qs2 � r2s� 9qrt
2Q:

There must be a simpler formula for d
c

in terms of q; r; s; t, but unfortunately we
were not able to find it. By putting u :¼ d

c
we have that

f� ¼ B�1 � f ; for B ¼
�
q t=u2

1 u

�
2GL2ðQÞ:

Recall that detB ¼ qu� t
u2 ¼ cðad � bcÞ ¼ c detA 6¼ 0. We then obtain that in any

case f� ’Q f and so � is isomorphic to �0.

Proposition 4.3. Up to isomorphism, the real Lie algebra h3 � h5 of type (6, 2)
has only one rational form, which will be denoted by ðh3 � h5ÞQ.

Remark 4.4. It is easy to check that the above proof is also valid if we replace
Q and R by R and C, obtaining in this way that the only real form of ðh3 � h5ÞC is
h3 � h5.

Let h be the Lie algebra of type (4, 4) which is dual to h3 � h3 (of type (4, 2)).
The Lie bracket of h3 � h3 is

½X1;X2� ¼ Z1; ½X3;X4� ¼ Z2;

and hence

JZ1
¼

0 �1

1 0

0 0

0 0

2
664

3
775; JZ2

¼

0 0

0 0

0 �1

1 0

2
664

3
775:

The orthogonal complement ~nn2 of fJZ : Z 2n2g is then linearly generated by

�1 0

0 0

1 0

0 0

2
6664

3
7775;

0 �1

0 0

0 0

1 0

2
6664

3
7775;

0 0

�1 0

0 1

0 0

2
6664

3
7775;

0 0

0 �1

0 0

0 1

2
6664

3
7775;
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which determines the Lie bracket for h given by

½X1;X3� ¼ Z1; ½X1;X4� ¼ Z2; ½X2;X3� ¼ Z3; ½X2;X4� ¼ Z4: ð6Þ
Scheuneman duality allows us to find all the rational forms of h; namely, the

dual of the rational form of h3 � h3, already computed in Proposition 3.2.

Proposition 4.5. For any k2Z let hQk be the rational Lie algebra of type (4, 4)
defined by

½X1;X2� ¼ Z1; ½X2;X3� ¼ �Z3;

½X1;X3� ¼ Z2; ½X2;X4� ¼ �Z2;

½X1;X4� ¼ kZ3; ½X3;X4� ¼ Z4:

Then the set of isomorphism classes of rational forms of the Lie algebra h defined
in (6) is parametrized by

fhQk : k is a square free natural numberg:
Proof. For the rational form nQk of h3 � h3 (see (3)) we have that

JZ1
¼

�1 0

0 �1

1 0

0 1

2
664

3
775; JZ2

¼

0 �1

�k 0

0 k

1 0

2
664

3
775:

A basis of the orthogonal complement of hJZ1
; JZ2

iQ is then given by

0 �1

1 0

0 0

0 0

2
6664

3
7775;

�1 0

0 1

1 0

0 �1

2
6664

3
7775;

0 �k

1 0

0 �1

k 0

2
6664

3
7775;

0 0

0 0

0 �1

1 0

2
6664

3
7775;

which determines the Lie bracket for hQk . To conclude the proof, one can easily
check that the rational subspace generated by

f
ffiffiffi
k

p
ðX1 � X3Þ;X1 þ X3;X2 þ X4;

ffiffiffi
k

p
ðX2 � X4Þ;

2
ffiffiffi
k

p
Z1;

ffiffiffi
k

p
ðZ2 þ Z3Þ; Z3 � Z2;�2

ffiffiffi
k

p
Z4g;

is closed under the Lie bracket of h and isomorphic to hQk . &

An alternative proof of the non-isomorphism between the hQk ’s without using
Scheuneman duality may be given as follows: from the form of JZ1

; . . . ; JZ4
for hQk

in the above proof it follows that

JxZ1þyZ2þzZ3þwZ4
¼

0 �x �y �kz

x 0 z y

y �z 0 �w

kz �y w 0

2
664

3
775;

and so the Pfaffian form of hQk is given by fkðx; y; z;wÞ ¼ xwþ y2 � kz2. Now, if
hQk is isomorphic to hQk0 then fk ’Q fk0 (see Proposition 2.4), which implies that
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k ¼ q2k0 for some q2Q� by applying Proposition 2.5 (recall that Hfk ¼ 4k). Thus
k ¼ k0 since they are square free.

5. A 3-step nilpotent case

We compute in this section the rational forms of l4 � l4, where l4 is the 4-
dimensional real Lie algebra with Lie bracket

½Y1; Y2� ¼ Y3; ½Y1; Y3� ¼ Y4:

Notice that l4 � l4 is 3-step nilpotent, and therefore Pfaffian forms and duality
can not be used as tools to distinguish or classify rational forms. For each
k2Z, consider the 8-dimensional rational nilpotent Lie algebra lQk with basis
fX1;X2;X3;X4; Z1;Z2; Z3; Z4g and Lie bracket defined by

½X1;X3� ¼ Z1; ½X2;X3� ¼ Z2;

½X1;X4� ¼ Z2; ½X2;X4� ¼ kZ1;

½X1; Z1� ¼ Z3; ½X2; Z2� ¼ kZ3;

½X1; Z2� ¼ Z4; ½X2; Z1� ¼ Z4:

ð7Þ

Proposition 5.1. Let fX1;X2;X3;X4; Z1;Z2; Z3; Z4g be a basis of the Lie alge-
bra l4 � l4 of type (4, 2, 2) with structure coefficients

½X1;X3� ¼ Z1; ½X2;X4� ¼ Z2;

½X1; Z1� ¼ Z3; ½X2; Z2� ¼ Z4:

For each k2N the rational subspace generated by the set

fX1 þ X2;
ffiffiffi
k

p
ðX1 � X2Þ;X3 þ X4;

ffiffiffi
k

p
ðX3 � X4Þ;

Z1 þ Z2;
ffiffiffi
k

p
ðZ1 � Z2Þ; Z3 þ Z4;

ffiffiffi
k

p
ðZ3 � Z4Þg

is a rational form of l4 � l4 isomorphic to the Lie algebra lQk defined in (7).
Moreover, the set

flQk : k is a square-free natural numberg
parametrizes the set all the rational forms of l4 � l4 up to isomorphism.

Table 2. Set of rational forms up to isomorphism for some real nilpotent Lie algebras. In all cases k runs
over all square-free natural numbers

Real Lie algebra Type Rational forms Reference

h3 � h3 ð4; 2Þ nQk ; k5 1 Prop. 3.2

f3 ð3; 3Þ fQ3 –

g ð6; 2Þ gQ Prop. 4.1

h3 � h5 ð6; 2Þ ðh3 � h5ÞQ Prop. 4.3

h ð4; 4Þ hQk ; k5 1 Prop. 4.5

l4 � l4 ð4; 2; 2Þ lQk ; k5 1 Prop. 5.1
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Proof. It is easy to see that the Lie brackets of the basis of the rational subspace
coincides with the one of lQk by renaming the basis as fX1; . . . ; Z4g with the same
order. In particular, such a subspace is a rational form of l4 � l4. If k0 ¼ q2k then

one can easily check that A : lQk0 �! lQk given by the diagonal matrix with entries
ð1; q; 1; q; 1; q; 1; qÞ is an isomorphism of Lie algebras.

Conversely, assume that A : lQk �! lQk0 is an isomorphism. We will show that

k0 ¼ q2k for some q2Q�. Let fJ0Zg, fJZg be the maps defined at the beginning of

this section corresponding to lQk0 and lQk , respectively. If Z ¼ xZ1 þ yZ2 þ zZ3 þ wZ4

we have that

JZ ¼

0 0 �x �y �z �w 0 0

0 0 �y �kx �w �kz 0 0

x y 0 � � � 0

y kx

z w ..
. ..

. ..
.

w kz

0 0

0 0 0 � � � 0

2
666666666664

3
777777777775
;

and J0Z is obtained just by replacing k with k0. It follows from (2) that AtJ0ZA ¼ JAtZ

for all Z 2hZ3; Z4iQ, and since this subspace is A-invariant we get that the
subspace \

Z 2 hZ3;Z4iQ

Ker JZ ¼
\

Z 2 hZ3;Z4iQ

Ker J0Z ¼ hX3;X4; Z3;Z4iQ

is also A-invariant. Thus A has the form

A ¼

A1 0 0 0

? A2 0 0

? 0 A3 0

? ? ? A4:

2
664

3
775 ð8Þ

(recall that C1ðlQk Þ ¼ C1ðlQk0 Þ ¼ hZ1;Z2; Z3; Z4iQ and C2ðlQk Þ ¼ C2ðlQk0 Þ ¼ hZ3; Z4iQ
are always A-invariant), and now it is easy to prove that

At
3

�
z w

w k0z

�
A1 ¼

�
azþ bw czþ dw

czþ dw k0ðazþ bwÞ

�
; where At

4 ¼
�
a bw

c d

�
:

We compute the determinant of both sides getting

qf 0ðz;wÞ ¼ f ðAt
4ðz;wÞÞ; 8 ðz;wÞ2Q2;

where q ¼ detA3A1 2Q� and f ðz;wÞ ¼ kz2 � w2, f 0ðz;wÞ ¼ k0z2 � w2. By
Proposition 2.5 we have that

4k0 ¼ q�2ðdetA4Þ2
4k;

and so k ¼ k0 as long as they are square free numbers, as we wanted to show.
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To conclude the proof, it remains to show that these are all the rational forms
up to isomorphism. Let nQ be a rational form of l4 � l4. Since nQ=½nQ; ½nQ; nQ�� is
of type (4, 2), we can use the classification of rational Lie algebras of this type
given in (3) to get linearly independent vectors X1; . . . ; Z2 such that

½X1;X3� ¼ Z1; ½X1;X4� ¼ Z2; ½X2;X3� ¼ Z2; ½X2;X4� ¼ kZ1; ð9Þ
where k is a square free integer number. Jacobi condition is equivalent to

½X1; Z2� ¼ ½X2;Z1�; ½X3; Z2� ¼ ½X4; Z1�;
k½X1; Z1� ¼ ½X2;Z2�; k½X3; Z1� ¼ ½X4;Z2�:

ð10Þ

We will consider the following two cases separately:

(I) Z3 :¼ ½X1; Z1� and Z4 :¼ ½X1; Z2� are linearly independent,
(II) ½X1;Z1�; ½X1;Z2� 2QZ3 for some nonzero Z3 2nQ.

In both cases we will make use of the following isomorphism invariant for real 3-
step nilpotent Lie algebras:

UðnÞ :¼ fX2n=½n; ½n;n�� : dim Imðad XÞ ¼ 1g [ f0g:
Clearly, if A : n�!n0 is an isomorphism then AUðnÞ ¼ Uðn0Þ. Under the presen-
tation of l4 � l4 given in the statement of the theorem, it is easy to see that

Uðl4 � l4Þ ¼ hX3; Z1iR [ hX4; Z3iR: ð11Þ

In case (I), it follows from (10) that we also have

½X2; Z1� ¼ Z4; ½X2; Z2� ¼ kZ3:

Therefore, in order to get that nQ is isomorphic to lQk (see (7)), it is enough to show
that the vectors in hZ3;Z4iR given by

Z :¼ k½X3; Z1� ¼ ½X4; Z2�; Z 0 :¼ ½X3; Z2� ¼ ½X4; Z1�
are both zero (see (10)). Let us compute the cone UðnÞ for n ¼ nQ � R. Recall
that UðnÞ has to be the union of two disjoint planes as n ’ l4 � l4 (see (11)). If
X ¼ aX1 þ bX2 þ cX3 þ dX4 þ eZ1 þ fZ2 then

½X1;X� ¼ cZ1 þ dZ2 þ eZ3 þ fZ4;

½X2;X� ¼ dkZ1 þ cZ2 þ fkZ3 þ eZ4;

½X3;X� ¼ �aZ1 � bZ2 þ
e

k
Z þ fZ 0;

½X4;X� ¼ �bkZ1 � aZ2 þ fZ þ eZ 0;

½Z1;X� ¼ �aZ3 � bZ4 �
c

k
Z � dZ 0;

½Z2;X� ¼ �bkZ3 � aZ4 � dZ � cZ 0:

Assume that Imðad XÞ ¼ RX0, X0 6¼ 0. If k4 0 then it follows easily from
½X1;X� ¼ �½X2;X� and ½X3;X� ¼ �½X4;X� for some �; �2R that a ¼ b ¼
c ¼ d ¼ e ¼ f ¼ 0, which implies that UðnÞ ¼ f0g, a contradiction.
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Remark 5.2. Since k has to be positive one can also get by an easy adaptation of
this proof that the only real form of ðl4 � l4ÞC is l4 � l4.

We then have that k> 0 and a ¼ 

ffiffiffi
k

p
b, c ¼ 


ffiffiffi
k

p
d, e ¼ 


ffiffiffi
k

p
f , where c and

e have the same sign. This implies that

X ¼ bð

ffiffiffi
k

p
X1 þ X2Þ þ dð


ffiffiffi
k

p
X3 þ X4Þ þ f ð


ffiffiffi
k

p
Z1 þ Z2Þ

and

½X1;X� ¼ dð

ffiffiffi
k

p
Z1 þ Z2Þ þ f ð


ffiffiffi
k

p
Z3 þ Z4Þ;

½X2;X� ¼
ffiffiffi
k

p
½X1;X�;

½X3;X� ¼ �bð

ffiffiffi
k

p
Z1 þ Z2Þ þ f

�

 1ffiffiffi

k
p Z þ Z 0

�
;

½X4;X� ¼
ffiffiffi
k

p
½X3;X�;

½Z1;X� ¼ �bð

ffiffiffi
k

p
Z3 þ Z4Þ � d

�

 1ffiffiffi

k
p Z þ Z 0

�
;

½Z2;X� ¼
ffiffiffi
k

p
½Z1;X�:

If b 6¼ 0 then d 6¼ 0 and a has the same sign as c and e, and since X0 has a
nonzero component in hZ1; Z2iR we get ½Z1;X� ¼ 0, that is, � b

d
ð


ffiffiffi
k

p
Z3 þ Z4Þ ¼


 1ffiffi
k

p Z þ Z 0. In any case we obtain a subset of UðnÞ of the form

fbð

ffiffiffi
k

p
X1 þ X2Þ þ dð


ffiffiffi
k

p
X3 þ X4Þ þ f ð


ffiffiffi
k

p
Z1 þ Z2Þ : b; d 6¼ 0g

with the same sign in all the terms, which is a contradiction since UðnÞ is the union
of two planes. Thus b ¼ 0 and so

UðnÞ ¼ h
ffiffiffi
k

p
X3 þ X4;

ffiffiffi
k

p
Z1 þ Z2iR [ h�

ffiffiffi
k

p
X3 þ X4;�

ffiffiffi
k

p
Z1 þ Z2iR:

This clearly implies that 1ffiffi
k

p Z þ Z 0 ¼ � 1ffiffi
k

p Z þ Z 0 ¼ 0, that is Z ¼ Z 0 ¼ 0, as was
to be shown.

Concerning case (II), we can assume that

½X1; Z2� ¼ rZ3; k½X1; Z1� ¼ sZ3; ½X3; Z2� ¼ tZ4; k½X3;Z1� ¼ uZ4;

where Z3;Z4 are linearly independent and ðs; rÞ; ðu; tÞ 6¼ ð0; 0Þ. By using (10), for
X ¼ aX1 þ bX2 þ cX3 þ dX4 þ eZ1 þ fZ2 we have that

½X1;X� ¼ cZ1 þ dZ2 þ
�
e

k
sþ fr

�
Z3;

½X2;X� ¼ dkZ1 þ cZ2 þ ð fsþ erÞZ3;

½X3;X� ¼ �aZ1 � bZ2 þ
�
e

k
uþ ft

�
Z4;

½X4;X� ¼ �bkZ1 � aZ2 þ ð fuþ etÞZ4;

½Z1;X� ¼ �
�
a

k
sþ br

�
Z3 �

�
c

k
uþ dt

�
Z4;
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½Z2;X� ¼ �
�
b

k
sþ ar

�
Z3 �

�
d

k
uþ ct

�
Z4:

If a ¼ 0 then b ¼ c ¼ d ¼ 0. We also obtain that e2 ¼ kf 2, since either�
e
k

f

f e

��
s

r

�
¼ 0 or

�
e
k

f

f e

��
u

t

�
¼ 0:

We do not get any plane in UðnÞ in this way and therefore there must be an
X2UðnÞ with a 6¼ 0, which implies that b; c; d 6¼ 0 and a2 ¼ kb2, c2 ¼ kd2. Thus
½Z1;X� ¼ ½Z2;X� ¼ 0 and so Imðad XÞ 	 hZ1; Z2iR: This implies that e2 ¼ kf 2 and
then the 3-dimensional subspace

h
ffiffiffi
k

p
X1 þ X2;

ffiffiffi
k

p
X3 þ X4;

ffiffiffi
k

p
Z1 þ Z2iR 	 UðnÞ;

which is a contradiction, proving that case (II) is not possible. This concludes the
proof of the proposition. &
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