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1. Introduction and main results

In the study of foliations it is very useful to consider the transverse structure.
Among the simplest transverse structures are Lie group transverse structures, ho-
mogeneous transverse structures and Riemannian transverse structures. In the
present work we consider a sightly different situation: foliations which are invari-
ant under Lie group transverse actions. Another motivation for this work is the
well-known result of Tischler [13] asserting that if a closed oriented manifold
admits a (codimension one) foliation which is invariant under a transverse flow
then the manifold is a fiber bundle over the circle. In this work we look for
generalizations of this result for higher codimension foliations. All manifolds are
assumed to be connected and oriented. All foliations are assumed to be smooth,
oriented and transversely oriented.

Let M be a manifold, F a codimension q foliation on M and G a Lie group of
dimension dimG ¼ codimF ¼ q. We shall also say that F is invariant under
a transverse action of the group G, F is G-i.u.t.a. for short, if there is an action
� : G�M ! M of G on M such that: (i) the action is transverse to F, i.e., the
orbits of this action have dimension q and intersect transversely the leaves of F
and (ii) � leaves F is invariant, i.e., the maps �g : x 7!�ðg; xÞ take leaves of F
onto leaves of F.

Let F be a foliation on M such that F is G-i.u.t.a. It is not difficult to prove
the existence of a Lie foliation structure for F on M of model G in the sense of
Chap. III, Sect. 2 of [2]. We shall then say that F has G-transversal structure and
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prove (with a self-contained proof) the existence of a development for F as in
Proposition 2.3, page 153 of [2] (Chap. III, Sect. 2). Indeed, we have a sort of
strong form of this procedure in Sect. 4 with a self-contained proof (Proposition 3)

Indeed, from the proof of Proposition 3 we obtain an algebraic model for any
foliated manifold ðM;FÞ assuming that F is G-i.u.t.a. Given a leaf L of F we
define HðLÞ as the set of g2G such that �ðg; lÞ2L for every (or equivalently for
some) l2L. Then HðLÞ is a (not necessarily closed) subgroup of G which we
provide with the discrete topology. We have the following algebraic model for
the general foliation invariant under a transverse Lie group action.

Theorem 1 (Algebraic model). Let F be a foliation and G-i.u.t.a. Given a leaf
L of F there is a natural proper free action of HðLÞ on G�L with a smooth
quotient manifold ðG� LÞ=HðLÞ, which is G-equivariantly diffeomorphic to M. The
leaves of F are the sets �ðpðfgg� LÞÞ, g2G where p : G�L ! ðG� LÞ=HðLÞ
denotes the canonical projection.

As a consequence of the above construction we have:

Theorem 2 (Fibration theorem). Let M be a connected manifold and F a
foliation in M which is invariant under a transverse action of a Lie group G.
Then the following statements are equivalent:

(a) F has a leaf L which is closed in M.
(b) HðLÞ is a discrete (i.e., closed and zero-dimensional) subgroup of G.
(c) The projection � : G� L ! G onto the first factor induces a smooth fibra-

tion M ’ G�HðLÞL ! G=HðLÞ, of which the fibers are the leaves of F.

From Theorem 2 we immediately obtain:

Corollary 1. If L is compact, then HðLÞ is finite, and we have a fiber bundle
over G=HðLÞ.

Additional consequences of Theorem 2 are:

Corollary 2. If �1ðM; xÞ is finite, then HðLÞ is closed and F is a fibration over
the base space G=HðLÞ. If moreover M is compact, then L and G are compact. In
case G is simply connected the latter also implies that G is semi-simple.

Corollary 3. Let M be a compact manifold supporting a codimension two
foliation F invariant under a Lie group transverse action. If F has a compact
leaf then M is a fibre bundle over the two torus.

A well-known consequence of (the proof of) Tischler’s theorem is that on a
compact, connected, oriented manifold M with dimH1ðM;RÞ4 1 or, equivalently,
with dimH1

deRhamðMÞ4 1, any foliation F of a codimension one foliation which
admits an R-transversal structure is defined by a fibration over a circle and in
particular dimH1ðMÞ ¼ 1. This can be generalized as follows:

Corollary 4. Let M be a compact smooth manifold and F a foliation in M
which admits a G-transversal structure. If d :¼ dimH1

deRhamðMÞ4 dimLG�
dimDLG, then we have equality and M fibers over a torus of dimension d, in
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such a way that the leaves of F are contained in the fibers of this fibration. In
particular, ifLG is abelian and dimH1

deRhamðMÞ4 dimLG, thenF is a fibration
over a torus.

Regarding (codimension two) foliations which are AffðRÞ-i.u.t.a. it is
not difficult to prove that if H1ðM;RÞ ¼ 0 then F is given by a submersion
F : M ! AffðRÞ. This fact admits the following strong form:

Theorem 3. If M is connected, F is a foliation which is invariant under the
transverse action of a simply connected solvable Lie group G, and H1ðM;RÞ ¼ 0,
then M is diffeomorphic to G� L, where L is any leaf of F, and the foliation is
given by the projection to the first factor G, which is diffeomorphic to a vector
space.

1.1 Holomorphic foliations. In Sect. 8 we carry out the study of the holomor-
phic case and prove an analogue to Theorem 2 (Theorem 5). For the case M is a
compact K€aahler manifold we prove that if F has a G-transverse structure then the
universal covering of G is isomorphic to ðCq;þÞ (Proposition 7), if moreover F has
some compact leaf thenG ¼ Cq=H for some closed subgroupH<Cq (Proposition 8).

2. Examples

In Sect. 5 we construct the algebraic model of the general foliation invariant
under a Lie group transverse action. This provides a number of examples of
foliated spaces with invariant foliations. Below we give some more concrete
examples:

Example 1. The most trivial example of a foliation invariant under a Lie group
transverse action is given by the product foliation on a manifold M ¼ G�N,
product of a Lie group G by a manifold N. The leaves of the foliation are of
the form fgg�N where g2G.

Example 2. Let H be a closed (normal) subgroup of a Lie group G. We consider
the action � : H�G ! G given by �ðh; gÞ ¼ h:g and the quotient map � : G !
G=H (a fibration) which defines a foliation F on G. Given x2Fg ¼ ��1ðHgÞ we
have �ðxÞ ¼ Hg and �hðxÞ ¼ h:x. But �ð�hðxÞÞ ¼ �ðh:xÞ ¼ H:hx ¼ Hx implies
that �hðxÞ2��1ðHxÞ ¼ Fx and the orbit OðgÞ ¼ Hg is transverse to the fiber
��1ðHgÞ. Hence, F is a foliation invariant under the transverse action �. Now
let G be a simply-connected group, H a discrete subgroup of G and � : H !
DiffðGÞ the natural representation given by �ðhÞ ¼ Lh. The universal covering
of G=H is G with projection � : G ! G=H and we have �1ðG=HÞ ’ H because
� � f ðgÞ ¼ Hf ðgÞ ¼ Hg for f 2AutðGÞ, so f ðgÞ ’ g implies that f ðgÞ:g�1 2H and
f ðgÞ ¼ h:g, for some unique h2H. Therefore f ¼ Lh and then we define
AutðGÞ ! H; f 7! h, which is an isomorphism. So, we may write � : �1ðG=HÞ !
DiffðGÞ and � : �1ðG=HÞ�G ! G. The map � : H�G�G ! G�G given by
�ðh; g1; g2Þ ¼ ðLhðg1Þ; Lhðg2ÞÞ is a properly discontinuous action and defines a
quotient manifold M ¼ G�G

� , which equivalence classes are the orbits of �. We
have the following facts: (1) There exists a fibration � : M ! G=H with fiber G,
induced by � : G ! G=H, and structural group isomorphic to �ðHÞ<DiffðGÞ. (2)
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The natural foliation F on G given by classes Hg; g2G, is �-invariant, such that
the product foliation G�F on G�G is �-invariant and induces a foliation F0 on
M, called suspension of F for �, transverse to � : M ! G=H.

Example 3. Let G ¼ PSLð2;RÞ and H ¼ AffðRÞ / G. An element of G has the
expression x 7! axþb

cxþd
¼ aþb

x

cþd
x

. The group H is the isotropy group of 1, so a
c
¼ 1 ,

c ¼ 0 and an element of H is given by x 7! axþb
d

’
�
a
0

b
1
a

�
. Since H / G, G has

dimension 3 and H has dimension 2, we conclude that G=H has dimension one.
Thus we have a fibration PSLð2;RÞ ! RPð1Þ ’ S1 which is invariant under an
action of AffþðRÞ on PSLð2;RÞ having leaves diffeomorphic to Rþ �R ’ R2.

3. Foliations with Lie transverse structure

Throughout this paper, except if explicitly mentioned otherwise, F will denote
the tangent bundle of the foliation F. It is therefore an integrable subbundle of the
tangent bundle TM of M and its connection form is flat, because of the integrability.

Definition 1 ([2], Chap. III, p. 152). Let G be a dimension q Lie group and F a
codimension q foliation on a differentiable manifold M. A Lie transverse structure
of model G for F is given by: (1) An open cover fUigi 2 I of M and a family of
submersions fi : Ui ! G such that FjUi

is given by fi ¼ constant and, (2) a family
of locally constant maps �ij : Ui \ Uj ! fleft translations on Gg such that fiðxÞ ¼
�ijðxÞ:fjðxÞ; 8x2Ui \ Uj.

According to Chap. III, Corollary 2.4 and Proposition 2.7 in [2], the existence
of a G-transversal structure for F is equivalent to the existence of a LG-valued
smooth differential one-form ! on M, such that the tangent bundle F of F is equal
to the kernel of !, and ðd!Þðu; vÞ ¼ �½!ðuÞ; !ðvÞ� for every pair of vector fields u,
v. Here LG denotes the Lie algebra of the Lie group G, and, for every x2M,
Fx ¼ TxFx, the tangent space at x of the leaf passing through the point x. After the
choice of a basis in LG, this amounts to having the suitable systems of differential
one-forms as follows:

Proposition 1. Let M be a manifold equipped with a codimension q hav-
ing transverse structure of model G. Then there exists an integrable system
f�1; . . . ;�qg of one-forms defining F on M with d�k ¼ �i< jc

k
ij�i ^ �j, where

fckijg are the structure constants of the Lie algebra of G for a certain basis.

Lie foliations exhibit the following structure (cf. [2] Proposition 2.9, p. 155):

Proposition 2 ([2]). For a foliation F on M the existing Lie transverse struc-
tures of model G are classified by: (i) A Galoisian covering map � : P ! M, (ii) a
homomorphism h : �1ðMÞ ! G such that ��1ðeGÞ ’ Autð�Þ and (iii) a submer-
sion � : P ! G which is a first integral for the pull-back foliation ��F and is
equivariant by h, that is, �ð�:xÞ ¼ hð�Þ�ðxÞ, 8x2M, �2�1ðMÞ. We call (P, h, �)
a development of F. Two developments (P1, h1, �1) and (P2, h2, �2) define the
same Lie group transverse structure if and only if there is a diffeomorphism
 : P1 ! P2 and an element g2G such that h2 ¼ gh1g

�1 and �2 �  ¼ g ��1.
The leaves of ��F are the connected components of ��1ðgÞ, g2G and we have a
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submersion e�� : M ! G=H such that � �� ¼ e�� � � where � : G ! G=H is the
quotient map.

A proof of this proposition can be done (as in the classical way) by constructing
a suitable system of differential forms on M which satisfy the same relations as the
forms in a basis of the Lie algebra LðGÞ of G and then applying the classical
Darboux-Lie theorem and Chap. III, Corollary 2.4 and Proposition 2.7 in [2].

4. Construction of a development

In this section F is a foliation which is G-i.u.t.a. on a connected manifold M.
Our aim is to give a self-contained proof of a version of Proposition 2 which is
more adequate to our approach and purposes. Indeed, we prove:

Proposition 3. Assume that F is G-i.u.t.a. Then F has a G-transversal struc-
ture and a complementary foliation. Moreover, given any leaf L of F we have a
development of F as follows:

(i) A Galoisian covering map � : P ¼ G� L ! M,
(ii) A homomorphism h : �1ðMÞ ! G such that ��1ðeGÞ ’ Autð�Þ,

(iii) A submersion � : P ! G which is a first integral for the pull-back foliation
��F and is equivariant by h, that is, �ð�:xÞ ¼ hð�Þ�ðxÞ; 8x2M; �2�1ðMÞ.

Proof of Proposition 3. Choose a leaf L of F. The restriction �L to G� L of
the action � : G�M ! M has a bijective tangent mapping at every point, which
implies that it is a local diffeomorphism, and that the image �ðG� LÞ is an open
subset of M. In M we have the equivalence relation x � y if and only if there exists
a g2G such that �ðx; gÞ2Ly, the leaf of F through y, and the equivalence classes
are the open sets �ðG� LÞ where L2F is a leaf. Since M is connected there
is only one equivalence class, that is �ðG� LÞ ¼ M. This shows that the local
diffeomorphism �L : G� L ! M is surjective.

The assumption that the action of G maps leaves of F to leaves of F implies
that for any g2G the following conditions are equivalent: (a) There exists an x2L
such �ðg; xÞ2L. (b) gMðLÞ ¼ L, if gM denotes the mapping x 7!�ðg; xÞ. (The
mapping g 7! gM is a homomorphism from G to the group of all diffeomorphisms
of M). Let H ¼ HL denote the set of g2G which satisfy (a) or (b). Then H is
a subgroup of G, and we have that �Lðg; xÞ ¼ �Lðg0; x0Þ if and only if there exists
an h2H such that g0 ¼ gh�1 and x0 ¼ �ðh; xÞ. The mapping h 7! ððg; xÞ 7!
ðgh�1;�ðh; xÞÞÞ defines an action of H on G� L, which is free because the action
on the first component is free. The mapping �L induces a bijective mapping
�L : G�H L ! M, which is the uniquely determined by the condition that
�L ¼ �L � p where p denotes the canonical projection from G� L onto the space
G�H L ! M of H-orbits in G� L.

The definition of G�H L and �L in the previous paragraph was purely set-
theoretic, let us now discuss the topological and smoothness aspects.

Claim 1. If we provide H with the discrete topology, then the action of H on
G� L is a proper mapping, i.e., the mapping ðh; ðg; xÞÞ 7! ððgh�1;�ðh; xÞÞ; ðg; xÞÞ
is a proper mapping from H�ðG� LÞ to ðG� LÞ� ðG� LÞ.
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Proof of Claim 1. Let us show that given an infinite sequence hj2H, gj2G,
xj2L, such that ðgjh�1

j ;�ðhj; xjÞÞ converges in G�L to ðg0; x0Þ and ðgj; xjÞ con-
verges in G� L to ðg; xÞ, then a subsequence of the ðhj; gj; xjÞ converges in
H�G� L to some element of H�G� L. Here we use the leaf topology in L
(notice that this is different from the M-topology in L if L is not a closed subset of
M). Because we use the discrete topology in L, this amounts to the statement that
gj ! g in G, xj ! x2L, gjh

�1
j ! g0 in G, �ðhj; xjÞ ! x0 in L implies that the hj

have a constant subsequence. From the fact that the gj and the gjh
�1
j converge in G,

it follows that the hj ¼ ðgjh�1
j Þ�1

gj converge in G. There are open neighborhoods
U and V of eG and x in G and L, respectively, such that V is connected, and the
restriction  of the G-action � to U�V is a diffeomorphism from U�V onto an
open neighborhood W of x in M, in such a way that the integral manifolds of the
restriction to W of the vector subbundle F of TM, i.e., the ‘‘local leaves’’, are equal
to the sets of the form  ðfug�VÞ, where u runs over U. That we have a diffeo-
morphism  follows from the fact that the tangent mapping of  at ðeG; xÞ is a
bijective linear mapping from LG� TxL onto TxM, and the statement about the
local leaves follows from the fact that the action maps leaves to leaves and there-
fore the local action maps local leaves to local leaves. Let W0 be a closed neigh-
borhood of x in M such that W0 � W . Because the hj converge in G, and xj ! x in
M, there exists an integer k such that h�1

k hj2U, xj2V and yj :¼ �ðh�1
k hj; xjÞ2W0

whenever j 	 k. Because for j ! 1 the yj converge in the leaf topology to an
element of W0 � W , we conclude that there exists a k0 such that all yj for j 	 k0,
belong to the same local leaf, which means that all h�1

k hj are the same for all
j 	 k0, which in turn implies that the hj are the same for all j 	 k0. This completes
the proof of the claim. &

Because the action of H is proper and free, there is a unique structure of
smooth manifold on the orbit space G�H L for which the canonical projection
p : G� L ! G�H L is a principal H-bundle, in which H is provided with the
discrete topology. In other words, the canonical projection G� L ! G�H L is
a Galois covering with group H. From the local triviality we obtain that
the mapping �L : G�H L ! M is smooth, because �L ¼ �L � p, and �L and
p were local diffeomorphisms, we obtain that �L is a local diffeomorphism,
and because �L is bijective, it follows that �L is a diffeomorphism from
G�H L onto M.

This completes the proof that ðP; h;�Þ, in which P :¼ G� L, � :¼ �L � p with
covering group H, h :¼ the holonomy homomorphism from �1ðMÞ onto the sub-
group H of G and � : G ! G defined by �ðg; xÞ ¼ g, is a development of F. The
uniqueness of developments is straightforward. &

5. Algebraic model and proof of Theorem 2

Summarizing the discussion in the proof of Proposition 3 we have: Let F be a
foliation G-i.u.t.a. on M. Let L be a leaf of the foliation and let H be the set of
g2G such that �ðg; lÞ2L for every (or equivalently for some) l2L. Then H is a
subgroup of G, not necessarily closed, which we endow with the discrete topology.
Assuming that M is connected, the restriction of � to G� L is a covering map
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� : G�L ! M. We have �ðg; lÞ ¼ �ðg0; l0Þ if and only if there is a uniquely
determined h2H such that g0 ¼ gh�1 and l0 ¼ �ðh; lÞ. On G� L we have the
action of H in which h2H sends ðg; lÞ to ðgh�1;�ðh; lÞÞ. This action is proper
because the action of H on L is proper (and discrete), and the action is free because
the right action of H on G is free. As a consequence the action is proper and free,
we have a smooth quotient manifold ðG� LÞ=H, which is G-equivariantly diffeo-
morphic to M, where the diffeomorphism from ðG� LÞ=H onto M is induced by �,
and the G-equivariance is with respect to the action of G on ðG� LÞ=H in which
g0 2G sends the H-orbit of ðg; lÞ to the H-orbit of ðg0g; lÞ. If we write p : G� L !
ðG� LÞ=H for the natural projection from G� L onto ðG� LÞ=H, then the leaves
of the foliation in M are the sets �ðpðfgg� LÞÞ, g2G. That is:

The foliation F in M corresponds to the foliation of the pðfgg� LÞ, g2G, in
ðG� LÞ=H.

This proves Theorem 1, i.e., the algebraic model ðG� LÞ=H of the general
foliation invariant under a transverse Lie group action. In particular, all further
analysis can be done in ðG� LÞ=H, in which H is a subgroup of G acting from the
right on G and acting properly and discretely on the manifold L.

Now we can prove several results.

Proposition 4. The following statements are equivalent.

(a) The foliation has a closed leaf L.
(b) H is a closed discrete subgroup of G.
(c) H is a closed discrete subgroup of G and the projection G� L ! G onto

the first factor exhibits ðG� LÞ=H as a fiber bundle over G=H with fiber diffeo-
morphic to L.

Proof. Suppose (a) holds and let hj be a sequence in H which converges in G to
some g2G. Let x2L. Then �ðhj; xÞ ! �ðg; xÞ in M and therefore �ðg; xÞ2L
because L is closed in M. It follows that g2H proving that (a) implies (b). That
(b) implies (c) is a general fact about closed subgroups H of a Lie group G, where
H acts smoothly on a manifold L. Finally, that (c) implies (a) is obvious. &

Condition (c) means that the foliation in M is a G-invariant fibration. Thus
we have:

Proof of Theorem 2. The theorem follows from Proposition 4 and the above
construction of the algebraic model. &

Proof of Corollary 2. If �1ðM; xÞ is finite, then H ¼ hð�1ðMÞÞ is finite, hence a
closed subgroup of G, and the foliation is a fibration over the base space G=H. If
moreover M is compact, then the fiber L as well as the group G is compact. If in
addition G is simply-connected then G is semi-simple. &

Proof of Corollary 3. In this case G is a two-dimensional connected Lie group
thus G must be isomorphic to R2; S1 �R; AffþðRÞ ’ Rþ �R or S1 � S1. The
subgroup H ¼ hð�1ðMÞÞ must be discrete. If H<R2 then H is isomorphic to the
trivial group, 0�Z or Z2, so G=H ’ R2, R� �R or T2. If H< S1 �R then H is
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isomorphic to the trivial group, Z� 0, 0�Z or Z2 so G=H ’ S1 �R, S1 �R
Z� 0

,
S1 � S1, S1 �R

Z�Z
. And if H<AffþðRÞ then H is isomorphic to the trivial group,

N� 0; 0�Z or N�Z. Since M is compact, G=H is compact therefore we have
G=H ’ T2. &

6. Foliations invariant under a transverse local action

Proposition 1 states that the existence of a G-transversal structure for a folia-
tion F is equivalent to the existence of a suitable system of differential forms
f�jgqj¼1 satisfying the same structure equations of a given basis of the Lie algebra
LðGÞ. Let us now prove this and give an interpretation of the invariance of F
under a G-transversal action in a way that motivates a generalization. Thus, in
what follows we assume that F is a foliation on M which is G-i.u.t.a. For any
X2LG, let XM denote vector field on M which defines the infinitesimal action of
X on M. The assumption that the G-orbits have the same dimension as G is
equivalent to the condition that the action is locally free, which in turn is equiva-
lent to the condition that for each x2M the mapping X 7!XM;x is injective from
LG to TxM. Denote the image space by LGM;x, this can be viewed as the tangent
space at x to the orbit through x. The transversality condition means that, for any
x2M, TxM is equal to the direct sum of Fx and LGM;x. Therefore, there is a
unique LG-valued one-form � on M, such that � ¼ 0 on F and �xðXM;xÞ ¼ X for
every X2LG. This LG-valued one-form � on M is called the connection form
of the infinitesimal connection F for the infinitesimal action of LG on M. The
form � is automatically smooth. The fact that the infinitesimal connection is flat,
meaning that F is integrable, is equivalent to the condition that ðd�Þðu; vÞ ¼
�½�ðuÞ;�ðvÞ� for every pair of vector fields u, v on M. The one-forms �j

appearing in Proposition 2 are exactly the components of the connection form.
Thus we can prove Proposition 1 by a repetition of the proof that integrabi-
lity of F implies that ðd�Þðu; vÞ ¼ �½�ðuÞ;�ðvÞ�, or equivalently d�k ¼P

i< j c
k
ij�i ^ �j. Now, a construction of the mappings fi and �ij in the definition

of Lie transverse structure (Definition 1) is not clear at a first moment. This is
quite obvious once we observe that this is equivalent to a construction of a
local action of G on the leaf space and that the local action of G maps local
leaves to local leaves.

Motivated by this we observe that a weaker assumption than the invariance
under a Lie group transverse action is the following:

Definition 2. We say that a foliation F in M is invariant under a transverse
local action of a Lie group G (G-i.u.t.l.a.) if there is a locally free local action of G
on M, the tangent mappings of which leave F invariant, and such that the LGM;x

are complementary subspaces to the Fx in TxM.

The relation between the two notions in Definitions 1 and 2 is given below:

Proposition 5. Given F on M the following conditions are equivalent:

(i) F is G-i.u.t.l.a.
(ii) F has a transversal G-structure and a complementary foliation.
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Proof. Assume that F is G-i.u.t.l.a. Because the LGM;x are the tangent spaces
to the local G-orbits, they define an integrable vector subbundle LGM of TM,
which is complementary to F. As we have already observed above this weaker
condition already implies that there is a G-transverse structure. Conversely, if K is
an integrable vector subbundle of TM (i.e., defining a foliation in M) which is
complementary to F, and we have a transversal G-structure to F, defined by a LG-
valued one-form ! as in 1), then for each X2LG and x2M there is a unique
XM;x2Kx such that !xðXM;xÞ ¼ X. This defines a smooth vector field XM on M and
the equation ðd!Þðu; vÞ ¼ �½!ðuÞ; !ðvÞ� in combination with the integrability of K
implies that x 7!XM is a homomorphism of Lie algebras from LG to the Lie
algebra of smooth vector fields in M. In other words, in this way we obtain an
infinitesimal, and hence a local action of G, which also maps local leaves to local
leaves. It is the unique infinitesimal action of LG for which ! is equal to the
connection form and K is tangent to the orbits. &

Remark 1. The assumption of having a transverse G-action which maps leaves
of F to leaves of F is equivalent to the weaker assumption that F is G-i.u.t.l.a.,
but with the additional assumption that the local action of G on M can be
extended to a global one on M. (If such an extension exists, it is unique.) If M
is compact, an extension to a global action always exists. Therefore, if M is
compact, then F is G-i.u.t.a. iff F is G-i.u.t.l.a., i.e., the weaker assumption
in Definition 2 is equivalent to the fact that F is G-i.u.t.a. Clarifying how much
the assumption ‘‘F is G-i.u.t.a.’’ is stronger than ‘‘F is G-i.u.t.l.a.’’ might help
in understanding which consequences are typical consequences of the first and
not only of the existence of a G-transverse structure. In a rough manner, a G-
transversal structure for the foliation F is something like a locally free local
action of G on the leaf space M=F, in which the latter has to be treated as a sort
of non-Hausdorff manifold. Finally, as it was pointed-out by the referee, any
Lie algebra action can be extended to a Lie group action on a larger manifold
(which might be non-Hausdorff) where also the foliation extends to the larger
manifold ([6]).

7. Solvable groups

Let us consider the Lie group of affine maps of the real line AffðRÞ ¼
fx 7! a:xþ b; a2R� and b2Rg ’ R� �R. Let F be a foliation of codimension
two on M invariant under a transverse action of AffðRÞ. We assume that F is
transversely oriented so that indeed F is AffþðRÞ-i.u.t.a., where AffþðRÞ is the
subgroup of orientation preserving affine maps of the real line. Notice that as a
manifold we have AffþðRÞ ¼ ð0;þ1Þ�R so that it is simply-connected, also it
is solvable as a group. According to Proposition 1 there is an integrable system of
two one-forms !; � defining F on M such that d! ¼ ! ^ �, d� ¼ 0. If H1ðM;RÞ ¼
0 then � ¼ dh, for some differentiable function h : M ! R, and we define
f ¼ eh : M ! R�, thus � ¼ 1

f
df . A straightforward computation then shows that

dðf!Þ ¼ 0 and therefore ! ¼ f�1dg for some differentiable function g : M ! R.
So there exists a fibration F ¼ ðf ; gÞ : M ! AffðRÞ whose fibers are the leaves of
F. Assume now that M is compact. In this case according to Tischler’s Theorem
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[13], since � is a nonsingular closed one-form in M, there exists a fibration
f : M ! S1. We have proved:

Proposition 6. Let M be a connected manifold with a foliation F which is
AffðRÞ-i.u.t.a. Then F has an AffðRÞ-transverse structure and we have:

(i) If H1ðM;RÞ ¼ 0 then F is given by a submersion F : M ! AffðRÞ. In
particular, in this case M is not compact.

(ii) If M is compact then it admits a fibration f : M ! S1.

This proposition is a particular case of Theorem 3 of which proof is given below:

Proof of Theorem 3. Let DLG denote the derived Lie algebra of LðGÞ, i.e., the
linear subspace of LG which is generated by all ½X; Y � such that X; Y 2LG. It is
known that DLðGÞ is a normal Lie subalgebra of LG ([10]). Let �2ðDLGÞ0 ’
ðLG=DLGÞ� be a linear form on LG which is equal to zero on DLG. If �
denotes the connection form introduced in Sect. 6 then ! :¼ !� :¼ � �� is a
closed one-form on M, hence ! ¼ df for a smooth real-valued function f ¼ f�
on M, which we can let depend linearly on �. It follows that x 7! ð� 7! f�ðxÞÞ
defines a smooth mapping f from M to ððLG=DLGÞ�Þ� ¼ LG=DLG. It is a
submersion, the leaves of F are contained in the fibers of F, and also the fibers of
F are invariant under the action of the group DG generated by DLG. According to
Theorem 3.18.1 in [14] if G is simply connected, the analytic subgroup DG of G
defined by DLG is a closed normal subgroup of G, therefore G=DG is an abelian
and simply connected Lie group.

The abelian group G=DG is isomorphic with LG=DLG and acts on it by
translations. Using lifts by elements of G acting on M, we obtain that f is surjec-
tive and defines a topologically trivial fibration. In particular the first cohomology
group H1 of each fiber of f is equal to zero as well. It is also clear that an element g
of G leaves a fiber of f fixed if and only g2DG. Because any h2H leaves L fixed,
and therefore also leaves the f -fiber containing L fixed, we conclude that h2DG,
i.e., we obtain that H � DG.

This means that in the fibers of f , we have the same situation again, with
H � DG, connected f -fibers and the H1 of the f -fibers equal to zero. Since the
Lie algebra LG is solvable (because G is solvable), then the repeated derived Lie
algebras DiLG terminate at zero (cf. p. 201 in [14]), and we arrive at the conclu-
sion that the group H is trivial. In view of Theorem 2 this means that M is
isomorphic to G� L and the foliation is defined by the projection onto the first
factor. Using Theorem 3.18.11 in [14] we conclude that (since G is simply con-
nected and solvable) G it is diffeomorphic to an Euclidean space. In the above we
have used the fact that any fiber bundle over a contractible space is trivial. This can
be found in Corollary 11.6 in [12]. &

We have the following generalization of Theorem 3:

Theorem 4. Let F be a smooth foliation in a connected smooth manifold M.
Assume thatF is invariant under a transverse action of a Lie group G and assume
that H1ðM;RÞ ¼ 0. Let p be the smallest nonnegative integer such that
Dpþ1LG ¼ DpLG and let DpG denote the analytic Lie subgroup of G with Lie
algebra equal to DpLG. Then H � DpG.
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Proof. By passing to the universal covering of G, we may assume that G is
simply connected. Theorem 3.18.12 in [14] states that in this case every analytic
subgroup of G is closed and simply connected. Then the result follows from the
proof of Theorem 3. &

Proof of Corollary 4. We shall use the same notation of the proof of Theorem 3.
Let M be a compact smooth manifold and F a foliation inM which admits a G-trans-
versal structure. Then the mapping � 7! ½� ��� from ðLG=DLGÞ� toH1

de RhamðMÞ is
injective. Moreover, if d :¼ dimH1

de RhamðMÞ 
 dimLG� dimDLG, then we
have equality here and M fibers over a d-dimensional torus in such a way that the
leaves of F are contained in the fibers of this fibration. If LG is abelian and
dimH1

de RhamðMÞ 
 dimLG, then F is a fibration over a torus. &

8. Holomorphic foliations

In this section we study holomorphic foliations which are invariant under
transverse actions of complex Lie groups.

Theorem 5. Let M be a connected complex manifold and F a holomorphic
foliation invariant under a holomorphic transverse action of a complex Lie group
G of dimension dimG ¼ codimF. The following conditions are equivalent:

(a) F has a leaf L which is closed in M.
(b) HðLÞ is a discrete subgroup of G.
(c) The projection � : G�L ! G onto the first factor induces a holomorphic

fibration M ’ G�H ðLÞL ! G=HðLÞ, of which the fibers are the leaves of F.

Remark 2. In the above statement the fibration M ’ G�HðLÞL ! G=HðLÞ is a
holomorphic fibration, in the sense that it the local trivializations are biholo-
morphic maps. According to Ehresmann’s Theorem [2], any proper Cr, r5 2
submersion defines a Cr-locally trivial fiber bundle. This is not true for proper
holomorphic submersions. Indeed, the analytic type of the fiber may vary. On the
other hand, Grauert-Fischer’s theorem [1] asserts that this is the only obstruction:
a proper holomorphic submersion is a holomorphic fibration (i.e., a locally triv-
ial holomorphic fiber bundle) if and only if the fibers are holomorphically equiv-
alent. Thus Theorem 5 follows from Theorem 2 and Grauert-Fischer’s theorem.
Nevertheless, we give a ‘‘simpler’’ self-contained proof in Sect. 8.

Proof of Theorem 5. We already know (Theorem 2) that M is a C1 fibre bundle
over the homogenous space G=H. Since the fibers are holomorphically equivalent
(by biholomorphisms �g:M ! M), Grauert-Fischer’s Theorem [1] states that the
submersion M ! G=H is a locally holomorphically trivial fibration. Nonetheless,
we can give a more self-contained proof as follows: we know that H is a closed
and zero-dimensional subgroup of G and that � : M ! G=H is a G-equivariant
holomorphic mapping. Let g2G and write L ¼ ��1ðfgHgÞ for the fiber over the
point gH in G=H. Then there exists an open neighborhood U of the origin in LG
such that X 7! expðXÞgH is a holomorphic diffeomorphism from U onto an open
neighborhood V of gH in G=H. The mapping ðX; xÞ 7!�ðexpðXÞ; xÞ is a holo-
morphic diffeomorphism from U� L onto ��1ðVÞ, and it yields the desired holo-
morphic trivialization. &
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Proposition 7. Let M be a compact K€aahler manifold, G a complex simply
connected Lie group, and F a holomorphic foliation of codimension q with a (holo-
morphic)G-transverse structure. ThenG ’ Cq. If moreover dimH1ðM;RÞ4 2q, then
dimH1ðM;RÞ¼2q and the foliationF is a fibration over a real 2q-dimensional torus.

Proof. According to [3] p. 110 any holomorphic q-form on a compact K€aahler
manifold is closed. Applying this to the connection form (which is holomorphic),
we conclude that this is closed, which in turn implies that LG and therefore G is
abelian. &

A natural holomorphic version of Proposition 3 implies the following:

Proposition 8. Let M be a compact K€aahler manifold with a holomorphic
codimension q foliation F invariant under a Lie group transverse action of G.
Then the universal covering of G is isomorphic to ðCq;þÞ. If moreover F has a
compact leaf then we have G ¼ Cq=H for some closed subgroup H<Cq.

Remark 3. Since an algebraic manifold is always K€aahler, Proposition 8 is valid
for any projective manifold.

8.1. Codimension one algebraic foliations. By definition such an algebraic
foliationF0 onCn is given by a polynomial one-form� ¼

Pn
j¼1 Pjdzj, where the Pj

are polynomials in the affine variables ðz1; . . . ; znÞ2Cn, satisfying the integrability
condition � ^ d� ¼ 0. Such a foliation admits a unique extension to a holomorphic
foliation with singularities F on CPn. Conversely, any foliation of CPn is obtained
this way. Assume now that F0 is C-i.u.t.a., i.e., invariant by a holomorphic flow in
Cn. The foliation is then given by a closed holomorphic one-form ! on Cn. Thus we
have ! ¼ dF for an entire function F on Cn.

Claim 2. If the hyperplane CPn�1
1 ¼ CPnnCn is not F-invariant then F is a

polynomial first integral on CPn.

Proof. Fixed a generic point q2CPn�1
1 we may consider a ‘‘flow box’’

(i.e., a distinguished neighborhood for F) V containing q with coordinates
ðz1; . . . ; znÞ2V , such that CPn�1

1 \ V ¼ fz1 ¼ 0g and FjV is given by dzn ¼ 0.
Let V� ¼ VnðV \ CPðn� 1Þ1Þ ¼ Vnfz1 ¼ 0g. In V� we have ! ^ dzn � 0, i.e.,
dF ^ dzn � 0. Therefore FjV� ¼ FðznÞ is depends only on the variable zn. On the
other hand, FjV� is holomorphic. Therefore F extends meromorphically to V .
Then Hartogs’ theorem [4] implies that F is meromorphic on CPn. Liouville’s
theorem [5] then shows that F is a rational function and since it is holomorphic on
Cn we conclude that F is a polynomial on Cn. &

Proposition 9. Let F0 be an algebraic codimension one foliation on Cn,
n5 2. Suppose that F is C-i.u.t.a. Then the hyperplane at infinity CPðn� 1Þ1
is F-invariant.

Proof. If CPn�1
1 is not invariant then by the above claim F has a polynomial

first integral F on Cn. However, as a general fact for meromorphic first integrals,
the polar set fF ¼ 1g and the zero set fF ¼ 0g are invariant. Since the polar set
is CPn�1

1 the proposition follows. &
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Using techniques introduced in [8] one may be able to go further in the
classification of F in this case.

9. Complements

9.1. The realization problem. In [7] the author discusses, mainly for solvable
Lie groups, the ‘‘Realization problem’’, which is the following question of Haefliger:

Question 1.Which subgroups H of a given Lie group G can occur as hð�1ðMÞÞ
for a development ðP; h;�Þ of a G-transverse structure on a compact manifold M?

Under the additional hypothesis that the ‘‘G-transverse structure’’ is followed by
the fact that the ‘‘the foliation is invariant under a transverse action of G on M’’, then
the realization problem asks for the subgroups H of G for which there exists a smooth
connected manifold L such that H acts smoothly on L, the right-left-action of H on
G� L is proper (here H is provided with the discrete topology) and the quotient
G�H L is compact. This seems to imply that H is finitely generated. Also, for closed
subgroups H of G the answer is that H is a discrete subgroup of G, G=H is compact,
and one can take any smooth action of H (for instance, the trivial action) on any
compact connected manifold L. Nevertheless, in the theory of foliations one is mostly
interested in foliations which are not fibrations, which corresponds to the case thatH is
not closed in G. Such cases can occur, as shown by the example of orbit foliations of
non-closed subgroups of tori. It may be helpful to restrict to solvable Lie groups G.

9.2.Moreon thealgebraicmodel.Let us say a few morewords about the algebraic
model G�H L for a foliated manifold with transverse Lie group action. The main
motivation comes from the book [10], more precisely from its Sect. 2.4 where the
authors introduce the associated fiber bundleX�H Y , in whichX and Y are manifolds,
H is a Lie group acting onX by ðh; xÞ 7! x � h�1, onY by ðh; yÞ 7! h � y, and it is assumed
that the action of H on X is proper and free. This then implies that the action
ðh; ðx; yÞÞ 7! ðx � h�1; h � yÞ of H on X� Y is proper and free, which then makes that
the orbit spaceX�H Y is a smooth manifold, and that the projectionX� Y ! X�H Y
is a principal H-bundle. Moreover, the projection onto the first factor induces a fi-
bration X�H Y ! X=H, with fibers isomorphic to Y . In the statements that the orbit
spaces¼ quotients are smooth manifolds, the properness assumption is quite essential.

If X ¼ G is equal to a Lie group and H is a Lie subgroup of G, then the right
action of H is proper if and only if H is closed in G. In this case there is a unique
action of G on G�H Y such that the projection G� Y ! G�H Y intertwines the
left action of G on G� Y (defined by means of the left action of G on the first
factor) with the action of G on G�H Y . Furthermore the projection G�H Y !
G=H intertwines the action of G on G�H Y with the transitive left action of G on
G=H. This leads to a well-understood model of a G-homogeneous bundle over a
G-homogeneous base manifold.

The point of this construction in the aforementioned book was that for any
proper Lie group action every orbit has an invariant open neighborhood which, as a
manifold with Lie group action, is isomorphic to some G�H Y , where H is the
stabilizer subgroup of a point in the given orbit and Y is a so-called slice for the
G-action. This is the Tube theorem 2.4.1 in the book [10], originally found in [9].
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It is then clear that set-theoretically the G-space M is of the form G�H L, in
which L is a leaf of your foliation and H is the subgroup of G which maps L to
itself. Moreover, in order that G�H L inherits the structure of a smooth manifold
from its construction as the space of H-orbits (which is equivalent to saying that
the mapping G� L ! M, defined by the restriction to G� L of the G-action in M,
is a principal H-bundle), it is sufficient to assume that the H-action on G� L is
proper. Finally, in our situation this properness follows from your assumptions (in
the more general situation that the G-action maps leaves to leaves and is transver-
sal, but XM tangent to a leaf for nonzero elements X of the Lie algebra, then one
would need quite technical additional assumptions on the action in order to obtain
that the action of H on G� L is proper). Because H is discrete in our case, the
principal H-fibration G� L ! M is a Galois covering (actually Galois coverings
are nothing else than principal fiber bundles with discrete group actions).

From the background sketched above Theorem 2 is clear, i.e., L is closed in M if
and only ifH is closed inG if and only ifM is aG-homogeneous fiber bundle over the
homogeneous space G=H, where the fibers are equal to the leaves of the foliation.
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