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Abstract The following theorem is proved. For any positive integers n and k there
exists a number s = s(n, k) depending only on n and k such that the class of all groups
G satisfying the identity ([x1, k y1] · · · [xs, k ys])n ≡ 1 and having the verbal subgroup
corresponding to the kth Engel word locally finite is a variety.

Keywords Groups · Varieties · Restricted Burnside Problem

Mathematics Subject Classification (2000) 20E10

1 Introduction

Following Zelmanov’s solution of the Restricted Burnside Problem [13,14] some new
interesting varieties of groups have been descovered.

A variety is a class of groups defined by equations. More precisely, if W is a set of
words in x1, x2, . . . , the class of all groups G such that W (G) = 1 is called the variety
determined by W . By a well-known theorem of Birkhoff varieties are precisely classes
of groups closed with respect to taking quotients, subgroups and cartesian products of
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their members. It is well-known that the solution of the Restricted Burnside Problem
is equivalent to the following statement.

1.1 The class of locally finite groups of exponent n is a variety

If w is a word in variables x1, . . . , xm we think of it primarily as a function of m
variables defined on any given group G. We denote by w(G) the verbal subgroup of
G generated by the values of w. We are interested in the following question.

Problem 1.2 Let n ≥ 1 and w a group-word. Consider the class of all groups G
satisfying the identity wn ≡ 1 and having w(G) locally finite. Is that a variety?

According to the solution of the Restricted Burnside Problem the answer to the
above question is positive if w(x) = x . In fact it is easy to see that the answer is
positive whenever w is any non-commutator word (the word w is commutator if the
sum of the exponents of any variable involved in w is zero).

Indeed, suppose w(x1, . . . , xm) is such a word and that the sum of the exponents
of xi is r �= 0. Now, given any group G satisfying the identity wn ≡ 1, substitute
the unit for all the variables except xi and an arbitrary element g ∈ G for xi . We see
that gr is a w-value for all g ∈ G. Hence G satisfies the identity xnr ≡ 1, that is, G
has finite exponent dividing nr . Now positive answer to our problem follows easily
from the positive solution of the Restricted Burnside Problem. Thus, the problem is
essentially about commutator words.

A word w is called a multilinear commutator of weight k if it has form of a multi-
linear Lie monomial in precisely k independent variables. In other terminology these
are called outer commutator words. Particular examples of multilinear commutators
are the derived words, defined by the equations:

δ0(x) = x,

δk(x1, . . . , x2k ) = [δk−1(x1, . . . , x2k−1), δk−1(x2k−1+1 . . . , x2k )],

and the lower central words:

γ1(x) = x,

γk+1(x1, . . . , xk+1) = [γk(x1, . . . , xk), xk+1].

In [12] we proved the following theorem.

Theorem 1.3 Let w be a multilinear commutator. For any positive integer n there
exists t depending only on n such that the class of all groups G having w(G) locally
finite and satisfying the condition that the product of any t w-values is of order dividing
n is a variety.

The reader can consult the references list in [12] for other results on the case of
multilinear commutators. The most relevant among commutator words that are not
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multilinear commutators are certainly the Engel words. These are defined inductively
by

[x, 0 y] = x; [x, k y] = [[x, k−1 y], y].

The following result was obtained in [11].

Theorem 1.4 Let n be a prime-power and k a positive integer. There exists a number
t = t (n, k) depending only on k and n such that the class of groups G satisfying the
identity ([x1, k y1] . . . [xt , k yt ])n ≡ 1 and having the verbal subgroup corresponding
to the kth Engel word locally finite is a variety.

The goal of the present paper is to extend the above theorem to the case where
n is not assumed to be a prime-power. It will be shown that the theorem holds for
arbitrary n.

Theorem 1.5 There exists a number s = s(n, k) depending only on k and n such
that the class of all groups G satisfying the identity ([x1, k y1] . . . [xs, k ys])n ≡ 1 and
having the verbal subgroup corresponding to the kth Engel word locally finite is a
variety.

The proof of the above theorem uses all the usual tools: the classification of finite
simple groups, the Hall–Higman theory [3], Lie theory due to Zelmanov, etc. Segal’s
theorem [9] that in a finitely generated prosoluble group the derived group is closed
is another important ingredient of the proof.

2 Bounding the Fitting height of a soluble group

We use the expression “{a, b, c, . . .}-bounded” to mean “bounded from above by some
function depending only on a, b, c, . . .”. Some arguments used in this paper are similar
to those from [12]. The key idea is that Segal’s theorem, combined with the other tools,
can be used to bound the Fitting height of certain finite soluble groups. This enables
us to reduce the problem to nilpotent groups at which point Theorem 1.4 becomes
applicable.

Given a group G, an element g ∈ G will be called a k-Engel value if there exist
x, y ∈ G such that g = [x, k y]. Recall that the Fitting subgroup F(G) of G is
the product of all normal nilpotent subgroups of G. The Fitting series of G can be
defined by the rules: F0(G) = 1, F1(G) = F(G), Fi+1(G)/Fi (G) = F(G/Fi (G))

for i = 1, 2, . . . . If G is a finite soluble group, then the minimal number h = h(G)

such that Fh(G) = G is called the Fitting height of G. The following important result
is due to Segal [9].

Theorem 2.1 If G is a finite soluble group generated by m elements a1, a2, . . . , am,
then every element of the derived group of G is a product of an m-bounded number
of commutators of the form [b, a], where b ∈ G and a ∈ {a1, a2, . . ., am}.

In [6] Nikolov and Segal generalized the above theorem to the case where G is
not required to be soluble but this will not be used in the present paper. From Segal’s
result we deduce the following lemma.
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Lemma 2.2 Let G be a finite soluble group generated by m elements g1, g2, . . . , gm

such that the order of each gi divides a positive integer l. Then every element of G is
a product of an {m, l}-bounded number f = f (m, l) of conjugates of gi .

Proof By Theorem 2.1, any element of G ′ can be written as a product of r commutators
[bi , ai ], where r is an m-bounded number, bi ∈ G and ai ∈ {g1, g2, . . . , gm}. We now
put f = rl + ml . If x ∈ G ′, we write

x = [b1, a1][b2, a2] · · · [br , ar ] = (a−1
1 )b1a1(a

−1
2 )b2a2 · · · (a−1

r )br ar

= a(l−1)b1
1 a1a(l−1)b2

2 a2 · · · a(l−1)br
r ar .

So x is a product of at most rl conjugates of gi . Since G/G ′ is generated by elements
of order dividing l and the order of G/G ′ is at most ml , it follows that any element of
G is a product of at most f conjugates of gi . ��

Throughout the rest of the paper f (m, l) will stand for the {m, l}-bounded number
as in the previous lemma.

Lemma 2.3 Let G be a finite soluble group. Assume that the Fitting height of the
verbal subgroup of G corresponding to the kth Engel word is h. Then one can choose
h k-Engel values in G, v1, v2, . . . , vh, such that the subgroup 〈v1, v2, . . . , vh〉 has
Fitting height precisely h.

Proof Let R be the verbal subgroup of G corresponding to the kth Engel word. We
denote Fi (R) by Fi , 1 ≤ i ≤ h. If h = 1, the lemma is obvious so we assume that
h ≥ 2. Since Fh = R, there exists a k-Engel value v1 such that v1 /∈ Fh−1. Since
〈v1, Fh−1〉 /Fh−2 is not nilpotent, there exists x1 ∈ Fh−1 such that [x1, iv1] /∈ Fh−2
for any positive integer i . Put v2 = [x1, kv1]. Note that v2 is a k-Engel value. Moreover,
v2 ∈ Fh−1\Fh−2.

Since 〈v2, Fh−2〉 /Fh−3 is not nilpotent, there exists x2 ∈ Fh−2 such that [x2, iv2] /∈
Fh−3 for any positive integer i . Put v3 = [x2, kv2]. Note that v3 is a k-Engel value and
that v3 ∈ Fh−2\Fh−3.

Continuing this process, there exists xr−1 ∈ Fh−(r−1) such that we can choose
a k-Engel value vr defined by vr = [xr−1, kvr−1], where 1 ≤ r ≤ h and vr ∈
Fh−(r−1)\Fh−r .

Now let H = 〈v1, v2, . . . , vh〉. It remains only to show that the subgroup H has
Fitting height precisely h. We have vh ∈ F(H). Note that vh−1 ∈ F2(H) but vh−1 /∈
F(H) (otherwise, there would exist j such that [vh, jvh−1] = 1). More generally,
vh−r ∈ Fr+1(H) but vh−r /∈ Fr (H), where 0 ≤ r ≤ h − 1. We conclude that H has
Fitting height h, as required. ��

Having fixed a positive integer k, the symbol w j will denote the word that is the
product of j k-Engel values. Thus, for example, the symbol w2 will denote the word
[x1, k y1] [x2, k y2]. It is clear that if an element of a group G is a wi -value, then it is
also a w j -value for any i ≤ j . Therefore, for any i ≤ j , the identity wn

j ≡ 1 implies
the identity wn

i ≡ 1 in G. Obviously, the identity wn
j ≡ 1 implies that all k-Engel
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values have order dividing n and this fact will be used freely without being explicitly
mentioned.

A well-known corollary of the Hall–Higman theory says that the Fitting height of
any finite soluble group of exponent n is bounded by the number of prime divisors of
n, counting multiplicities. We will denote the number by h(n).

Lemma 2.4 Let j and n be positive integers with the property that j ≥ f (h(n)+1, n).
Let G be a finite soluble group satisfying the identity wn

j ≡ 1. Then the Fitting height
of the verbal subgroup of G corresponding to the kth Engel word is at most h(n).

Proof Assume the lemma is false. Set h = h(n). By Lemma 2.3 we can choose h + 1
k-Engel values v1, v2, . . . , vh+1 in G such that the subgroup H = 〈v1, v2, . . . , vh+1〉
has Fitting height at least h + 1. By Lemma 2.2 any element of H can be written as a
product of at most f (h + 1, n) conjugates of vi . Since conjugates of k-Engel values
are again k-Engel values, by the hypothesis any such product has order dividing n. So
H is of exponent n, whence h(H) ≤ h, a contradiction. ��
Corollary 2.5 Under the hypothesis of Lemma 2.4, we have h(G) ≤ h(n) + 1.

Proof If R is the verbal subgroup of G corresponding to the kth Engel word then,
by the previous lemma, h(R) ≤ h(n). The quotient G/R is a finite Engel group. By
Zorn’s Theorem [7, XII.3.4], G/R is nilpotent. Hence, h(G) ≤ h(n) + 1. ��

3 Main results

Following [3] we call a group G monolithic if it has a unique minimal normal subgroup
which is non-abelian simple.

Proposition 3.1 Let j , j1 and n be positive integers with the property that j ≥ j1n+1
and let G be a finite group satisfying the identity wn

j ≡ 1. Assume that G has no non-
trivial normal soluble subgroups. Then G possesses a normal subgroup L such that
L is residually monolithic and G/L residually belongs to the class of finite groups
satisfying an identity w

n/p
j1

≡ 1 for some prime divisor p of n.

Proof Let M be a minimal normal subgroup of G. We know that M ∼= S1 × S2 ×
· · ·× Sr , where S1, S2, . . . , Sr are isomorphic simple groups. The group G acts on M
by permuting the simple factors so we obtain a representation of G by permutations
of the set {S1, S2, . . . , Sr }. Let L M be the kernel of the representation. Choose in S1 a
non-trivial element b of the form w1. This is possible because S1 is not soluble. Let p
be a prime divisor of the order of b. We want to show that G/L M satisfies the identity
w

n/p
j1

≡ 1. Suppose this is not true. Let q = pα be the largest power of p dividing n.

Since the identity w
n/p
j1

≡ 1 does not hold in G/L M , there exists an element a ∈ G
of the form w j1 such that q divides the order of a modulo L M . Write n = n1q and
a1 = an1 . Then a1 is an element of the form w j1n1 that has order q and permute
regularly some q factors in {S1, S2, . . . , Sr }. Without any loss of generality we will
assume that S1 is one of those factors. Write

(ba1)
q = bba1

−1
ba1

−2 · · · ba1 .
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Since each of the elements ba1
−i

belongs to a different subgroup Si , the product
bba1

−1
ba1

−2 · · · ba1 has the same order as b. Thus, (ba1)
q has order divisible by p so

the order of ba1 is divisible by pα+1. However ba1 is of the form w j so its order must

divide n. This contradiction shows that indeed G/L M satisfies the identity w
n/p
j1

≡ 1.
Let now L be the intersection of all the subgroups L M , where M ranges through the

minimal normal subgroups of G. The previous paragraph implies that the proof of the
proposition will be completed once it is shown that L is residually monolithic. If T is
the product of the minimal normal subgroups of G, it is clear that T is the product of
pairwise commuting simple groups S1, S2, . . . , St and that L is the intersection of the
normalizers of Si . Since G has no non-trivial normal soluble subgroups, it follows that
CG(T ) = 1 and therefore any element of L induces a non-trivial automorphism of
some the Si . Let ρi be the natural homomorphism of L into the group of automorphisms
of Si . It is easy to see that the image of ρi is monolithic and that the intersection of
the kernels of all ρi is trivial. Hence L is residually monolithic. ��

According to the solution of the Restricted Burnside Problem the order of any finite
m-generated group of exponent n is {m, n}-bounded. In this section we present some
generalizations of this result.

The next proposition was proved in [11] using Lie-theoretical techniques that Zel-
manov created in his solution of the Restricted Burnside Problem.

Proposition 3.2 There exists a function t = t (n, k) with the following property. Let
G be a finite group generated by m elements a1, . . . , am, each of order dividing l.
Suppose that G satisfies the identity wn

t ≡ 1, where n is a prime-power. Then the
order of G is {k, m, n, l}-bounded.

Let t = t (n, k) have the same meaning as in Proposition 3.2. Let us now choose a
function s(x, y) defined for any positive integers x, y with the following properties.

1. s(x, y) ≥ f (h(x) + 1, x) for all x, y;
2. s(x, y) ≥ t (x, y) whenever x is a prime-power;
3. s(x, y) ≥ x · s(z, y) + 1 for all x, y, z such that z is a proper divisor of x .

Such a function can be constructed using induction on x . Indeed, fix a positive
integer y and define s(1, y) to be the maximum of the numbers f (1, 1) and t (1, y).
Now suppose that s(x, y) is defined for all x ≤ n − 1. If n is a prime-power, put
s(n, y) = t (n, y). Otherwise, let M be the maximal value among f (h(n) + 1, n)

and n · s(z, y) + 1, where z ranges through the set of all proper divisors of n. Put
s(n, y) = M . This can be performed for any y, thus establishing the existence of
a function with the desired properties. Eventually, it will be shown that the chosen
function satisfies the hypothesis of Theorem 1.5.

Proposition 3.3 Let m, n, l be positive integers and s = s(n, k). Let G be a finite
group satisfying the identity wn

s ≡ 1. Assume that G can be generated by m ele-
ments g1, g2, . . . , gm such that each gi and each commutator of the form [g, x],
where g ∈ {g1, g2, . . . , gm}, x ∈ G, have order dividing l. Then the order of G is
{k, m, n, l}-bounded.
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Proof If n = 1, G is a k-Engel group. By a result of Burns and Medvedev [1], there
exist numbers c(k) and e(k) depending only on k with the property that G has a
normal subgroup N such that N is of exponent dividing e(k) and G/N is a nilpotent
group of class at most c(k). It is easy to see that G/N has {k, m, n, l}-bounded order.
The minimal number of generators of N is bounded in terms of m and |G : N |. The
positive solution of the Restricted Burnside Problem allows us to conclude that |N |
and, therefore, |G| is {k, m, n, l}-bounded.

We will now use induction on n, the case n = 1 being covered in the previous
paragraph. Suppose that n ≥ 2 and that the proposition is true for groups satisfying
an identity w

n/p
s(n/p,k) ≡ 1 for a prime divisor p of n. In other words, the induction

hypothesis is that there exists a {k, m, n, l}-bounded number N0 such that if G is a
finite group satisfying the identity w

n/p
s(n/p,k) ≡ 1 that can be generated by m elements

g1, g2, . . . , gm such that each gi and each commutator of the form [g, x] have order
dividing l, then |G| ≤ N0.

Suppose for a moment that G has no non-trivial normal soluble subgroups. Since
s(n, k) ≥ n ·s(n/p, k)+1, Proposition 3.1 tells us that G possesses a normal subgroup
L such that L is residually monolithic and G/L residually belongs to the class of
finite groups satisfying an identity w

n/p
s(n/p,k) ≡ 1 for some prime divisor p of n. It

follows that G/L is residually of order at most N0. Since G/L is m-generated, by
Theorem 7.2.9 of [2], the number of normal subgroups of index at most N0 in G/L is
{m, N0}-bounded. Therefore |G/L| is {k, m, n, l}-bounded. In particular, it follows
that L can be generated by r elements for some {k, m, n, l}-bounded number r .

A result of Jones [5] says that any infinite family of finite simple groups generates
the variety of all groups. It follows that up to isomorphism there exist only finitely
many monolithic groups satisfying the identity wn

s ≡ 1. Let N1 = N1(n, s) be the
maximum of their orders. Then L is residually of order at most N1. Since L is r -
generated, the number of distinct normal subgroups of index at most N1 in L is
{r, N1}-bounded. Therefore L has {k, m, n, l}-bounded order. We conclude that |G| is
{k, m, n, l}-bounded.

Now let us drop the assumption that G has no non-trivial normal soluble subgroups.
Let S be the product of all normal soluble subgroups of G. The above paragraph
shows that G/S has {k, m, n, l}-bounded order. Since s(n, k) ≥ f (h(n) + 1, n), by
Corollary 2.5 the Fitting height of S is {k, m, n, l}-bounded. Let F = F(G) be the
Fitting subgroup of G. Using induction on the Fitting height of S, we assume that F
has {k, m, n, l}-bounded index in G.

Suppose first that F is central. In this case, |G : Z(G)| is {k, m, n, l}-bounded and
Schur’s Theorem [8, p. 102] guarantees that so is

∣
∣G ′∣∣. Since G can be generated by

m elements of order dividing l, it follows that |G| is {k, m, n, l}-bounded.
If F is not central, consider the subgroup

N = 〈[g1, F] , [g2, F] , . . . , [gm, F]〉 .

It is easy to see that N is normal in G. Applying the results of the previous paragraph
to the quotient G/N , it follows that |G : N | is {k, m, n, l}-bounded. We will show that
|N |, and therefore |G|, is {k, m, n, l}-bounded.
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We know that N can be generated by a {k, m, n, l}-bounded number of elements.
Let d be the minimal number of generators of N . Denote by π(N ) the set of prime
divisors of |N |. Since N is nilpotent, π(N ) consists of prime divisors of l. Thus, it is
sufficient to bound the order of the Sylow p-subgroup of N for every prime p ∈ π(N ).
Let P be the Sylow p-subgroup of N and write N = P × Op′(N ). If y1, y2, . . . is
the list of all elements of the form [gi , y], where 1 ≤ i ≤ m and y ∈ F , we write
b1, b2, . . . for the corresponding projections of y j in P . Then P = 〈b1, b2, . . .〉. Since
P is a finite d-generated p-group, the Burnside Basis Theorem [4, III.3.15] shows that
P is actually generated by d elements in the list b1, b2, . . . . By the hypothesis, the
order of each of them divides l. Let q be the maximal power of p dividing n. Since
s(n, k) ≥ t (q, k), by Proposition 3.2 we conclude that P has {k, m, n, l}-bounded
order. The proof is complete. ��

We are now ready to prove Theorem 1.5.
Let X denote the class of all groups with the identity wn

s ≡ 1 and having the verbal
subgroup corresponding to the kth Engel word locally finite. It is easy to see that the
class X is closed to taking subgroups and quotients of its members. Hence, we only
need to show that if D is a cartesian product of groups from X, then D ∈ X. Obviously,
the identity wn

s ≡ 1 holds in D so it remains only to show that the verbal subgroup R
of D corresponding to the kth Engel word is locally finite. Let S be any finite subset
of R. Clearly one can find finitely many k-Engel values h1, h2, . . . , hm ∈ D such that
S ≤ 〈h1, h2, . . . , hm〉 = H . Thus it is sufficient to prove that the subgroup H is finite.
The order of each hi divides n. Moreover, if h ∈ {h1, h2, . . . , hm} and x ∈ H , then
each commutator of the form [h, x] is a product of n k-Engel values. It is clear from
the choice of s that s(n, k) ≥ n for any n ≥ 2. So the order of each of the commutators
divides n. Note that R is residually locally finite. If Q is any locally finite quotient of
R, by Proposition 3.3 the order of the image of H in Q is finite and {k, m, n}-bounded,
so it follows that this order actually does not depend on Q. We conclude that H is
finite, as required. ��

We record one immediate corollary of Theorem 1.5 that is related to the results
obtained in [10].

Corollary 3.4 Let n and k be positive integers and let s be as in Theorem 1.5. If G is
a residually finite group satisfying the identity ([x1, k y1] · · · [xs, k ys])n ≡ 1, then the
verbal subgroup of G corresponding to the kth Engel word is locally finite.

Proof Let X have the same meaning as above. Then any finite quotient of G belongs
to the variety X. However, it is clear that if a group residually belongs to a certain
variety, then it actually belongs to the variety. Thus, it follows that the verbal subgroup
of G corresponding to the kth Engel word is locally finite. ��
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