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Abstract. Let X be a real Banach space and let V � X be a closed linear subspace. In [4, Prop. 5] it
has been proven that if X is strictly convex, reflexive and smooth and V is an optimal subset of X then V
is one-complemented in X. In this note we would like to extend this result to non-smooth Banach spaces.
In particular, we show that any existence subspace of c; coand l1 is one-complemented. Also some
results concerning non-smooth Musielak-Orlicz sequence spaces equipped with the Luxemburg norm
will be presented.
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0. Introduction

Let X be a Banach space and let C�X be a non-empty set. A continuous map-
pingP :X!C is called a projection onto C wheneverPjC ¼ Id, that isP2 ¼P. Setting

MinðCÞ ¼ fz2X : for every c2C; x2X; if kz� ck5 kx� ck then x ¼ zg;
we say that C � X is optimal if MinðCÞ ¼ C. Observe that for any C � X;
C � MinðCÞ. This notion has been introduced by Beauzamy and Maurey in [4],
where basic properties concerning optimal sets can be found.

A set C � X is called an existence set of best coapproximation (existence set
for brevity), if for any x2X; RCðxÞ 6¼ ;, where

RCðxÞ ¼ fd2C : kd � ck4 kx� ck for any c2Cg:
This notion has been introduced in [5]. It is clear that any existence set is an
optimal set. The converse, in general, is not true. However, by [4, Prop. 2] if X
is one-complemented in X�� and strictly convex, then any optimal subset of X is
an existence set in X. This, in particular, holds true for strictly convex spaces X,
such that X ¼ Z� for some Banach space Z.

Existence and optimal sets have been studied by many authors from different
points of view, mainly in the context of approximation theory (see e.g. [1]–[5],
[7]–[11], [13]–[15], [21], [27], [29], [30]).
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Recall that a closed subspace Vof a Banach space X is called one-complemen-
ted if there exists a linear projection of norm one from X onto V . Also there is a
large number of papers concerning one-complemented subspaces (see e.g. a survey
paper [28] and a recent paper [19]). It is obvious that any one-complemented
subspace is an existence set. The converse, in general, is not true. By a deep result
of Lindenstrauss [23] there exists a Banach space X and a linear subspace V of X,
codimðVÞ ¼ 2, such that:

a) V is one-complemented in any hyperplane Y of X in which it is contained;
b) V is not one-complemented in X.

This fact together with the simple observation stated as Lemma 0.1 below,
gives an example of a subspace being an existence set which is not one-
complemented.

Lemma 0.1. Let X be a Banach space and let V � X;V 6¼ f0g be a linear
subspace. Then V is an existence set in X if and only if for any x2X n V, there
exists Px, a linear projection from Zx onto V with kPxk ¼ 1. Here Zx ¼ V � ½x�,
where ½x� denotes the linear space generated by x.

Proof. Assume that for any x2X n V there exists Px, a linear projection from Zx
onto V with kPxk ¼ 1. Fix z2Zx and v2V . Note that

kPxz� vk ¼ kPxðz� vÞk4 kz� vk:
Hence Pxz2RVðzÞ and so V is an existence set in X. Now assume that V is an
existence set in X and fix x2X n V . Take any d2RVðxÞ. Since any z2Zx can
be uniquely expressed as z ¼ �xþ v for some v2V and �2R, we can define
Px : Zx ! V by

Pxz ¼ �d þ v:

It is easy to see that Px is a linear projection from Zx onto V . To show that
kPxk ¼ 1, fix y ¼ �xþ v2Zx, with � 6¼ 0. Since d2RVðxÞ,

kPxyk ¼ k�d þ vk ¼ j�jkd þ v=�k4 j�kxþ v=�k ¼ k�xþ vk ¼ kyk;
which completes the proof. &

However, in [4] (see also [29, p. 162], where the case of contractive retractions
onto linear subspaces is considered) the following result has been proven.

Theorem 0.2 (see [4, Prop. 5]). Let V be a linear subspace of a smooth,
reflexive and strictly convex Banach space. If V is an optimal set then V is one-
complemented in X. If X is a smooth Banach space, then any subspace of X which
is an existence set is one-complemented. Moreover, in both cases a norm-one
projection from X onto V is uniquely determined.

The aim of this paper is to generalize the above result to the case of some non-
smooth, real Banach spaces. This can be treated as a partial answer concerning the
question from [4, p. 125] about generalizations of [4, Prop. 5] to the non-smooth
case. In particular, we show that in c, co and l1 any subspace which is an existence
set is one-complemented (see Theorems 2.2, 2.3 and 2.4). Next we demonstrate
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some results in the case of non-smooth Musielak-Orlicz sequence spaces equipped
with the Luxemburg norm.

Now we present some notions and results which will be used in this paper.
In the sequel by SðXÞ we denote the unit sphere in a Banach space X and by

SðX�Þ the unit sphere in its dual space. A functional f 2SðX�Þ is called a support-
ing functional for x2X, if f ðxÞ ¼ kxk. Analogously, a point x2SðXÞ is called a
norming point for f 2X� if f ðxÞ ¼ kfk. A point x2X is called a smooth point if it
has exactly one supporting functional. A Banach space X is called smooth if any
x2SðXÞ is a smooth point.

By extðXÞwe denote the set of all extreme points of SðXÞ. A Banach space X is
called strictly convex if extðXÞ ¼ SðXÞ.

If V is a linear subspace of a Banach space X, by PðX;VÞ we will denote the
set of all linear, continuous projections from X onto V .

Now we present some introductory facts on Musielak-Orlicz sequence spaces.
A function � : R ! ½0;þ1Þ is said to be an Orlicz function if �ð0Þ ¼ 0, �ðtÞ> 0
for some t> 0, � is even and convex. By �� we denote its conjugate function in
the sense of Young, that is

��ðuÞ ¼ sup
v> 0

fjujv� �ðvÞg;

for u2R and we notice that �� is an extended real-valued convex function.
If �ðuÞ ¼ ð1=pÞup, 1< p<1, then ��ðuÞ ¼ ð1=p0Þup0 , where 1=pþ 1=p0 ¼ 1.
Further, a sequence � ¼ ð�nÞ of Orlicz functions �n will be called a Musielak-
Orlicz function whenever �nð1Þ ¼ 1 for every n2N. By �� ¼ ð��n Þ we will de-
note its conjugate function.

Let lo denote the space of all real-valued sequences. With each Musielak-
Orlicz function � we can associate a mapping �� : lo ! ½0;þ1� defined by

��ðxÞ ¼
X1
n¼1

�nðjxnjÞ;

where x ¼ ðxnÞ2 lo. Given a Musielak-Orlicz function �, let l� denote the corre-
sponding Musielak-Orlicz space, that is

l� ¼ fx2 lo : lim
�!0

��ð�xÞ ¼ 0g: ð0:1Þ

If a sequence � ¼ ð�nÞ is constant, that is �n ¼ � for every n2N, then l� is an
Orlicz sequence space and further it will be denoted by l�. The space l� equipped
with the Luxemburg norm

kxk ¼ kxk� :¼ inff�> 0 : ��ðx=�Þ4 1g ð0:2Þ

is a Banach space.
Observe that the assumption �nð1Þ ¼ 1 for every n2N is not a real restriction

on Musielak-Orlicz function �. In fact, for every sequence � ¼ ð�nÞ, where �n are
Orlicz functions, there exists a function � ¼ ð nÞ with  nð1Þ ¼ 1 and such that l�
is isometric to l�. It is enough to take  nðtÞ ¼ �nðantÞ, where �nðanÞ ¼ 1 for every
n2N.
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We will also consider here the finite dimensional spaces l
ðmÞ
� , defined on Rm

analogously as l�. The space l
ðmÞ
� can be identified with the subspace of l� con-

sisting of all x ¼ ðxnÞ2 l� such that xn ¼ 0 for all n5mþ 1.
An important subspace of l�, called the subspace of finite elements and denoted

by h� is defined as

h� ¼ fx2 l� : ��ð�xÞ<1 for any�> 0g: ð0:3Þ
It is well known that h� is a closed separable subspace of l� with the Schauder
basis consisting of the standard unit vectors ei ¼ ð0; . . . ; 1i; 0; . . .Þ. It is easy to see
that for every x2h�, kxk ¼ 1 if and only if ��ðxÞ ¼ 1. Moreover, h� ¼ l� if and
only if either the dimension of l� is finite or � satisfies a growth condition called
�2 [22, 25], that is there exist K; � > 0 and a nonnegative sequence ðcnÞ � l1such
that for every n2N and every t5 0

�nð2tÞ4K�nðtÞ þ cn; ð0:4Þ
whenever �nðtÞ4 �.

Recall that for every y2 l��, the functional

fyðxÞ ¼
X1
n¼1

xnyn; x ¼ ðxnÞ2 l�;

is bounded on ðl�; k k�Þand is called a regular functional. We denote by R� the
set of all regular functionals on l�. The spaces R� and l�� are order isomorphic
[see e.g. 31] and so by usual identification we often write fy ¼ y. More information
on Musielak-Orlicz spaces can be found in [6], [16–18], [20], [22], [25], [26],
[31], [32]. The following description of supporting functionals can be deduced
from [17, Lemma 1.7 and Theorem 1.9]. Set for any i2N, and x2 l�

��iðxÞ ¼ ½��i ðxiÞ; �þi ðxiÞ�; ð0:5Þ
if xi 5 0 and

��iðxÞ ¼ ½�þi ðxiÞ; ��i ðxiÞ�; ð0:6Þ
if xi< 0. Here for any i2N and x2R we donote by �þi ðxÞ (��i ðxÞ, resp.) the right-
hand side (the left hand-side, resp.) derivative of �i at x. Also for any sequence
x ¼ ðx1; x2; . . .Þ define

suppðxÞ ¼ fi2N : xi 6¼ 0g:
Theorem 0.3. Let � ¼ ð�nÞ be a Musielak-Orlicz function and let x ¼

ðxnÞ2h�, kxk� ¼ 1. Then any supporting functional f of x in l� (with respect to
k � k�Þ is a regular functional. Moreover, a regular functional f ¼ fz determined by
z2 l�� is a supporting functional for x if and only if

a) sup f��ðyÞ : kyk� 4 1; suppðyÞ � suppðzÞg ¼ 1;
b) for any i2 suppðzÞ

zi ¼ di

�� X
j 2 suppðzÞ

djxj

�
;

where di2��iðxÞ for any i2 suppðzÞ and
P

j 2 suppðzÞ djxj<1.
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From [17, Theorem 3.1] we can easily obtain

Theorem 0.4. ðh�; k � k�Þ is smooth if and only if �n is differentiable in ð�1; 1Þ
for any n2N. Since �n is an even and convex function for any n2N, this implies
that ð�nÞ0ð0Þ ¼ 0 for any n2N.

Also we need the following

Theorem 0.5. [22, p. 148] ðl�; k � k�Þ is reflexive if and only if � and ��
satisfy the �2 condition, that is if and only if l� ¼ h� and l�� ¼ h�� .

In the sequel we will apply the following results. The next one can be easily
deduced from [20, Theorem 3] (see also [18, Theorem 2.3] in the case of Orlicz
sequence spaces h� determined by � which does not satisfy the �2 condition).
Recall that a convex function f : R ! R is called strictly convex in ½a; b� if for
any x; y2 ½a; b�, x 6¼ y and �2ð0; 1Þ,

f ð�xþ ð1 � �ÞyÞ<�f ðxÞ þ ð1 � �Þf ðyÞ:
Theorem 0.6. Set for any n2N,

En ¼ fx2 ½0; 1Þ; �nðaxþ ð1 � aÞyÞ ¼ a�nðxÞ þ ð1 � aÞ�nðyÞ
for some y> x and 0< a< 1g [ f1g;

Fn ¼ fx2 ½0; 1� : �nðxÞ4 1=2g
and

an ¼ inff�nðxÞ : x2Eng:
Then ðh�; k � k�Þ is strictly convex if and only if

a) there exists at most one n2N such that �n is not strictly convex on Fn; and
b) for any m2N, m 6¼ n, �m is strictly convex on fx2R: �mðxÞ4 1 � ang.

In particular, if all functions �n are strictly convex in ½0; ��1
n ð½0; 1�Þ� ¼ ½0; 1�

then ðh�; k � k�Þ and ðlðmÞ� ; k � k�Þ are strictly convex.
An Orlicz space ðh�; k � k�Þ or ðl

ðmÞ
� ; k � k�Þ for m5 3 is strictly convex if and

only if � is strictly convex in the interval ½0; uo�, where �ðuoÞ ¼ 1=2.

Theorem 0.7 (The �SSmulian theorem) [see e.g. 12, p. 243]. Assume X is a
Banach space and let x2SðXÞ be a smooth point. If fn; gn2SðX�Þ are such that
fnðxÞ ! 1 and gnðxÞ ! 1, then fn � gn ! 0 weakly� in X�.

Theorem 0.8 (The Mazur theorem) [see e.g. 12, p. 248]. Let X be a separable
Banach space. Then the set of all smooth points of X is a dense G� subset of X.

1. General results

We start with

Lemma 1.1. Let X be a Banach space. For n2N, let xn2X and kxn � xk ! 0
for some x2X. For each n2N fix fn2SðX�Þ with fnðxnÞ ¼ kxnk. Set for n2N

An ¼ clðffk : k5 ngÞ;
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where the closure is taken with respect to the weak-� topology in X�. Let
f 2AðffngÞ ¼

T1
n¼1 An. Then f ðxÞ ¼ kxk and moreover kfk ¼ 1 for x 6¼ 0.

Proof. If x ¼ 0, then obviously f ðxÞ ¼ kxk for any f 2AðffngÞ. If x 6¼ 0,
then xn=kxnk ! x=kxk. Hence without loss of generality we can assume that
kxnk ¼ kxk ¼ 1. Let f 2AðffngÞ. By the Banach-Alaoglu Theorem kfk4 1. Fix
�> 0 and no2N with kxn � xk4 �=2 for n5 no. Also there exists k5 no with
jðfk � f Þxj4 �=2. Note that

j1 � f ðxÞj4 jfkðxk � xÞj þ jðfk � f Þxj4 kfkkkxk � xk þ jðfk � f Þxj4 �:

Consequently, f ðxÞ ¼ kxk ¼ 1 ¼ kfk, as required. &

Lemma 1.2. Let V � X be a linear subspace of a Banach space X. Take
x; y2X satisfying

ky� vk4 kx� vk
for any v2V. Then for any v2V there exists fv2SðX�Þ, fvðvÞ ¼ kvk and
fvðx� yÞ ¼ 0.

Proof. Fix v2V . Without loss of generality, we can assume that v 6¼ 0. Since V
is a linear subspace, for any k2R

ky� kvk4 kx� kvk:
Hence for any k 6¼ 0,

ky=k � vk4 kx=k � vk:
Let k2N n f0g. Choose fk 2SðX�Þ such that

fkðx=k � vÞ ¼ kx=k � vk:
Note that

fkðy=k � vÞ4 ky=k � vk4 kx=k � vk:
Hence fkðx=k � y=kÞ5 0, which gives

fkðy� xÞ4 0

for any k2N n f0g. Observe that kx=k � v� ð�vÞk ! 0. By Lemma 1.1 and
the Banach-Alaoglu Theorem there exists fþ 2AðffkgÞ such that fþð�vÞ ¼ kvk.
Since fþ 2AðffkgÞ, fþðy� xÞ4 0. For k2Z nN, by the above reasoning,
fkðx=k � y=kÞ5 0, and consequently

fkðy� xÞ5 0:

Again, by Lemma 1.1 and the Banach-Alaoglu Theorem, there exists f� 2SðX�Þ,
f�ð�vÞ ¼ kvk such that

f�ðy� xÞ5 0:

If f�ðy� xÞ ¼ 0 or fþðy� xÞ ¼ 0, the lemma is proved. In the opposite case, there
exists a2ð0; 1Þ such that

af�ðx� yÞ þ ð1 � aÞfþðx� yÞ ¼ 0
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Set

fv ¼ �ðaf� þ ð1 � aÞfþÞ:
Obviously, kfvk ¼ fvðv=kvkÞ ¼ 1 and fvðy� xÞ ¼ 0: The lemma is proved. &

Theorem 1.3. Let X be a real Banach space and let V � X be a linear sub-
space. Assume that V is an existence set and V 6¼ f0g. Put

GV ¼ fv2V n f0g : there exists exactly one f 2SðX�Þ : f ðvÞ ¼ kvkg: ð1:1Þ
Assume that the norm closure of GV in X is equal to V . Then there exists exactly
one projection P2PðX;VÞ such that kPk ¼ 1.

Proof. Fix x2X. Since V is an existence set, there exists y2V such that

ky� vk4 kx� vk
for any v2V. By Lemma 1.2 applied to x and y, for any v2V there exists
fv2SðX�Þ, fvðvÞ ¼ kvk, such that

fvðx� yÞ ¼ 0: ð1:2Þ
Now we show that there exists exactly one y2V satisfying (1.2) for any v2GV.
Assume, on the contrary, that there exist y1; y2 2V , y1 6¼ y2 satisfying (1.2) for any
v2GV . Since clðGVÞ ¼ V , there exists fzng � GV with

kzn � ðy1 � y2Þk ! 0: ð1:3Þ
By (1.2), for any n2N there exists f 1

n 2SðX�Þ and f 2
n 2SðX�Þ, with f inðznÞ ¼

kznk for i ¼ 1; 2 such that f inðx� yiÞ ¼ 0. Since zn2GV , f 1
n ¼ f 2

n . Hence for any
n2N

f 1
n ðy1 � y2Þ ¼ 0: ð1:4Þ

Since kzn � ðy1 � y2Þk ! 0, and f 1
n ðznÞ ¼ kznk, by Lemma 1.1, for any

f 2Aðff 1
n gÞ

f ðy1 � y2Þ ¼ ky1 � y2k: ð1:5Þ
By (1.4), f ðy1 � y2Þ ¼ 0, which gives, y1 ¼ y2; a contradiction.

Now, for any x2X, let Px denote the only element y2V satisfying (1.2)
for any v2GV. We show that P is a linear mapping. To do this, fix x1; x2 2X
and v2GV . Note that fvðx1 � Px1Þ ¼ 0 and fvðx2 � Px2Þ ¼ 0, where fv denotes
the only supporting functional for v in X�. Consequently, for any v2GV,
a1; a2 2R,

fvða1x1 þ a2x2 � ða1Px1 þ a2Px2ÞÞ ¼ 0: ð1:6Þ
Since for any x2X there exists exactly one element satisfying (1.2) for any v2GV,
by (1.6),

Pða1x1 þ a2x2Þ ¼ a1Pðx1Þ þ a2Pðx2Þ;
which shows that P is a linear mapping. Taking v ¼ 0 we get kPxk4 kxk. Since
Pv ¼ v for any v2V and V 6¼ f0g, we get kPk ¼ 1. By the above proof there exists
exactly one projection P2PðX;VÞ of norm one. The proof is complete. &
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Corollary 1.4. Assume X is a smooth space. If a linear subspace V �
X;V 6¼ f0g, is an existence set then V is one-complemented in X.

Proof. Note that in our case GV ¼ V n f0g. Hence the statement follows im-
mediately from Theorem 1.3. &

Corollary 1.5. Assume that X is a strictly convex Banach space such that X is
one-complemented in X��. (In particular, X can be a reflexive space or X ¼ Z�
for some Banach space Z.) If a linear subspace V � X, V 6¼ f0g, is an optimal set
satisfying the requirements of Theorem 1.3, then V is one-complemented.

Proof. By [4, Prop. 2], V is an existence set in X. By Theorem 1.3, V is one-
complemented in X. &

Now we present another class of subspaces, which has been introduced in [33],
satisfying the assumptions of Theorem 1.3.

Definition 1.6. [33] Let X be a Banach space and let V � X be a linear sub-
space. V is called weakly separating if any g2 extðV�Þ has exactly one Hahn-
Banach extension f 2SðX�Þ.

Let us define

GV ;1 ¼ fv2V n f0g : there exists exactly one g2SðV�Þ; gðvÞ ¼ kvkg: ð1:7Þ
Theorem 1.7. Let V � X, V 6¼ f0g be a separable, weakly separating sub-

space. Then the norm closure of GV is equal to V .

Proof. Since V is separable, by Theorem 0.8 applied to V , the set GV ;1 is dense
in V . To finish the proof, it is enough to show that GV ;1 ¼ GV . Fix v2GV ;1 and
g2SðV�Þ satisfying gðvÞ ¼ kvk. Since v2GV ;1, g2 extðV�Þ. Now we show that
there exists exactly one f 2SðX�Þ such that f ðvÞ ¼ kvk, which means that v2GV .
Indeed, assume that there exist f1; f2 2SðX�Þ, f1 6¼ f2 such that fiðvÞ ¼ kvk for
i ¼ 1; 2. Hence fijVðvÞ ¼ kvkfor i ¼ 1; 2. Since v2GV ;1, f1jV ¼ f2jV ¼ g. Since
g2 extðV�Þ, and V is weakly separating, f1 ¼ f2; a contradiction. It is obvious,
that GV � GV ;1. The proof is complete. &

Now, after [24], we present some examples of weakly separating subspaces of
CðEÞ, where E is a compact set and CðEÞ is the space of continuous, real-valued
functions defined on E equipped with the supremum norm. For t2E, define
t̂t2ðCðEÞ� by:

t̂tð f Þ ¼ f ðtÞ ð1:8Þ
for f 2CðEÞ. We need the following

Theorem 1.8. [24] A linear subspace V � CðEÞ is weakly separating if and
only if for any t1; t2 2�ðVÞ, t1 6¼ t2, there exist v1; v2 2V such that

v1ðt1Þ 6¼ v1ðt2Þ
and

v2ðt1Þ 6¼ �v2ðt2Þ:
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Here

�ðVÞ ¼ ft2E : t̂tjV 2 extðV�Þg:
Applying Theorem 1.8 one can easily show

Example 1.9 [24]. Let V � CðEÞ be a linear subspace such that 12V and
t̂1t1jV 6¼ t̂2t2jV for any t1; t2 2E, t1 6¼ t2. Then V is weakly separating.

Recall that n-dimensional subspace V of CðEÞ is called a Haar subspace if and
only if for any t1; . . . ; tn2E, ti 6¼ tj for i 6¼ j the set ft̂1t1jV ; . . . ; t̂ntnjVg is linearly
independent in V�.

Example 1.10 [24]. Let V � CðEÞ be a Haar subspace of dimension 5 2. Then
V is weakly separating. Also any subspace W � CðEÞ containing two-dimensional
Haar subspace is weakly separating.

2. Particular cases

Now applying Theorem 1.3, we show that any linear subspace V 6¼ f0g of c
and co which is an existence set must be one-complemented. To do this, we need a
well known

Lemma 2.1. Let X and Y be two Banach spaces and let T : X ! Y be a linear
isometry. Let V � X. Then V is an existence set in X if and only if TðVÞ is an
existence set in TðXÞ. If V � X, V 6¼ f0g, is a linear subspace then V is one-
complemented in X if and only if TðVÞ is one-complemented in TðXÞ.

Proof. Since V is an existence set for any x2X there exists Qx2V such that for
any v2V

kv� Qxk4 kv� xk:
Hence

kTðvÞ � TðQxÞk4 kTðvÞ � TðxÞk
for any v2V. This means that TðVÞ is an existence set in TðXÞ. Applying the
above reasoning to TðXÞ and T�1 we get the first claim of our lemma.

Now suppose that V is one-complemented subspace of X. Take a projection
Po2PðX;VÞ, kPok ¼ 1. Set P1 ¼ T � Po � T�1. Then obviously P1 2PðTðXÞ;
TðVÞÞ, and kP1k ¼ 1. The converse is obvious. &

Theorem 2.2. Let V � c, V 6¼ f0g, be a linear subspace which is an existence
set. Then V is one-complemented in c.

Proof. Since by the Hahn-Banach theorem any one-dimensional subspace of c
is one-complemented, we can assume that dimðVÞ5 2. For each i2N set

Ci;1 ¼ fj2N; j 6¼ i; vi ¼ vj for any v2Vg;
Ci;2 ¼ fj2N; j 6¼ i; vi ¼ �vj for any v2Vg

and

Ci ¼ fig [ Ci;1 [ Ci;2:

Optimal and one-complemented subspaces 123



Observe that for any i; j2N,

Ci \ Cj ¼ ; or Ci ¼ Cj: ð2:1Þ
Moreover it is clear that

[1
i¼1

Ci ¼ N:

First assume that for any n2N

[n
i¼1

Ci 6¼N: ð2:2Þ

Define

i1 ¼ 1 ¼ minðC1Þ;
i2 ¼ minðN n C1Þ;

and

in ¼ min

�
N n

[n�1

j¼1

Cij

�
:

Note that, by (2.2), N n
Sn�1

j¼1 Cij 6¼ ;, so the above definition is correct. Put

N1 ¼ fn2N : cardðCinÞ<1g:

Since V � c, N1 ¼ N or there exists exactly one no2N such that

N1 ¼ N n fnog: ð2:3Þ
Set

V1 ¼ fx2 c : there exists v2V; xj ¼ vij for j2N1g: ð2:4Þ

Note that for any x2V1 there exists exactly one v2V such that (2.4) is satisfied.
Let us denote it by Lx. Observe that L is a linear isometry between V1 and V equal
to the identity mapping if Ci ¼ fig for any i2N.

Now we show that V1 is an existence set in c. First we assume that N1 ¼ N.
Take x2 c. Define a sequence Tx by

TðxÞk ¼
xj; if k2Cij;1 [ fijg;
�xj if k2Cij;2:

�
ð2:5Þ

By (2.1), TðxÞ is properly defined. If N1 ¼ N n fnog (see (2.3)), we modify our
definition for k2Cino ;i, if card ðCino ;iÞ ¼ 1, for i ¼ 1 or i ¼ 2 setting

TðxÞk ¼ lim
n

xn: ð2:6Þ

By (2.2), (2.5) and (2.6) T is a linear isometry going from c into c. Observe that
T jV1

¼ L. Since V is an existence set in c, V ¼ TðV1Þ � TðcÞ is an existence set in
TðcÞ. By Lemma 2.1, V1 ¼ T�1ðVÞ is an existence set in c. &
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Now we consider two cases.
Case I. For any i2N there exists v2V1 and w2V1 with vi 6¼ limnvn and

wi 6¼ � limnwn. We show that V1 is a weakly separating subspace of c. Note that
c is isometric to CðEÞ, where E ¼ f0; 1=n : n2Ng and an isometry I : c ! CðEÞ
is given by:

ðIxÞð0Þ ¼ lim
n
ðxÞ and ðIxÞð1=nÞ ¼ xn:

Hence it is enough to show that IðV1Þ is a weakly separating subspace of CðEÞ.
To do this, we apply Theorem 1.8. Take any t1; t2 2�ðV1Þ, (see Theorem 1.8)
t1 6¼ t2. If ti 6¼ 0 for i ¼ 1; 2, by the construction of V1, there exists v1 2V1,
such that

Iðv1Þðt1Þ 6¼ Iðv1Þðt2Þ
and v2 2V1 with

Iðv2Þðt1Þ 6¼ �Iðv2Þðt2Þ:

If t1 ¼ 0 or t2 ¼ 0, we can find v1 2V1 and v2 2V1 satisfying the above conditions,
because we consider the Case I. By Theorem 1.8, IðV1Þ is a weakly separating
subspace of CðEÞ and consequently V1 is a weakly separating subspace of c. By
Theorems 1.3, 1.7 and Lemma 2.1;V ¼ TðV1Þ is one-complemented in TðcÞ. Let
P1 2PðTðcÞ;VÞ be a projection of norm one. Set

Q1 ¼ P1 � T � R;
where

Rx ¼ ðxi1 ; xi2 ; . . .Þ
for x2 c and i1; i2; . . . 2N1. It is clear that kQ1k4 1. Since RjV ¼ T�1jV ¼ L�1

and T jV1
¼ L, Q1 is a norm-one projection belonging to Pðc;VÞ, which completes

our proof in this case.
Case II. There exists i2N such that for any w2V1 wi ¼ limn wn or there exists

i2N such that for any w2V1 wi ¼ � limn wn. By definition of V1, there exists
exactly one i2N satisfying the above condition. Without loss of generality,
we can assume that i ¼ 1 and that for any w2V, w1 ¼ limn wn. Let S : c ! c
be given by:

SðxÞ ¼ ðlim
n

xn; xÞ: ð2:7Þ

Note that V1 � SðcÞ. Set

V2 ¼ fðv2; . . .Þ : v ¼ ðv1; v2; . . .Þ2V1g:

It is clear that V1 ¼ SðV2Þ. Since V1 is an existence set in c, and V1 � SðcÞ, V1 is an
existence set in SðcÞ. By Lemma 2.1, V2 is an existence set in c. Reasoning as in
the Case I, we get that V2 is a weakly separating subspace of c. By Theorems 1.3
and 1.7 there exists P2 : c ! V2, a linear projection of norm one. Define R1 : c !
V1 by

R1ðxÞ ¼ ðS � P2Þðx2; . . .Þ:
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It is clear that kR1k ¼ 1, R1ðcÞ � V1 and R1jV1
¼ idV1

. Hence V1 is one-comple-
mented in c. Reasoning as in the Case I, we get that V is one-complemented in c.
This completes the proof of our theorem under assumption (2.2).

If (2.2) is not satisfied, without loss of generality, we can assume that

N ¼
[n
j¼1

Cij ;

where 1 ¼ i1 < i2 < ; . . . ; < in and Cij \ Cik ¼ ; for j 6¼ k. Let T : lðnÞ1 ! c be de-
fined by (2.5) and (2.6). Note that V � TðlðnÞ1 Þ. Let V1 ¼ T�1ðVÞ. Reasoning as in
the first part of the proof, we get that V1 is an existence set in lðnÞ1 and V1 is a
weakly separating subspace of lðnÞ1 . By Theorems 1.3 and 1.7 there exists a norm-
one projection P3 2PðlðnÞ1 ;V1Þ. Set

Q2 ¼ T � P3 � R:

Here R : c ! lðnÞ1 is given by

Rx ¼ ðxi1 ; . . . ; xinÞ:

Since RjV ¼ T�1jV , Q2 2Pðc;VÞ and kQ2k ¼ 1. The proof is complete. &

In an analogous way we can prove

Theorem 2.3. Let V � co, V 6¼ f0g, be a linear subspace which is an existence
set. Then V is one-complemented in co.

Now we consider the case X ¼ l1.

Theorem 2.4. Let V � l1, V 6¼ f0g, be a linear subspace, which is an existence
set. Then V is one-complemented in l1.

Proof. Set

suppðVÞ ¼
[
v 2 V

suppðvÞ: ð2:8Þ

Without loss of generality we can assume that suppðVÞ ¼ N: We show that
GV ;1 ¼ GV (see (1.1) and (1.8)). Since ðl1Þ� ¼ l1, v2GV ;1 if and only if
suppðvÞ ¼ suppðVÞ ¼ N. Hence v2GV . By Theorems 0.8, 1.3 and 1.7, V is one-
complemented in l1. &

Now we consider the case of Musielak-Orlicz sequence spaces equipped with
the Luxemburg norm (see (0.2)). For a linear subspace V � l� (see (0.1)), n2N
and v2V set

InðvÞ ¼ vn: ð2:9Þ

Notice that In2V� for any n2N. We start with

Lemma 2.5. Let V � h� (see (0.3)) be a linear subspace. Assume that
suppðVÞ ¼ N. Let v ¼ ðv1; v2; . . .Þ2GV ;1, (see (1.8)), kvk ¼ 1. If v2GV ;1 n GV ,
then there exist no2N such that v is a norming point for a functional Jno ¼
Ino=kInok and �no is not differentiable at vno ¼ kInok.

126 G. Lewicki and G. Trombetta



Proof. Take v2GV ;1 n GV with kvk ¼ 1. Hence there exists f1; f2 2ðl�Þ�, sup-
porting functionals for v, such that f1jh� 6¼ f2jh� . Since the standard unit vectors ei
form a Schauder basis of h�, f1ðenoÞ 6¼ f2ðenoÞ for some no2N. By Theorem 0.3,
fi is a regular functional for i ¼ 1; 2. Moreover f1 ¼ fz1 and f2 ¼ fz2 , where for
i ¼ 1; 2 and any j2 suppðziÞ

zij ¼ dij

�� X
k 2 suppðziÞ

dikxk

�
:

Here dij 2��jðvÞ for any j2 suppðziÞ is so chosen thatX
k 2 suppðziÞ

dkxk<1:

Since f1ðenoÞ 6¼ f2ðenoÞ, no2 suppðz1Þ [ suppðz2Þ. Replacing f1 by ðf1 þ f2Þ=2, if
necessary, we can assume that no2 suppðz1Þ \ suppðz2Þ and d1

no
6¼ d2

no
. Hence �no

is not differentiable at vno , as required. Note that for any y2 l�,

f1ðyÞ ¼
� X

n 2 suppðz1Þ;n 6¼ no

d1
nyn þ d1

no
yno

��� X
n 2 suppðz1Þ

d1
nvn

�
:

Now, define for y2 l�,

g2ðyÞ ¼
� X

n 2 suppðz1Þ;n 6¼ no

d1
nyn þ d2

no
yno

��� X
n 2 suppðz1Þ;n 6¼ no

d1
nvn þ d2

no
vno

�
;

By Theorem 0.3, g2 is a supporting functional for v. Since v2GV ;1, f1jV ¼ g2jV . Hence
no2 suppðvÞ. If not, since suppðVÞ¼N, there exists w2V such that wno 6¼0. Hence

f1ðwÞ � g2ðwÞ ¼ ðd1
no
� d2

no
Þwno

�� X
n 2 suppðz1Þ;n 6¼ no

d1
nvn

�
6¼ 0;

a contradiction.
Now we show that f1jV ¼ Jno . This is obvious if suppðvÞ ¼ fnog. So assume

that suppðvÞ 6¼ fnog. If f1jV 6¼ Jno , then there exists w2V such that f1ðwÞ 6¼ 0 and
InoðwÞ ¼ 0. Hence

f1ðwÞ ¼
� X

n 2 suppðz1Þ;n 6¼ no

d1
nwn

��� X
n2 suppðz1Þ

d1
nvn

�
;

and

g2ðwÞ ¼
� X

n 2 suppðz1Þ;n 6¼ no

d1
nwn

��� X
n 2 suppðz1Þ;n 6¼ no

d1
nvn þ d2

no
vno

�
:

Since vno 6¼ 0 and d1
no
6¼ d2

no
, f1ðwÞ 6¼ g2ðwÞ; a contradiction. To end the proof,

note that

1 ¼ f1ðvÞ ¼ JnoðvÞ ¼ vno=kInok;
which gives vno ¼ kInok. The proof is complete. &
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We also need the following very simple

Lemma 2.6. h� is contained in co.

Proof. Assume that h� is not a subset of co. Fix z ¼ ðz1; z2; . . .Þ2h� n co.
Hence we can find d> 0 and a subsequence nk such that jznk j5 d. Set � ¼ 1=d.
Since �nð1Þ ¼ 1 for any n2N,

��ð�zÞ ¼
X1
n¼1

�nð�jznjÞ5
X1
k¼1

�nkð�jznk jÞ5
X1
k¼1

�nkð1Þ ¼ þ1:

Consequently, z 2= h�: a contradiction. &

Theorem 2.7. Let � be a Musielak – Orlicz function. Let V � h�, V 6¼ f0g, be
a linear subspace which is an existence set. Set

N1 ¼ fn2N : In 6¼ 0; �n is not differentiable at kInkg ð2:10Þ
and for any n2N1

Zn ¼ fv2SðVÞ : JnðvÞ ¼ ðIn=kInkÞðvÞ ¼ 1g: ð2:11Þ
Assume that for any n2N1, intðZnÞ with respect to SðVÞ is empty where for any
D � SðVÞ, intðDÞ denotes the interior of D with respect to SðVÞ. Here SðVÞ is
considered with the topology induced by the norm topology from h�. If
lim infn kInk> 0 or if there exist a> 0 and no2N such that �n are differentiable
in ð0; a�, for n5 no, then V is one-complemented in h�.

Proof. Note that, by the Hahn-Banach theorem, any one-dimensional subspace
of h� is one-complemented. Hence we can assume that dimV5 2. We will apply
Theorem 1.3. To do this, it is necessary to show that clðGVÞ ¼ V .

First we assume that suppðVÞ ¼ N. Since h� is separable, by Theorem 0.8,
clðGV ;1Þ ¼ V . To end the proof, we demonstrate that any v2GV ;1, can be approxi-
mated by elements belonging to GV . Fix v ¼ ðv1; v2; . . .Þ2GV ;1 n GV , kvk ¼ 1. By
Lemma 2.5, there exists no2N with Ino 6¼ 0, such that �no is not differentiable at
vno and v is a norming point for Jno. Set

Sk ¼ fw2SðVÞ : kw� vk4 1=kg: ð2:12Þ
Now we show that for any k2N there exists wk 2GV ;1 \ Sk, such that

wk 2=
[

j 2 N1;j4 k

ðZjÞ: ð2:13Þ

Indeed, if there exists k2N such that (2.13) is not satisfied for any w2GV ;1 \ Sk,
by Theorem 0.8,

Sk ¼ clðGV ;1 \ SkÞ ¼
[

j 2 N1;j4 k

ðZj \ SkÞ: ð2:14Þ

Since h� is a Banach space, and V is closed, Sk is a complete, metric space (with
respect to the norm topology). By the Baire Property and (2.14), intðZjÞ with
respect to SðVÞ is nonempty for some j2N1; a contradiction.

Now we show that for k sufficiently large there exists wk 2Sk \ GV satisfying
(2.13).
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First assume that there exist a> 0 and no2N such that �n is differentiable in
ð0; a� for any n5 no. Fix, for any k2N, wk 2ðGV ;1 \ SkÞ n

S
j 2 N1;j4 kðZjÞ. If there

exists a subsequence fnkg such that wnk 2=GV , by Lemma 2.5, wnk is a norming
point for some Jmk

. By (2.13), mk 5 nk and consequently mk ! þ1. Note that

j1 � Jmk
ðvÞj ¼ jJmk

ðwnk � vÞj4 kwnk � vk ! 0:

Since v2GV ;1 and v is a norming point for Jno, by Theorem 0.7 applied to fk ¼ Jmk
,

gk ¼ Jno , and V ,

Imk
=kImk

k ¼ Jmk
! Jno ¼ Ino=kInok: ð2:15Þ

weakly� in V�. Hence Jmk
ðvÞ ! JnoðvÞ ¼ 1. Consequently, since kImk

k4 1,

Imk
ðvÞ � kImk

k ¼ vmk
� kImk

k ! 0:

By Lemma 2.6, limn vn ¼ 0 which gives that kImk
k ! 0. Since there exist a> 0

and no2N such that �n is differentiable in ð0; a� for any n5 no, N1 is a finite set.
Hence for k5 ko�mk

is differentiable at kImk for m5 nko. By (2.13) and
Lemma 2.5, wk 2GV for k5 ko: a contradiction.

If lim inf kInk> 0, we proceed in the same way as above. Hence we have
proved that GV is a dense subset of V . By Theorem 1.3, V is one-complemented
in h�, which completes the proof in the case when suppðVÞ ¼ N.

If suppðVÞ 6¼N, set

X1 ¼ fx2h� : xi ¼ 0 for i 2= suppðVÞg:
Notice that V � X1. Since V is an existence set in h�, V is an existence set in X1.
Reasoning as in the the first part of the proof, we can show that V is one-
complemented in X1. Also X1 is one-complemented in h�. Indeed, a mapping
P : h� ! X1, defined by

ðPxÞk ¼
xk; if k2 suppðVÞ
0 if k 2= suppðVÞ

�

for x2h� is a norm-one projection from h� onto X1. Consequently, V is one-
complemented in h�. The proof is complete. &

Theorem 2.8. Let V � l
ðmÞ
� , V 6¼ f0g, be a linear subspace which is an exis-

tence set. Assume that for any n2N1, (see (2.10)) intðZnÞ with respect to SðVÞ is
empty. Then V is one-complemented in l

ðmÞ
� .

Proof. Goes in the same way as the proof of Theorem 2.7. &

Now we present some applications of Theorems 2.7 and 2.8.

Theorem 2.9. Assume that ðh�; k � k�Þ is a strictly convex space (compare with
Theorem 0.6). If there exist a> 0 and no2N such that �n are differentiable in
ð0; a� for n5 no then any subspace V � h�, V 6¼ f0g, which is an existence set is
one-complemented in h�. If ðlðmÞ� ; k � k�Þ is strictly convex, then any subspace
V � h�, V 6¼ f0g, which is an existence set is one-complemented in l

ðmÞ
� .

Proof. By Theorem 2.7, it is enough to show that intðZnÞ with respect to SðVÞ is
empty for any n2N1 (see (2.11)). But it follows immediately from the strict
convexity of h�. The case of l

ðmÞ
� follows from Theorem 2.8. &
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Corollary 2.10. Assume that an Orlicz space ðh�; k � k�Þ is a strictly convex
space (compare with Theorem 0.6). If there exists a> 0 such that � is differentia-
ble in ð0; a� then any subspace V � h�, V 6¼ f0g, which is an existence set is one-
complemented in h�.

Corollary 2.11. Assume that ðl�; k � k�Þ is a strictly convex, reflexive space
(compare with Theorem 0.5 and 0.6). If there exists a> 0 and no2N such that �n
are differentiable in ð0; a� for n5 no then any optimal subspace V � l�, V 6¼ f0g,
is one-complemented in l�.

Proof. Since l� is reflexive and strictly convex, by [4, Prop. 2], any optimal
subspace of l� is an existence set. Also by Theorem 0.5, l� ¼ h�. By Theorem 2.7,
V is one-complemented in l�. &

Now we present other applications of Theorem 2.7.

Theorem 2.12. Let � be a Musielak-Orlicz function such that �k are strictly
convex for k> ko. Set for any F2Sððl�Þ�Þ,

ZF ¼ fx2Sðh�Þ : FðxÞ ¼ 1g: ð2:16Þ

Fix x2ZF. Then dimðspanðZF � xÞÞ< ko. The same result holds true in l
ðmÞ
� .

Proof. Assume on the contrary, that dimðspanðZF � xÞÞ5 ko. Hence there
exists x1; . . . ; xkoþ1 2ZF such that yi ¼ xiþ1 � x1, i ¼ 1; . . . ; ko are linearly inde-
pendent. Note that by the definition of ZF,

1 ¼ F

�Xkoþ1

j¼1

xj=ðko þ 1Þ
�

¼
����
Xkoþ1

j¼1

xj=ðko þ 1ÞÞ
����
�

¼
X1
l¼1

�l

�Xkoþ1

j¼1

ðxj=ðko þ 1ÞÞl
�

4 ð1=ðko þ 1ÞÞ
Xkoþ1

j¼1

�X1
l¼1

�lððxjÞl
�

4 ð1=ðko þ 1ÞÞ
Xkoþ1

j¼1

��ðxjÞ ¼ 1: ð2:17Þ

Since for k> ko �k are strictly convex, by (2.17), ðxjÞl ¼ ðx1Þl for l> ko and
j ¼ 1; . . . ; ko þ 1. Hence for j ¼ 1; . . . ; ko,

yj ¼ xjþ1 � x1 ¼ ððxj � x1Þ1; . . . ; ðxj � x1Þko ; 0; . . . ; Þ:

Since yj, j ¼ 1; . . . ; ko are linearly independent,

detððyjÞkÞj;k¼1;...;ko
6¼ 0: ð2:18Þ

Because of (2.18) for any j ¼ 2; . . . ; ko there exists l2f2; . . . ; kog with ðxjÞl 6¼
ðx1ÞL. By (2.17), for any l ¼ 1; . . . ; ko, �l is an affine function in some interval
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El ¼ ½cl; dl�, cl< dl containing all the coordinates ðxjÞl, j ¼ 1; . . . ; ko þ 1. Assume
that for l ¼ 1; . . . ; ko þ 1 and x2El,

�lðxÞ ¼ alxþ bl:

By (2.17) for any j ¼ 1; . . . ; ko þ 1,

Xko
l¼1

alðxjÞl þ bl ¼ 1 �
X1

l¼koþ1

�lððx1ÞlÞ: ð2:19Þ

Since all the functions �l are even and strictly increasing in ½0;þ1Þ, al 6¼ 0 for
l ¼ 1; . . . ; ko. By (2.19) we get for j ¼ 1; . . . ; ko,

Xko
l¼1

alðyjÞl ¼ 0;

which contradicts (2.18).
In the case of l

ðmÞ
� the proof goes in the same manner, so we omit it. &

An easy consequence of Theorem 2.12 is

Corollary 2.13. Let � satisfy the assumptions of Theorem 2.12 with some
ko 5 1. Then for any subspace V � h� dimðVÞ5 ko þ 1 and for any n2
N intðZnÞ with respect to SðVÞ is empty. In particular if there exist a> 0 and
no2N such that �n are differentiable in ð0; a� for n5 no, then any subspace of
h� of dimension 5 ko þ 1 which is an existence set is one-complemented in l�.
Analogously, any subspace V � l

ðmÞ
� , dimðVÞ5 ko þ 1, which is an existence set in

l
ðmÞ
� is one-complemented in l

ðmÞ
� .

Proof. Fix V � h� with dimðVÞ5 ko þ 1. By Theorem 2.12, for any n2N, and
v2Zn, dimðspanðZnÞ � vÞ< ko. This means that for any n2N int ðZnÞ with respect
to SðVÞ is empty. By Theorem 2.7, V is one-complemented in h�. The case of l

ðmÞ
�

can be proved in the same manner. &

Remark 2.14. Note that co; c and l1 are non-smooth spaces. In general,
Musielak-Orlicz or Orlicz spaces h� and l

ðmÞ
� satisfying the requirements of

Theorem 2.7 and Theorem 2.8 are not smooth too (compare with Theorem 0.4).
Moreover, the spaces h� and l

ðmÞ
� considered in Corallary 2.13 are in general

neither strictly convex nor smooth (compare with Theorem 0.4 and 0.5). This
shows that Theorem 1.3, which proof is very similar to that of [4, Prop. 5], can
be applied in the non-smooth case in many concrete situations. Also, by Theorem
1.3, there exists unique projection of norm one onto any subspace V 6¼ f0g which
is an existence set satisfying the requirements of Theorems 2.7, 2.8 or the require-
ments of Corollary 2.13.
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