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Abstract. Let X be a real Banach space and let V C X be a closed linear subspace. In [4, Prop. 5] it
has been proven that if X is strictly convex, reflexive and smooth and V is an optimal subset of X then V
is one-complemented in X. In this note we would like to extend this result to non-smooth Banach spaces.
In particular, we show that any existence subspace of c,c,and /; is one-complemented. Also some
results concerning non-smooth Musielak-Orlicz sequence spaces equipped with the Luxemburg norm
will be presented.
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0. Introduction

Let X be a Banach space and let C C X be a non-empty set. A continuous map-
ping P: X — Cis called a projection onto C whenever P| =1d, thatis P> = P. Setting

Min(C) = {z€X : for every c€ C,x€X, if ||z —c|| = ||x — ¢|| then x = z},

we say that C C X is optimal if Min(C) = C. Observe that for any C C X,
C C Min(C). This notion has been introduced by Beauzamy and Maurey in [4],
where basic properties concerning optimal sets can be found.

A set C C X is called an existence set of best coapproximation (existence set
for brevity), if for any x€X, Rc(x) # (0, where

Re(x) ={deC:||ld—c| < |x — || for any c € C}.

This notion has been introduced in [5]. It is clear that any existence set is an
optimal set. The converse, in general, is not true. However, by [4, Prop. 2] if X
is one-complemented in X** and strictly convex, then any optimal subset of X is
an existence set in X. This, in particular, holds true for strictly convex spaces X,
such that X = Z* for some Banach space Z.

Existence and optimal sets have been studied by many authors from different
points of view, mainly in the context of approximation theory (see e.g. [1]-[5],
[71-[11], [13]-[15], [21], [27], [29], [30D.

The first author was supported by Polish State Committee for Scientific Research Grant KBN 1
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Recall that a closed subspace Vof a Banach space X is called one-complemen-
ted if there exists a linear projection of norm one from X onto V. Also there is a
large number of papers concerning one-complemented subspaces (see e.g. a survey
paper [28] and a recent paper [19]). It is obvious that any one-complemented
subspace is an existence set. The converse, in general, is not true. By a deep result
of Lindenstrauss [23] there exists a Banach space X and a linear subspace V of X,
codim(V) = 2, such that:

a) V is one-complemented in any hyperplane Y of X in which it is contained;
b) V is not one-complemented in X.

This fact together with the simple observation stated as Lemma 0.1 below,
gives an example of a subspace being an existence set which is not one-
complemented.

Lemma 0.1. Let X be a Banach space and let V C X,V #{0} be a linear
subspace. Then V is an existence set in X if and only if for any x€X \ 'V, there
exists Py, a linear projection from Z, onto V with ||Py|| = 1. Here Z, =V & [x],
where [x] denotes the linear space generated by x.

Proof. Assume that for any x € X \ V there exists P,, a linear projection from Z,
onto V with ||P,|| = 1. Fix z€Z, and v€ V. Note that

1Pxz = vl = [[Pe(z = 0) || < [lz = v]-

Hence P,z€Ry(z) and so V is an existence set in X. Now assume that V is an
existence set in X and fix x€ X \ V. Take any d € Ry(x). Since any z€Z, can
be uniquely expressed as z = ax + v for some v€V and a € R, we can define
P.:Z.— V by

Pz=ad+v.

It is easy to see that P, is a linear projection from Z, onto V. To show that
IIP:]| =1, fix y = ax + vE Z,, with a#0. Since d € Ry (x),

1Pyl = llad +of| = |aflld + v/all < |allx + v/all = [lax + o] = [yl
which completes the proof. ]

However, in [4] (see also [29, p. 162], where the case of contractive retractions
onto linear subspaces is considered) the following result has been proven.

Theorem 0.2 (see [4, Prop. 5]). Let V be a linear subspace of a smooth,
reflexive and strictly convex Banach space. If V is an optimal set then V is one-
complemented in X. If X is a smooth Banach space, then any subspace of X which
is an existence set is one-complemented. Moreover, in both cases a norm-one
projection from X onto V is uniquely determined.

The aim of this paper is to generalize the above result to the case of some non-
smooth, real Banach spaces. This can be treated as a partial answer concerning the
question from [4, p. 125] about generalizations of [4, Prop. 5] to the non-smooth
case. In particular, we show that in c, ¢, and /; any subspace which is an existence
set is one-complemented (see Theorems 2.2, 2.3 and 2.4). Next we demonstrate
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some results in the case of non-smooth Musielak-Orlicz sequence spaces equipped
with the Luxemburg norm.

Now we present some notions and results which will be used in this paper.

In the sequel by S(X) we denote the unit sphere in a Banach space X and by
S(X*) the unit sphere in its dual space. A functional f € S(X™) is called a support-
ing functional for x € X, if f(x) = ||x||. Analogously, a point x € S(X) is called a
norming point for f € X* if f(x) = ||f||. A point x €X is called a smooth point if it
has exactly one supporting functional. A Banach space X is called smooth if any
x€S8(X) is a smooth point.

By ext(X)we denote the set of all extreme points of S(X). A Banach space X is
called strictly convex if ext(X) = S(X).

If V is a linear subspace of a Banach space X, by (X, V) we will denote the
set of all linear, continuous projections from X onto V.

Now we present some introductory facts on Musielak-Orlicz sequence spaces.
A function ¢ : R — [0, 400) is said to be an Orlicz function if $(0) =0, ¢(1) >0
for some >0, ¢ is even and convex. By ¢™ we denote its conjugate function in
the sense of Young, that is

¢* (1) = sup{uv — 4 (v)},
v>0

for u€ R and we notice that ¢* is an extended real-valued convex function.
If ¢p(u) = (1/p)u?, 1<p<oo, then ¢*(u) = (1/p')u”, where 1/p+1/p' = 1.
Further, a sequence ® = (¢,) of Orlicz functions ¢, will be called a Musielak-
Orlicz function whenever ¢,(1) = 1 for every n€ N. By ®* = (¢) we will de-
note its conjugate function.

Let [, denote the space of all real-valued sequences. With each Musielak-
Orlicz function ® we can associate a mapping pg : [, — [0, 00| defined by

o) = 3 ullml)
n=1

where x = (x,) €1,. Given a Musielak-Orlicz function ®, let I3 denote the corre-
sponding Musielak-Orlicz space, that is

ls = {x€l, : lim po(x) = 0}. (0.1)

If a sequence ® = (¢,) is constant, that is ¢, = ¢ for every n€ N, then Iy is an
Orlicz sequence space and further it will be denoted by 4. The space Iy equipped
with the Luxemburg norm

Il = el = inf{A> 02 po(x/A) < 1} 0.2)

is a Banach space.

Observe that the assumption ¢,(1) = 1 for every n € N is not a real restriction
on Musielak-Orlicz function ®. In fact, for every sequence ® = (¢,), where ¢, are
Orlicz functions, there exists a function ¥ = (1),,) with ¢),,(1) = 1 and such that
is isometric to ly. It is enough to take 1, (1) = ¢,(ant), where ¢,(a,) = 1 for every
neN.
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We will also consider here the finite dimensional spaces lfb’"), defined on R™
analogously as /p. The space lg”) can be identified with the subspace of Ig con-
sisting of all x = (x,) €l such that x, =0 for all n = m + 1.

An important subspace of g, called the subspace of finite elements and denoted
by hg is defined as

he = {x€lg : ps(Ax) < oo for any > 0}. (0.3)
It is well known that hg is a closed separable subspace of /s with the Schauder
basis consisting of the standard unit vectors ¢; = (0,...,1;,0,...). It is easy to see

that for every x € hg, ||x|| = 1 if and only if pg(x) = 1. Moreover, hp = g if and
only if either the dimension of /g is finite or ® satisfies a growth condition called
6, [22, 25], that is there exist K, 6 >0 and a nonnegative sequence (c,) C lysuch
that for every n€ N and every > 0

On(2t) < Ky (1) + cn, (0.4)

whenever ¢, (1) < 6.
Recall that for every y € /3-, the functional
f}(x) = anynv X = (X,,) 61@,

n=1

is bounded on (I, || ||¢)and is called a regular functional. We denote by Ry the
set of all regular functionals on /3. The spaces Ry and lg- are order isomorphic
[see e.g. 31] and so by usual identification we often write f, = y. More information
on Musielak-Orlicz spaces can be found in [6], [16—18], [20], [22], [25], [26],
[31], [32]. The following description of supporting functionals can be deduced
from [17, Lemma 1.7 and Theorem 1.9]. Set for any i€ N, and x€lg

A®;(x) = [¢; (x1), &7 (x1)], (0.5)
if x; > 0 and

A®;(x) = [¢7 (x1), &7 (x:)], (0.6)
if x; < 0. Here for any i € N and x € R we donote by ¢; (x) (¢; (x), resp.) the right-

hand side (the left hand-side, resp.) derivative of ¢; at x. Also for any sequence
x = (x1,x2,...) define

supp(x) = {ie N : x; #0}.

Theorem 0.3. Let ® = (¢,) be a Musielak-Orlicz function and let x =
(x1) € ha, ||x||¢ = 1. Then any supporting functional f of x in ly (with respect to
|l - lo) is a regular functional. Moreover, a regular functional f = f. determined by
z€lyx is a supporting functional for x if and only if

a) sup {pa(y) : [[¥lls < 1,supp(y) C supp(z)} = 1;

b) for any i€ supp(z)
3 = dl/( Z djxj)a
(2)

J € supp

where d; € A®;(x) for any i€ supp(z) and 3, ¢ g i < 00.
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From [17, Theorem 3.1] we can easily obtain

Theorem 0.4. (hq, || - ||g) is smooth if and only if ¢, is differentiable in (—1,1)
for any n€ N. Since ¢, is an even and convex function for any n € N, this implies
that (¢,)'(0) = 0 for any n€ N.

Also we need the following

Theorem 0.5. [22, p. 148] (s, | - |lo) is reflexive if and only if ® and ®*
satisfy the 6, condition, that is if and only if log = he and lo- = he-.

In the sequel we will apply the following results. The next one can be easily
deduced from [20, Theorem 3] (see also [18, Theorem 2.3] in the case of Orlicz
sequence spaces hy determined by ¢ which does not satisfy the é, condition).
Recall that a convex function f : R — R is called strictly convex in [a,b] if for
any x,y € [a,b], x#y and a € (0, 1),

flox + (1 = a)y) <af(x) + (1 = a)f (y).
Theorem 0.6. Set for any ne N,
E, ={x€[0,1),p(ax + (1 — a)y) = agu(x) + (1 — a)¢u(y)
for some y>x and 0<a<1}U{1},

F,={x€[0,1] : ¢n(x) < 1/2}

and
a, = inf{¢,(x) : x€E,}.

Then (hg, || - ||g) is strictly convex if and only if

a) there exists at most one n € N such that ¢, is not strictly convex on F,; and
b) for any me N, m#n, ¢, is strictly convex on {x€R: ¢, (x) <1 —a,}.

In particular, if all {‘uncnons ¢n are strictly convex in [0, ¢,1([0,1])] = [0, 1]
then (ho, | - ||p) and (I, || - |l¢) are strictly convex.

An Orlicz space (ho, |- 1l4) or (1 f/) ), | - [l4) for m = 3 is strictly convex if and
only if ¢ is strictly convex in the interval [0, uo] where ¢(u,) = 1/2.

Theorem 0.7 (The Smulian theorem) [see e.g. 12, p. 243]. Assume X is a
Banach space and let x € S(X) be a smooth point. If f,, g, € S(X™) are such that
fu(x) — 1 and g,(x) — 1, then f, — g, — 0 weakly* in X*.

Theorem 0.8 (The Mazur theorem) [see e.g. 12, p. 248]. Let X be a separable
Banach space. Then the set of all smooth points of X is a dense Gs subset of X.
1. General results

We start with

Lemma 1.1. Let X be a Banach space. For n€ N, let x, € X and ||x, — x|| — 0
for some x€X. For each n€N fix f, € S(X™*) with f,(x,) = ||xa||. Set for neN

Ay =cl({fx : k =n}),
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where the closure is taken with respect to the weak-* topology in X*. Let
FeA{fn}) = N2 An- Then f(x) = ||x|| and moreover ||f|| =1 for x#0.

Proof. If x =0, then obviously f(x) = |[x|| for any feA({f,}). If x#0,
then x,/||x,|| — x/||x||. Hence without loss of generality we can assume that
Ilx.|| = ||x]| = 1. Let f €A({f,}). By the Banach-Alaoglu Theorem ||f|| < 1. Fix
€>0 and n, €N with ||x, — x|| < €/2 for n = n,. Also there exists k > n, with
|(fi — f)x| < €/2. Note that

11— fO)] < fieloe = 21 + [ = )x] < Wellllee — xI| + (e = x| < e
Consequently, f(x) = ||x|| = 1 = ||f]|, as required. O

Lemma 1.2. Let V C X be a linear subspace of a Banach space X. Take

x,y €X satisfying

[y = ol < llx —vll
for any veV. Then for any veV there exists f,€S(X™), f,(v) = |v| and
folx=y)=0.

Proof. Fix v € V. Without loss of generality, we can assume that v 0. Since V
is a linear subspace, for any k€ R

[y = kol] < [lx — ko]
Hence for any k #0,
[y/k = vl < [lx/k = v].
Let ke N\ {0}. Choose f; € S(X*) such that
Je(x/k —v) = [|lx/k — v]|.
Note that
Sely/k —v) < |ly/k — vl < [lx/k —v].
Hence fi(x/k — y/k) = 0, which gives
fily —=x) <0
for any k€N \ {0}. Observe that ||x/k —v— (—v)|| — 0. By Lemma 1.1 and
the Banach-Alaoglu Theorem there exists f € A({f¢}) such that f (—v) = [|v].
Since fi €A({fx}), fr(y —x) <0. For k€ Z\ N, by the above reasoning,
Ji(x/k —y/k) = 0, and consequently
Jely =x) = 0.
Again, by Lemma 1.1 and the Banach-Alaoglu Theorem, there exists /- € S(X™),
/- (=v) = ||v]| such that
f~(y—x)=0.

Iff_(y —x) =0orf(y — x) =0, the lemma is proved. In the opposite case, there
exists a € (0, 1) such that

af-(x—y)+ (1 —a)f (x—y)=0
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Set
fo=—(af~+ (1 —a)fy).
Obviously, ||fs|] =f:(v/]|v]]) =1 and f,(y — x) = 0. The lemma is proved. O

Theorem 1.3. Let X be a real Banach space and let V C X be a linear sub-
space. Assume that V is an existence set and V #{0}. Put

Gy = {veV \ {0} : there exists exactly one f € S(X*) : f(v) = ||o||}.  (1.1)
Assume that the norm closure of Gy in X is equal to V. Then there exists exactly
one projection P € #(X,V) such that ||P|| = 1.

Proof. Fix x€ X. Since V is an existence set, there exists y €V such that

Iy = oll < [lx =l

for any veV. By Lemma 1.2 applied to x and y, for any v€V there exists
fo €S(X*), fo(v) = ||v]|, such that

folx—y) =0. (1.2)

Now we show that there exists exactly one y € V satisfying (1.2) for any v € Gy.

Assume, on the contrary, that there exist y;, y, € V, y; # y; satisfying (1.2) for any
vE€ Gy. Since cl(Gy) =V, there exists {z,} C Gy with

[z = (1 = y2)[| = 0. (1.3)

By (1.2), for any neN there exists f, € S(X*) and f; € S(X*), with f;(z,) =
l|za|| for i = 1,2 such that fi(x — y;) = 0. Since z, € Gy, f! = f?. Hence for any
neN

fi(vi—y2) =0. (1.4)
Since ||z, — (i =)l = 0, and f(z,) = ||z

feAl{f,b)

, by Lemma 1.1, for any

o =y2) = Iyt = »l: (1.5)

By (1.4), f(y1 — y2) = 0, which gives, y; = y,; a contradiction.

Now, for any x€ X, let Px denote the only element ye V satisfying (1.2)
for any v€ Gy. We show that P is a linear mapping. To do this, fix xj,x; €X
and v € Gy. Note that f,(x; — Px;) =0 and f,(x — Px;) = 0, where f, denotes
the only supporting functional for v in X*. Consequently, for any v€ Gy,
ap,ap € R,

fv(alxl + arxp; — (a1PX1 + CQPXQ)) =0. (16)
Since for any x € X there exists exactly one element satisfying (1.2) for any v € Gy,
by (1.6),
P(a1x1 + agxg) = alP(xl) + LZQP(XQ),

which shows that P is a linear mapping. Taking v = 0 we get ||Px|| < ||x||. Since
Pv =vforany ve Vand V # {0}, we get ||P|| = 1. By the above proof there exists
exactly one projection P € 2 (X, V) of norm one. The proof is complete. O
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Corollary 1.4. Assume X is a smooth space. If a linear subspace V C
X,V #{0}, is an existence set then V is one-complemented in X.

Proof. Note that in our case Gy = V' \ {0}. Hence the statement follows im-
mediately from Theorem 1.3. O]

Corollary 1.5. Assume that X is a strictly convex Banach space such that X is
one-complemented in X**. (In particular, X can be a reflexive space or X = Z*
for some Banach space Z.) If a linear subspace V.C X, V # {0}, is an optimal set
satisfying the requirements of Theorem 1.3, then V is one-complemented.

Proof. By [4, Prop. 2], V is an existence set in X. By Theorem 1.3, V is one-
complemented in X. O]

Now we present another class of subspaces, which has been introduced in [33],
satisfying the assumptions of Theorem 1.3.

Definition 1.6. [33] Let X be a Banach space and let V C X be a linear sub-
space. V is called weakly separating if any g €ext(V*) has exactly one Hahn-
Banach extension f € S(X*).

Let us define
Gy = {veV\ {0} : there exists exactly one g€ S(V*),g(v) = |lv||}. (1.7)

Theorem 1.7. Let V C X, V#{0} be a separable, weakly separating sub-
space. Then the norm closure of Gy is equal to V.

Proof. Since V is separable, by Theorem 0.8 applied to V, the set Gy ; is dense
in V. To finish the proof, it is enough to show that Gy ; = Gy. Fix v€ Gy and
g € S(V*) satisfying g(v) = ||v]|. Since v€ Gy 1, g €ext(V*). Now we show that
there exists exactly one f € S(X™) such that f(v) = ||v||, which means that v € Gy.
Indeed, assume that there exist fi,f> €S(X™), fi #f> such that f;(v) = ||v|| for
i =1,2. Hence fi|,/(v) = ||v|/ffor i = 1,2. Since v€ Gy, fil, =/f|y, = g. Since
geext(V*), and V is weakly separating, f| = f>; a contradiction. It is obvious,
that Gy C Gy ;. The proof is complete. O

Now, after [24], we present some examples of weakly separating subspaces of
C(E), where E is a compact set and C(E) is the space of continuous, real-valued
functions defined on E equipped with the supremum norm. For € E, define
ie(C(E)" by:

1) =) (1.8)
for f € C(E). We need the following

Theorem 1.8. [24] A linear subspace V C C(E) is weakly separating if and
only if for any t1,t, €o(V), t1 #t,, there exist v1,v, €V such that

vi(t1) #vi(t2)

and

Uz(l‘l) 75 —Uz(tz).
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Here
o(V) ={t€E 1|, cext(V*)}.
Applying Theorem 1.8 one can easily show

Example 1.9 [24]. Let V C C(E) be a linear subspace such that 1€V and
hly #t|y, for any 11,1, €E, 1y #1,. Then V is weakly separating.

Recall that n-dimensional subspace V of C(E) is called a Haar subspace if and

only if for any #,...,1,€E, t;#1; for i#j the set {fi|y,...,5|,} is linearly
independent in V*.

Example 1.10 [24]. Let V C C(E) be a Haar subspace of dimension > 2. Then
V is weakly separating. Also any subspace W C C(E) containing two-dimensional
Haar subspace is weakly separating.

2. Particular cases

Now applying Theorem 1.3, we show that any linear subspace V # {0} of ¢
and ¢, which is an existence set must be one-complemented. To do this, we need a
well known

Lemma 2.1. Let X and Y be two Banach spaces and let T : X — Y be a linear
isometry. Let V. C X. Then V is an existence set in X if and only if T(V) is an
existence set in T(X). If V.C X, V#{0}, is a linear subspace then V is one-
complemented in X if and only if T(V) is one-complemented in T (X).

Proof. Since V is an existence set for any x € X there exists Qx € V such that for
any veV
l[o = Qx| < flo—x]|.
Hence
1T (v) = T(Qx)[| < [|T(v) = T(x)]]

for any v € V. This means that T(V) is an existence set in T(X). Applying the
above reasoning to 7'(X) and T~! we get the first claim of our lemma.

Now suppose that V is one-complemented subspace of X. Take a projection
P,e2?(X,V), |P,|| =1. Set Py =T oP,oT~'. Then obviously P;c2(T(X),
T(V)), and ||P,]| = 1. The converse is obvious. 0

Theorem 2.2. Let V C ¢, V # {0}, be a linear subspace which is an existence
set. Then V is one-complemented in c.

Proof. Since by the Hahn-Banach theorem any one-dimensional subspace of ¢
is one-complemented, we can assume that dim(V) > 2. For each i€ N set

Cii={jeN,j#i, vy =v; foranyveV},
Cip =1{jeN,j#i, vy =—v; forany veV}
and
Ci={i} UCi, UCis.
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Observe that for any i,j €N,
Ciij:@ or Ci:Cj. (21)

Moreover it is clear that

g
o
Il
Z

First assume that for any n€ N

Jc#N. (2.2)
i=1
Define
ii =1 =min(C),
i» = min(N\ C),
and

n—1
in = min (N \ U Cij)'
j=1

Note that, by (2.2), N\ U;?:ll C;, #0, so the above definition is correct. Put

Ny ={neN: card(C;) < 00}.
Since V C ¢, N; = N or there exists exactly one n, € N such that
Ny =N\ {n,}. (2.3)

Set

Vi = {x€c:there exists veV, x; = v;, forjEN;}. (2.4)
Note that for any x € V| there exists exactly one v € V such that (2.4) is satisfied.
Let us denote it by Lx. Observe that L is a linear isometry between V| and V equal
to the identity mapping if C; = {i} for any i€ N.

Now we show that V; is an existence set in c¢. First we assume that N; = N.
Take x € c. Define a sequence Tx by

)X, if ke Cij,l U {ij},
o ={%, fied 23

By (2.1), T(x) is properly defined. If Ny = N\ {n,} (see (2.3)), we modify our
definition for k€ C;, ;, if card (C;, ;) = oo, for i = 1 or i = 2 setting

T(x), = limx,. (2.6)
By (2.2), (2.5) and (2.6) T is a linear isometry going from c into c¢. Observe that

T|y, = L. Since V is an existence setin ¢, V = T(V;) C T(c) is an existence set in
T(c). By Lemma 2.1, V; = T~!(V) is an existence set in c. O
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Now we consider two cases.

Case 1. For any i€N there exists v€V, and weV; with v; # lim,v, and
w; # — lim,w,. We show that V; is a weakly separating subspace of c. Note that
¢ is isometric to C(E), where E = {0,1/n : n€ N} and an isometry [ : ¢ — C(E)
is given by:

(Ix)(0) = lilgn(x) and (Ix)(1/n) = x,.

Hence it is enough to show that /(V) is a weakly separating subspace of C(E).
To do this, we apply Theorem 1.8. Take any t;,1, € 0(V;), (see Theorem 1.8)
1 #t. If t;#0 for i = 1,2, by the construction of Vi, there exists v; € Vy,
such that

I(01) (1) #1(v1)(12)

and v, € V| with
I(v2)(t1) # —1(02)(12).

If1y =0ort, =0, we can find v; € V| and v, € V| satisfying the above conditions,
because we consider the Case I. By Theorem 1.8, I(V}) is a weakly separating
subspace of C(E) and consequently V; is a weakly separating subspace of c. By
Theorems 1.3, 1.7 and Lemma 2.1,V = T(V}) is one-complemented in T(c). Let
P, €?(T(c),V) be a projection of norm one. Set

Q1 =PioToR,
where
Rx = (x,-],xiz, .o )

for x€c and iy, iy,... €Nj. It is clear that ||Q| < 1. Since R|, =T !|, = L!
and Ty, = L, Q) is a norm-one projection belonging to #(c, V), which completes
our proof in this case.

Case I1. There exists i € N such that for any w € V| w; = lim,, w,, or there exists
i€ N such that for any we V| w; = —lim, w,. By definition of Vj, there exists
exactly one i€ N satisfying the above condition. Without loss of generality,
we can assume that i = 1 and that for any weV, w; =lim,w,. Let S:c — ¢
be given by:

S(x) = (limx,, x). (2.7)
Note that V; C S(c). Set
Vo= {(027"-) U= (D],Uz,-..)evl}.

It is clear that V; = S(V5). Since V] is an existence set in ¢, and V; C S(c), V; is an
existence set in S(c). By Lemma 2.1, V; is an existence set in ¢. Reasoning as in
the Case I, we get that V, is a weakly separating subspace of ¢. By Theorems 1.3
and 1.7 there exists P, : ¢ — V,, a linear projection of norm one. Define R; : ¢ —
Vi by

Rl(x) = (SOPQ)()CQ, .. )
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It is clear that ||R|| = 1, Ri(c) C Vi and R;|y, = idy,. Hence V; is one-comple-
mented in c. Reasoning as in the Case I, we get that V' is one-complemented in c.
This completes the proof of our theorem under assumption (2.2).

If (2.2) is not satisfied, without loss of generality, we can assume that

N = LnJ Cijv
J=1

= () for j#k Let T : 1) — ¢ be de-

where 1 =i <i<,..., <iyand C; N C;
fined by (2.5) and (2.6). Note that V C T(li"o)). Let V; = T~!(V). Reasoning as in

the first part of the proof, we get that V| is an existence set in lgg) and V] is a
weakly separating subspace of l(o'é)- By Theorems 1.3 and 1.7 there exists a norm-
one projection P3 € 2(1" V). Set

0, =ToP;0R.
Here R:c — l(o@ is given by
Rx = (xi,...,x;,).
Since R|, = T, 02 €2(c,V) and ||Q,|| = 1. The proof is complete. O
In an analogous way we can prove

Theorem 2.3. Let V C ¢,, V # {0}, be a linear subspace which is an existence
set. Then V is one-complemented in c,,.

Now we consider the case X = [;.

Theorem 2.4. Let V C [}, V #{0}, be a linear subspace, which is an existence
set. Then V is one-complemented in [;.

Proof. Set
supp(V) = | J supp(v). (2.8)
veV
Without loss of generality we can assume that supp(V) = N. We show that
Gy, =Gy (see (1.1) and (1.8)). Since (ll)>I< =lyx, v€Gy, if and only if
supp(v) = supp(V) = N. Hence v € Gy. By Theorems 0.8, 1.3 and 1.7, V is one-
complemented in /;. O]

Now we consider the case of Musielak-Orlicz sequence spaces equipped with
the Luxemburg norm (see (0.2)). For a linear subspace V C Ip (see (0.1)), ne N
and veV set

I,(v) = vy. (2.9)
Notice that I, € V* for any n€ N. We start with

Lemma 2.5. Let V C hg (see (0.3)) be a linear subspace. Assume that
supp(V) = N. Let v = (v1,02,...) €Gy, (see (1.8)), |[v]| =1. If veGy, \ Gy,
then there exist n, € N such that v is a norming point for a functional J,, =
L, /|, || and ¢, is not differentiable at v,, = ||I,,
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Proof. Take ve€ Gy \ Gy with |[v]| = 1. Hence there exists fi,f, € (I)*, sup-
porting functionals for v, such that f;| e 7 5l ny- Since the standard unit vectors e;
form a Schauder basis of hq, fi(en,) #f2(en,) for some n, € N. By Theorem 0.3,
f; is a regular functional for i = 1,2. Moreover f; = f.1 and f, = f,», where for
i = 1,2 and any j € supp(z')

=/ X am)
k € supp(z)

Here d]’f € A®;(v) for any j € supp(z’) is so chosen that

Z dix, < 00.

k € supp(z')

Since fi(e,,) #f>(en,), n, €supp(z!) Usupp(z?). Replacing f; by (fi +5)/2, if
necessary, we can assume that n, € supp(z') Nsupp(z*) and d, #d; . Hence ¢,
is not differentiable at v, , as required. Note that for any y € lg,

fiy) = < > d,iyn+d,ioyn,,) / < > divn>-
(=)

n € supp(z!).n#n, n € supp

Now, define for y € Iy,

g2(y> = < Z d;iyn +di,yn,,)/<
nF#n,

1 2
d,v, + dng v,,"> ,
n € supp(z!)

n € supp(z!),n#n,

By Theorem 0.3, g is a supporting functional for v. Since v € Gy 1, fi|, = &2|,,- Hence
n, € supp(v). If not, since supp(V) = N, there exists w € V such that w,, #0. Hence

A0 =) = @l ~ i, (5 diw) 20

n € supp(z!),n#n,

a contradiction.

Now we show that fi|,, = J,,. This is obvious if supp(v) = {n,}. So assume
that supp(v) # {n, }. If fi|,, #J,,, then there exists w € V such that f;(w) #0 and
I, (w) = 0. Hence

- (_5. o) /(5 %)
n € supp(z!),n#n, n € supp(z!)
and
g(w) = < Z diwn) / < Z d v, + d,zlovnn> .
n € supp(z!),n #n, n € supp(z),n#n,

Since v,, #0 and d},n 7éd30’ fi(w) #g2(w); a contradiction. To end the proof,
note that

1=£i(v) = Ju,(v) = vs,/
. The proof is complete. O

|1, |

)

which gives v, = |

I,
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We also need the following very simple
Lemma 2.6. hg is contained in c,.

Proof. Assume that hg is not a subset of ¢,. Fix z = (z1,22,...) €hs \ ¢o-
Hence we can find d >0 and a subsequence n; such that |z, | > d. Set A\ = 1/d.
Since ¢, (1) =1 for any ne N,

pa(Az) = Z(an(MZnD = Z‘bm(ManD = Z‘ﬁm(l) = +00.
n=1 k=1 k=1

Consequently, z ¢ hg: a contradiction. ]

Theorem 2.7. Let ® be a Musielak — Orlicz function. Let V C hg, V # {0}, be
a linear subspace which is an existence set. Set

Ny ={neN:1,#0, ¢, is not differentiable at ||I,,|| } (2.10)

and for any n € Ny
Z, ={vesS(V) : J,(v) = (L,/||L])(v) = 1}. (2.11)
Assume that for any n € Ny, int(Z,) with respect to S(V) is empty where for any
D C S(V), int(D) denotes the interior of D with respect to S(V). Here S(V) is
considered with the topology induced by the norm topology from hg. If

liminf, ||I,|| >0 or if there exist a>0 and n, € N such that ¢, are differentiable
in (0,al, for n = n,, then V is one-complemented in hg.

Proof. Note that, by the Hahn-Banach theorem, any one-dimensional subspace
of hg is one-complemented. Hence we can assume that dim V > 2. We will apply
Theorem 1.3. To do this, it is necessary to show that cl(Gy) = V.

First we assume that supp(V) = N. Since hg is separable, by Theorem 0.8,
cl(Gy ;) = V. To end the proof, we demonstrate that any v € Gy ;, can be approxi-
mated by elements belonging to Gy. Fix v = (v, 02,...) €Gy 1 \ Gy, |[v]| = 1. By
Lemma 2.5, there exists n, € N with I,, # 0, such that ¢, is not differentiable at
vy, and v is a norming point for J,,. Set

Se={weS(V):|lw—v| < 1/k}. (2.12)
Now we show that for any k€ N there exists wke Gy,1 N Sk, such that
we | @) (2.13)
JENIj<k

Indeed, if there exists k € N such that (2.13) is not satisfied for any we€ Gy 1 N S,
by Theorem 0.8,

Sc=cGvans) = |J @ns. (2.14)
JENIj <k

Since hg is a Banach space, and V is closed, S is a complete, metric space (with
respect to the norm topology). By the Baire Property and (2.14), int(Z;) with
respect to S(V) is nonempty for some j € N;; a contradiction.

Now we show that for k sufficiently large there exists wk € S N Gy satisfying
(2.13).
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First assume that there exist ¢ > 0 and n(, € N such that ¢, is differentiable in
(0, a] for any n > n,. Fix, for any k€ N, w* € (Gy NS \U; EN]J<k( ;). If there
exists a subsequence {n;} such that w* ¢ Gy, by Lemma 2. 5, w™ is a norming
point for some J,,. By (2.13), m; > n; and consequently my, — +o0o. Note that

1= T (V)] = Yo, (0" = 0)] < [, = 0f] = 0.

Since v € Gy 1 and v is a norming point for J,, , by Theorem 0.7 applied to fi = J,,,,
gk =y, and Vv,

Lo /I | = T = I, = In, /I, |- (2.15)
weakly™® in V*. Hence J,, (v) — J,, (v) = 1. Consequently, since |1, || <1
I (0) = M || = Oy = [ I || = O

By Lemma 2.6, lim, v, = 0 which gives that ||7,, || — 0. Since there exist a >0
and n, € N such that ¢, is differentiable in (0, a| for any n > n,, N is a finite set.
Hence for k > k,¢,, is differentiable at ||I,| for m > n;,. By (2.13) and
Lemma 2.5, w€ € Gy for k > k,: a contradiction.

If liminf ||Z,]| >0, we proceed in the same way as above. Hence we have
proved that Gy is a dense subset of V. By Theorem 1.3, V is one-complemented
in hg, which completes the proof in the case when supp(V) = N.

If supp(V) #N, set
X, ={x€hg :x;, =0 fori¢supp(V)}.

Notice that V C X;. Since V is an existence set in hg, V is an existence set in X;.
Reasoning as in the the first part of the proof, we can show that V is one-
complemented in X;. Also X; is one-complemented in hy. Indeed, a mapping
P : hy — Xi, defined by

[ x, if kesupp(V)
(Px); = {0 if k ¢supp(V)

for x€ hg is a norm-one projection from hg onto X;. Consequently, V is one-
complemented in hg. The proof is complete. O

Theorem 2.8. Let V C l(l'f1 , V#{0}, be a linear subspace which is an exis-
tence set. Assume that for any n € Ny, (see (2.10)) int(Z,) with respect to S(V) is
empty. Then V is one-complemented in l

Proof. Goes in the same way as the proof of Theorem 2.7. ]
Now we present some applications of Theorems 2.7 and 2.8.

Theorem 2.9. Assume that (he, || - ||4) is a strictly convex space (compare with
Theorem 0.6). If there exist a>0 and n, € N such that ¢, are differentiable in
(0,a] for n = n, then any subspace V C hg, V # {0}, which is an existence set is
one-complemented in he. If (I SI,m - llg) is strictly convex, then a (y subspace
V C he, V#{0}, which is an existence set is one-complemented in I

Proof. By Theorem 2.7, it is enough to show that int(Z,) with respect to S(V) is
empty for any n€N; (see (2.11)). But it follows immediately from the strict
convexity of hg. The case of lf;) follows from Theorem 2.8. O
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Corollary 2.10. Assume that an Orlicz space (hy, || - ||¢) is a strictly convex
space (compare with Theorem 0.6). If there exists a > 0 such that ¢ is differentia-
ble in (0,a] then any subspace V C hy, V # {0}, which is an existence set is one-
complemented in hg.

Corollary 2.11. Assume that (lp, || - ||g) is a strictly convex, reflexive space
(compare with Theorem 0.5 and 0.6). If there exists a >0 and n, € N such that ¢,
are differentiable in (0, a) for n = n, then any optimal subspace V C lgp, V # {0},
is one-complemented in lg.

Proof. Since lg is reflexive and strictly convex, by [4, Prop. 2], any optimal
subspace of /3 is an existence set. Also by Theorem 0.5, I = hg. By Theorem 2.7,
V is one-complemented in /g. O]

Now we present other applications of Theorem 2.7.

Theorem 2.12. Let ® be a Musielak-Orlicz function such that ¢y are strictly
convex for k> k,. Set for any F € S((Is)"),

Zr = {x€S(he) : F(x) = 1}. (2.16)
Fix x € Zp. Then dim(span(Zr — x)) <k,. The same result holds true in lEI',").

Proof Assume on the contrary, that dim(span(Zp —x)) > k,. Hence there
exists x', ..., x5! € Zp such that y' = x™' —x!, i =1,...,k, are linearly inde-
pendent. Note that by the definition of Zp,

ko+1 )

— F(Zx//(ko + 1))
j=1

ko+1

fo/(ko +1)) .

ko+1 %)
1/ k()+ Z(Z¢l xj )

1 =1

:i@(% () (ko + 1)) >

J=1

< (1/(ko+1 ZP@ (2.17)
Since for k >k, ¢y are strictly convex, by (2.17), (+¥), = (x'), for >k, and
j=1,...,k,+ 1. Hence forj=1,...,k,,
yo =2y = (¢ —xl)l,...,(xj—xl)ko,O,...,).
Since y/, j = 1,...,k, are linearly independent,
det((Y) )1y, 0. (2.18)

Because of (2.18) for any j =2,...,k, there exists [€{2,... k,} with (¥/),#
(x')L. By (2.17), for any [ = 1,...,k,, ¢; is an affine function in some interval
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E; = [c1,d)], ¢; < d; containing all the coordinates (¥/),, j=1,...,k, + 1. Assume
that for/=1,...,k,+ 1 and x€ E,,

¢1(x) =aix + b;.
By 2.17) forany j=1,...,k, + 1,

als)+h=1- 3 ail(x),). (2.19)

Since all the functions ¢; are even and strictly increasing in [0, +00), a; #0 for
I=1,...,k,. By (2.19) we get forj = 1,...,k,,

k()

> a), =0,
=1

which contradicts ((2.18).
In the case of [y ) the proof goes in the same manner, so we omit it. O

An easy consequence of Theorem 2.12 is

Corollary 2.13. Let ® satisfy the assumptions of Theorem 2.12 with some
ko = 1. Then for any subspace V C hedim(V) =k, + 1 and for any né€
Nint(Z,) with respect to S(V) is empty. In particular if there exist a>0 and
n, € N such that ¢, are differentiable in (0,a] for n = n,, then any subspace of
he of dimension = k, 4+ 1 which is an existence set is one-complemented in lg.
Analogously, any subspace V C l,(l)m), dim(V) = k, + 1, which is an existence set in
Iy is one-complemented in Iy .

Proof. Fix V C hg with dim(V) > k, + 1. By Theorem 2.12, for any n € N, and
vE€Z,, dim(span(Z,) — v) < k,. This means that for any n € N int (Z,) with respect
to S(V) is empty. By Theorem 2.7, V is one-complemented in 4. The case of lq)m
can be proved in the same manner. O

Remark 2.14. Note that c¢,,c and [; are non-smooth spaces. In general,
Musielak-Orlicz or Orlicz spaces hg and lfl,m) satisfying the requirements of
Theorem 2.7 and Theorem 2.8 are not smooth too (compare with Theorem 0.4).
Moreover, the spaces hg and lg"> considered in Corallary 2.13 are in general
neither strictly convex nor smooth (compare with Theorem 0.4 and 0.5). This
shows that Theorem 1.3, which proof is very similar to that of [4, Prop. 5], can
be applied in the non-smooth case in many concrete situations. Also, by Theorem
1.3, there exists unique projection of norm one onto any subspace V # {0} which
is an existence set satisfying the requirements of Theorems 2.7, 2.8 or the require-
ments of Corollary 2.13.
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