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Abstract. A non-regular inductive sequence of non-archimedean reflexive Fréchet spaces is con-
structed. On the other hand, it is proved that every inductive sequence of reflexive Banach spaces over a
spherically complete field is regular. Also, some applications are given.
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Introduction

A very interesting class of locally convex spaces over non-archimedean valued
fields, because of its influence in the applications, are the locally convex inductive
limits. We point out the central role that they play in the definition of a p-adic
Laplace and Fourier Transform given in [6] and [7] respectively and in the index
theory of p-adic differential equations (see e.g. [1]—[4] and [12]). The last of these
references shows also the influence of these inductive limits in the study of the
p-adic Monsky-Washnitzer cohomology.

Our main goal in this paper is to construct a non-regular inductive sequence of
non-archimedean reflexive Fréchet spaces. This is the p-adic counterpart of the
classical one of [11], which has a typically archimedean character, forcing us to use
a p-adic machinery for our construction. Further, some applications are given.

On the other hand, a well-known classical result assures that every inductive
sequence of real or complex reflexive Banach spaces is regular (see e.g. [10]). How-
ever, in the non-archimedean case, the validity of this result depends on the ground
field. In fact, here we prove that it remains true for LB-spaces over spherically com-
plete fields but fails when the spherical completeness of the ground field is dropped.

1. Preliminaries

Throughout this paper K := (K, | - |) is a non-archimedean non-trivially valued
field that is complete with respect to the metric induced by the valuation | - |. We
assume that K contains the field Q, of the p-adic numbers (p a prime number) and
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that the valuation on K extends the p-adic one, | - | ,» on Q,. We denote by Z,, the
set {x€Q, : |x|, < 1} of the p-adic integers.

For fundamentals on normed and locally convex spaces over K we refer to [13]
and [15] respectively. For the notions of (quasi)completeness and sequential com-
pleteness (which are the natural translations of the classical ones given in [9]) see e.g.
[5]. Recall that completeness = quasicompleteness = sequential completeness.

Let E := (E, 7) be a locally convex space (all the locally convex spaces con-
sidered in this paper are over K). For a subset A of E, E\A := {x€E, x¢gA}, A
is the closure of A in E, and 7]A is the restriction of 7 to A. The set A is called
absolutely convex if 0€A and x,y€A, A\ pu€K, max(|\|,|u|) <1 implies
Ax 4 py € A; compactoid if for every zero neighbourhood U in E there is a finite
set B C E such that A C U + aco B, where aco B is the absolutely convex hull of
B. E is nuclear if for every continuous seminorm p on E there is a continuous
seminorm g on E, g = p, such that the canonical map E, — E, sends the unit ball
of E, into a compactoid in E, (by E, and E, we denote the normed spaces
associated to p and g respectively). E is semi-Montel if every bounded subset of
E is a compactoid. Nuclear spaces are semi-Montel.

A continuous seminorm p on E is called polar if p = sup{|v| : vEE', |v| < p}
(E' is the topological dual of E). E is polar if its topology is generated by a family
of polar seminorms; of countable type if for every continuous seminorm p on E the
associated normed space E, is of countable type (recall that a normed space is said
to be of countable type if it is the closed linear hull of a countable set). Nuclear
spaces are of countable type. If K is spherically complete every locally convex
space is polar. For any K, spaces of countable type are polar. The weak topology of
a Hausdorff polar space is also Hausdorff. However, there exist Banach spaces
over non-spherically complete fields with a trivial topological dual, see [13].

E is polarly barrelled if every polar absorbing set is a zero neighbourhood; polarly
bornological if every K-polar set that absorbs every bounded set is a zero neighbour-
hood. A setA C E is called polar (resp. K-polar) if for each x € E\A there exists a v in
E' (resp. a v in the algebraic dual £*) such that |v(A)| < 1 and |v(x)| > 1.

By E;, we denote the strong dual of E i.e. the space E' equipped with the
so called strong topology, which is the one of uniform convergence on the bounded
subsets of E. E” is the bidual of E, that is, (E,’]); E is semi-reflexive if the natural
map jg : E — E" is surjective; reflexive if jg is a surjective homeomorphism (or
equivalently, if E is Hausdorff, polar, polarly barrelled and weakly quasicomplete,
[15], Theorem 9.6). The term “weakly” refers to the weak topology. E is Montel if
it is semi-Montel and reflexive. Every Fréchet nuclear space is Montel. As usual, a
Fréchet space is a complete metrizable locally convex space.

A very interesting class of locally convex spaces (because of its influence in the
applications, see the Introduction), to which is devoted the present paper, is formed
by the locally convex inductive limits. An inductive sequence is an increasing
sequence E; C E, C ... of locally convex spaces E, in such a way that each
inclusion E, — E, .| is continuous. The inductive limit of this sequence is the
space E := U,E, equipped with the strongest locally convex topology 7,q for
which all the inclusions E, — E are continuous (usually called inductive topol-
0gy). (Ey), is said to be Hausdorff if its inductive limit is Hausdorff; regular if for
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each bounded set B in E there exists an n such that B C E,, and B is bounded in E,,.
Every regular inductive sequence of Hausdorff spaces is Hausdorff. When the
steps E, of an inductive sequence are Banach (resp. Fréchet) spaces, (E,), is
called an LB (resp. LF)-space.

By reversing the arrows we arrive at the following dual concept. A projective
sequence is a decreasing sequence F; O F, D ... of locally convex spaces F,, in
such a way that each inclusion F,; — F), is continuous. The projective limit of
this sequence is the space F := N, F,, equipped with the weakest locally convex
topology Ty for which all the inclusions F — F), are continuous (usually called
projective topology). The name “dual” is justified by the following: If (E,), is an
inductive sequence with inductive limit £ and such that each E,, is dense in E, 1,
then the adjoint of each inclusion E, — E,; is a continuous injective linear
map (E,11), — (E,),, that sends each v€E!, | to its restriction to E,. Thus,
identifying (E, ), with its image under this adjoint, we obtain a projective
sequence ((E,),),» whose projective limit F is algebraic isomorphic to Ej. Even
more, there is a continuous bijective linear map

V:E —F, v—¥), (¥)(x)=uv(), x€E, neN. (1)

If, in addition, (E,), is regular then ¥ is a homeomorphism ([5], Theorem 1.3.5).
Also, the dual of a projective limit “is” an inductive limit, see Theorem 1.3.7 of
[5] for details.

We devote the end of these Preliminaries to some spaces of differentiable
functions that will be ones of the key ingredients of Counterexample 2.4. First
we recall the definition of a C"(C*)-function (see [14]). Let X be a non-empty
open subset of Q,. For s€ N set

VX = {(x1,...,x) €X® 1 if i #j then x; #x;}

(notice that V'X = X). For re N U {0} and f : X — K let us define the rth order
difference quotient ®,f : 7/ T'X — K inductively by ®qf :=f and, for reN,
(X], s 7xr+1> € VVH X,

Q1 f(x1,x3, .0, x041) — P f(X2,X3, .00, X 11)

@rf(xlw"uxﬂrl) = X — X .

fis C" at a point o€ X if the limit
lim @, (v) (a:=(a,...,0) X, vey ™ X)

exists. f is a C"-function (on X) if f is C" at each o€ X, or equivalently ([14],
Theorem 29.9), if ®,f can be extended to a continuous function ®,f : X'*! — K
(observe that this extension is unique since 7" *'X is dense in X"*!). We denote
by C’(X) the vector space of all C’-functions X — K. Also, the elements of
C®(X) :=nN,C"(X) are the C™-functions (on X). Clearly, for each r, every
f€C"(X) is continuous on X.

We equip C*°(X) with the topology 7°° of uniform convergence of ®, on com-
pact subsets of X" ! for all r, which can be described as follows (see [15], Example
2.3). For each me€ {0, 1,...}, set X, := {x€ Q) : |x|, < p™, B(x,p™) C X} (for
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x€Q, and R>0, B(x,R) := {y€Q, : [y — x|, < R}). Each X,, is compact and
open in Q,, Xo CX; CX, C..., U,X,, = X. Then the topology 7°° is defined
by the seminorms g, (m€{0, 1,...}) where, for each f € C*(X),

qn(f) = 0 glragm ||(I>r(f|Xm)||oc

(for Y C X and f : X — K, f]|Y is the restriction of f to Y;
supremum norm for continuous functions).

is the canonical

| oo

2. The counterexample

In Theorem 4 of [10] it was proved that any real or complex LB-space
with reflexive steps is regular. However, as a simple application of some known
p-adic facts, we prove in the next theorem that, for non-archimedean LB-spaces, this
result remains true when K is spherically complete but fails for non-spherically
complete K, revealing this failure a sharp contrast with the classical situation.

Theorem 2.1.

(1) If K is spherically complete every LB-space with reflexive steps is regular.
(ii) If K is not spherically complete there exist Hausdorff LB-spaces with
reflexive steps that are not regular.

Proof. (i) Let K be spherically complete and let (E,), be an LB-space with
reflexive steps. Every E,, is finite-dimensional ([13], Theorem 4.16). So, for each n,
the topology on E, is the one induced by E,.; and E, is closed in E, ;. Then
regularity follows from Theorem 1.4.13 (i) of [5].

(ii) Let K be not spherically complete. Let (co(N, 1/b*)), be the LB-space of
Example 3.2.14 of [5]. It was proved there that this inductive sequence is not
regular. Also, by Theorem 3.2.6 of [5], its inductive limit is Hausdorff. On the
other hand, the steps of this inductive sequence are Banach spaces of countable
type, hence reflexive ([13], Corollary 4.18). O

The distinction that we have made in Theorem 2.1 between spherically and non-
spherically complete ground fields, for LB-spaces, does not make sense for LF-
spaces. Indeed, for any K, there exist Hausdorff LF-spaces with reflexive steps that
are not regular, as we show in Counterexample 2.4. This is the non-archimedean
version of the classical one given in [11], which has a typically archimedean
character, forcing us to use a non-archimedean machinery for the construction
of our LF-space. We start with two basic lemmas.

Lemma 2.2. Let Y be a subset of {p,i :j€{0,1,...}}. Then X := Q,\Y is an
open dense subset of Q.

Proof. For j#J, ﬁ -5, = p™>U7) > 1, hence Y is closed and so X is open.
For the density it suffices to prove that, foreach s € {0, 1, ...}, ;% € X. For that, let us

take such a s. Since lim; p' = 0 in Q,, we have

A
E:hm E+p7
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and it is easily seen that pl +p'# L forall je{0,1,...}, i €N (this is clear when
Jj=s; for j#s, note that |I%+p’|p =p'#p = |#|p). Therefore, for each i€ N,
]%—f-p’ €X, so thatp% €X, and we are done. |

Lemma 2.3. For each o € Q), there exists a continuous function ¢, : Q, — Q,
such that ¢, € C*(Q,\{a}) but ¢, is not C' at .

Proof. In [14], proof of Example 26.6 of page 75 and of Remark 1 of page 77 it
was proved the existence of a continuous function g: Z, — @, that is locally
constant on Z,\{0} (hence is a C*-function on Z,\{0}, [14], Corollary 29.10)
but that is not C! at 0. Then a straightforward verification shows that the function
Yo+ @, — Q, defined by

_Jegx—a) ifx—aecz,
Palx) = {O otherwise

has the required properties. ]

Now we have all the material to construct the announced non-regular LF-space.
Notice that its steps are Fréchet and nuclear, hence Montel and so reflexive.

Counterexample 2.4. There exists a non-regular Hausdorff LF-space whose
steps are Fréchet nuclear spaces.

Proof. Let n€N, Dy := Q\{1, ..., 5}, Ey == (C*(D,), 7.°). Clearly D,
is open in Q. Also, E, is a Fréchet nuclear space ([15], Example 2.3). Its topology
72° is defined by the increasing sequence of seminorms ¢, me {0, 1, ...}, where

g = max B/ (fEE),
with

X = {xe@p ), <P x——

1 .
>p—m forallje{O,l,...,nl}}
P

(see the Preliminaries). Put B!, := {f€E, : ¢},(f) < 1}.

For each n, the linear map i, : E,, — E,11, f — f|Du+1 is continuous (because
D,.1 C D,) and injective (because D, is dense in D,, by Lemma 2.2). We
identify each E, with its image i,(E,) and then (E,), is an inductive sequence.
Let E := (E, Tina) be its inductive limit.

To see that E is Hausdorff, consider the (open, by Lemma 2.2) set D :=
@p\{ﬁ :j€{0,1,...}}. The linear map E — (C*(D), 1), f +— f|D is continuous
(because, as D C D, for all n, the restriction of this map to each E, is continuous)
and injective (because, for all n, D is dense in D, by Lemma 2.2). Thus, since
(C>*(D), 72°) is Hausdorff, also so is E.

The proof of non-regularity of (E,), is more involved. We will construct a
Ting-bounded subset B of E that is contained in E, for no n.

Let n€ N. Applying Lemma 2.3 for o := —1; we obtain a continuous function
¢n: @y — @, that is in C*(Q,\{;~}) but that is not C! at -L;. Set

pn [
Y, :={x€Q,: x|, <p" '
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Y, is compact and open in @, and is contained in Qp\{#}, where ¢, is a
C>-function. So, ||®,(¢n|Y,)|,, <oo for all r€{0,1,...}. Multiplying by an
adequate scalar we may assume that
omax ([ @ (palYa)lloc < 1. (2)
Let f, := ¢n|D,. Then f, € E, (because D, C Q \{ - h. But f,11 € E,,. In fact, if
this last were not true then there would exist a g, ec> (D,) such that g, = @11
on D,. Thus, by continuity of g, and of ¢,4; on D, and by density of D,
in D, (Lemma 2.2), g, =@,y on D,, from which we would deduce that
©Oni1|Dn € C®(D,). In particular, ¢, is C! at 1. €D,, a contradiction.
Now let B := {f;, : n€ N}. The above tells us that B is not contained in any E,.
It remains to show that B is 7jyq-bounded in E. For that, let U be an absolutely
convex zero neighbourhood in E. The inclusion E; — E is continuous, hence there
exist m€ N and A € K such that B}, C AU. Fix this m and take n >m + 1. Since the
inclusion E, — E is continuous there exist k€ N and p € K, || = |\, such that

By C U, (3)
and then also

B! cuU. (4)
The formula

0 otherwise

ba(x) = {son(x> if x€ Q,\B(sLr, 1)

defines a function ¢, : @, — @, that is in C>(Q,) (because @, € Cw(@p\{#})
and B( L ’1‘) is clopen).
Now let hy := ¢u|D,. Clearly h, € E,. Also, the following holds.

i) q;(fu —hy,) =0. In fact, X} C @p\B( L b), so o, =¢, on X! ie.
P
fn = h, on X}, and we are done.

(ii) h,€E; and qm(h ) < 1. That h, € E; is obvious because h, = (¢,|D1)|Dx
and ¢,|D; € E;. Now let us see that ¢! (¢,|D;) < 1. For that, firstly note that from
the definitions of X! and ¥, and since m <n — 1, we obtain

X! cv,. (5)

Also one verifies that xe ¥, = |x[, <p"~' =| = S, = - = ), =P >
1> A, from which we have

1 1
Yn C @p\B<pn_—1’p_k>7

¢Gn = @, on Y, (6)
Applying (5), (6) and (2) we arrive at

q}n(¢n|D1):0max 18 (81Xl < max | (6 Y,)]l

=, max 1@ (2l ¥n) | 0 19, (2| Yn) |

so that

max
Sr<n

and the proof of (ii) is finished.



A counterexample on non-archimedean regularity 111

Next, by using (i) and (ii) we deduce that, for all n>m + 1,
fu—h,€B}, h,€B!, (7)
and taking into account (3), (4) and (7) we have
Jo = (fo — ) + hy€pU + pU = pU.

Therefore, we have found m € N and p € K such that {f,, : n>m + 1} C pU. Also,
obviously there is a p€ K with |p| = |u| such that {fi,...,fius1} C pU. Thus,
finally B = {f,, : n€ N} C pU and Tj,g-boundedness of B is proved. O

Remark 2.5. The natural version of Counterexample 2.4 for LB-spaces does not
hold. In fact, every LB-space (E,), with semi-Montel steps is regular. To prove
this last assertion, note that, for each n, the unit ball of E, is a compactoid and
hence E, is finite-dimensional ([13], Theorem 4.37). Then regularity of (E,),
follows with the same reasoning as in Theorem 2.1 (i).

We finish by giving some topological properties of the above inductive limit
and some applications.

Theorem 2.6. Let (E,), be the inductive sequence of Counterexample 2.4, let E
be its inductive limit. Then we have the following.

(1) E is Hausdorff, nuclear (hence semi-Montel and of countable type),
polarly barrelled and polarly bornological.
(i1) E is not (weakly) sequentially complete (hence neither (weakly) (quasi)-
complete).
(iii) E is not (semi-)reflexive (hence neither Montel).
(iv) ((E.)}), is a projective sequence such that, for its projective limit F, the
continuous bijective linear map

U:E,—F, v—¥(v), (T)(f)=0uv(f), fE€E, neN (8)
(see (1)) is not a homeomorphism.

Proof. (i) That E is Hausdorff was already proved in Counterexample 2.4.
Nuclearity (resp. polar barrelledness) follows from [8], Proposition 3.5 (resp. from
[5], Proposition 1.1.10 (ii)).

Now let us see that E is polarly bornological. Let A be a K-polar subset of
E that absorbs every bounded set in E. Then A is absolutely convex and, for
each n, AN E, is a K-polar subset of E, that absorbs every bounded subset of the
(polarly bornological, [15], Proposition 6.9) space E,. Hence A NE, is a zero
neighbourhood in each E, i.e. A is a zero neighbourhood in E ([5], Proposition
1.1.6 (ii)).

(i) (E,), is not regular, hence E is not sequentially complete ([5], Propositions
2.3.2 and 2.3.3). Further, E is Hausdorff and of countable type by (i), so the weakly
convergent sequences of E coincide with the convergent ones ([15], Theorem 4.4
and Proposition 4.11). Thus, E cannot be weakly sequentially complete.

(iii) By (ii), E is not weakly quasicomplete, hence it is not reflexive. Also, by
(i), E is Hausdorff, polar and polarly barrelled. It follows from Lemmas 9.2 and 9.3
of [15] that reflexivity and semireflexivity of E are equivalent properties. There-
fore, E is not semireflexive.
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(iv) Firstly we see that, for each n, E, is dense in E,;;. Let f€E, ,
me{0,1,...}. Define g : D, — K by

g(x) = {f(x) if xexmt!

0 otherwise

(we follow the same notations as in the proof of Counterexample 2.4). Then g€ E,
(because f|X" e C>(X"1) and X" is clopen in @Q,) and f =g on X!, so
¢ (g|Dys1 —f) = 0 and we are done.

Thus, ((E}),), is a projective sequence (see the Preliminaries). Let F be its
projective limit and let ¥ : E; — F be as in (8). Assume VU is a homeomorphism;
we derive a contradiction. First we prove that this assumption implies that (E,),
satisfies the following property:

For every Ting-bounded set B C E there exists an n€N and
a 7,-bounded set B, C E, such that B C B, ™ 9)

(Ting 1s the inductive topology of E and, for each n, 7, is the topology of E,).

In order to get (9), let B C E be Tipg-bounded. Then B® := {veE’ : |u(B)| < 1}
is a zero neighbourhood in E}. Since ¥ is homeomorphic, there is an n and an ab-
solutely convex 7,-bounded set A, C E, such that ¥(B°) D {weF : |w(A,)| < 1},
which implies that B® D A% := {veE' : |v(A,)| < 1}. Thus, B* C A% (the two
bipolars are with respect to the duality (E,E’') and are defined in the usual way).
As E is of countable type by (i), we have that A% C N{\A,™ : A€ K, |\ > 1}
([15], Theorem 4.4 and comments after Proposition 4.10). Therefore, by taking
A€ K with |\| > 1, we obtain that B C B® C A% C A\A,™. So, B, := \A, meets
the requirements of (9).

Now we use (9) to prove that (E,), is regular (then we arrive at the desired
contradiction and the proof of (iv) is finished). For that, let B C E be Ti,g-bounded,
let n and B, be as in (9). We may assume that B, is absolutely convex. As E,, is
a Fréchet semi-Montel space, B, is metrizable, compactoid and complete in
E,. Also, since Tin|E, is Hausdorff and weaker than 7,, we have de|B7,,T" =
7.|B," ([16], Proposition 9.1). Thus, B, is Ting-complete, hence 7iyq-closed, so
that B,”™ = B,". By (9), B C B,", from which it follows that B is contained and
bounded in E,. Then we get regularity of (E,),. O

Finally we give some applications of our previous theory. As a direct conse-
quence of (iv) of Theorem 2.6 we obtain that

Application 2.7. The continuous linear bijection of the strong dual of an
inductive limit onto the projective limit of the strong duals of its steps (see (1))
may fail to be a homeomorphism.

Next, recall that to be of countable type, polarly barrelled (resp. nuclear, resp.
polarly bornological) are stable properties by taking inductive limits, see [5],
Proposition 1.1.10 (resp. [8], Proposition 3.5, resp. proof of (i) of Theorem 2.6).
However, there are other properties for which that stability does not hold. This is
the case for polarity and for metrizability, see Example 1.4.22 and Theorem 2.1.4
of [5] respectively. Also, Counterexample 2.4 leads to the following.
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Application 2.8. (Weak) (Quasi)completeness, (weak) sequential completeness,
(semi-)reflexivity and Montelness are not always stable by taking inductive limits.

Proof. Let (E,), be as in Counterexample 2.4, let E be its inductive limit. Each
E, is a Fréchet nuclear space, so it has all the properties mentioned in the state-
ment. On the other hand, (ii) and (iii) of Theorem 2.6 tell us that all of these
properties fail for E. ]

Remark 2.9. In [5] one can find conditions under which inductive limits pre-
serve the above properties.

But the following is unknown.

Problem. Is semi-Montelness stable for taking inductive limits?
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