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Abstract. A non-regular inductive sequence of non-archimedean reflexive Fr�eechet spaces is con-
structed. On the other hand, it is proved that every inductive sequence of reflexive Banach spaces over a
spherically complete field is regular. Also, some applications are given.
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Introduction

A very interesting class of locally convex spaces over non-archimedean valued
fields, because of its influence in the applications, are the locally convex inductive
limits. We point out the central role that they play in the definition of a p-adic
Laplace and Fourier Transform given in [6] and [7] respectively and in the index
theory of p-adic differential equations (see e.g. [1]–[4] and [12]). The last of these
references shows also the influence of these inductive limits in the study of the
p-adic Monsky-Washnitzer cohomology.

Our main goal in this paper is to construct a non-regular inductive sequence of
non-archimedean reflexive Fr�eechet spaces. This is the p-adic counterpart of the
classical one of [11], which has a typically archimedean character, forcing us to use
a p-adic machinery for our construction. Further, some applications are given.

On the other hand, a well-known classical result assures that every inductive
sequence of real or complex reflexive Banach spaces is regular (see e.g. [10]). How-
ever, in the non-archimedean case, the validity of this result depends on the ground
field. In fact, here we prove that it remains true for LB-spaces over spherically com-
plete fields but fails when the spherical completeness of the ground field is dropped.

1. Preliminaries

Throughout this paper K :¼ ðK; j � jÞ is a non-archimedean non-trivially valued
field that is complete with respect to the metric induced by the valuation j � j. We
assume that K contains the field Qp of the p-adic numbers (p a prime number) and
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that the valuation on K extends the p-adic one, j � jp, on Qp. We denote by Zp the
set fx2Qp : jxjp 4 1g of the p-adic integers.

For fundamentals on normed and locally convex spaces over K we refer to [13]
and [15] respectively. For the notions of (quasi)completeness and sequential com-
pleteness (which are the natural translations of the classical ones given in [9]) see e.g.
[5]. Recall that completeness ¼) quasicompleteness ¼) sequential completeness.

Let E :¼ ðE; �Þ be a locally convex space (all the locally convex spaces con-
sidered in this paper are over K). For a subset A of E, EnA :¼ fx2E; x 62Ag, A

�

is the closure of A in E, and � jA is the restriction of � to A. The set A is called
absolutely convex if 02A and x; y2A, �; �2K, maxðj�j; j�jÞ4 1 implies
�xþ �y2A; compactoid if for every zero neighbourhood U in E there is a finite
set B � E such that A � U þ acoB, where acoB is the absolutely convex hull of
B. E is nuclear if for every continuous seminorm p on E there is a continuous
seminorm q on E, q5 p, such that the canonical map Eq ! Ep sends the unit ball
of Eq into a compactoid in Ep (by Ep and Eq we denote the normed spaces
associated to p and q respectively). E is semi-Montel if every bounded subset of
E is a compactoid. Nuclear spaces are semi-Montel.

A continuous seminorm p on E is called polar if p ¼ supfjvj : v2E0; jvj4 pg
(E0 is the topological dual of E). E is polar if its topology is generated by a family
of polar seminorms; of countable type if for every continuous seminorm p on E the
associated normed space Ep is of countable type (recall that a normed space is said
to be of countable type if it is the closed linear hull of a countable set). Nuclear
spaces are of countable type. If K is spherically complete every locally convex
space is polar. For any K, spaces of countable type are polar. The weak topology of
a Hausdorff polar space is also Hausdorff. However, there exist Banach spaces
over non-spherically complete fields with a trivial topological dual, see [13].

E is polarly barrelled if every polar absorbing set is a zero neighbourhood; polarly
bornological if every K-polar set that absorbs every bounded set is a zero neighbour-
hood. A setA � E is called polar (resp.K-polar) if for each x2EnA there exists a v in
E0 (resp. a v in the algebraic dual E�) such that jvðAÞj4 1 and jvðxÞj> 1.

By E0
b we denote the strong dual of E i.e. the space E0 equipped with the

so called strong topology, which is the one of uniform convergence on the bounded
subsets of E. E00 is the bidual of E, that is, ðE0

bÞ
0
b. E is semi-reflexive if the natural

map jE : E ! E00 is surjective; reflexive if jE is a surjective homeomorphism (or
equivalently, if E is Hausdorff, polar, polarly barrelled and weakly quasicomplete,
[15], Theorem 9.6). The term ‘‘weakly’’ refers to the weak topology. E is Montel if
it is semi-Montel and reflexive. Every Fr�eechet nuclear space is Montel. As usual, a
Fr�eechet space is a complete metrizable locally convex space.

A very interesting class of locally convex spaces (because of its influence in the
applications, see the Introduction), to which is devoted the present paper, is formed
by the locally convex inductive limits. An inductive sequence is an increasing
sequence E1 � E2 � . . . of locally convex spaces En in such a way that each
inclusion En ! Enþ1 is continuous. The inductive limit of this sequence is the
space E :¼ [nEn equipped with the strongest locally convex topology �ind for
which all the inclusions En ! E are continuous (usually called inductive topol-
ogy). ðEnÞn is said to be Hausdorff if its inductive limit is Hausdorff; regular if for

106 N. De Grande-De Kimpe and C. Perez-Garcia



each bounded set B in E there exists an n such that B � En and B is bounded in En.
Every regular inductive sequence of Hausdorff spaces is Hausdorff. When the
steps En of an inductive sequence are Banach (resp. Fr�eechet) spaces, ðEnÞn is
called an LB (resp. LF)-space.

By reversing the arrows we arrive at the following dual concept. A projective
sequence is a decreasing sequence F1 � F2 � . . . of locally convex spaces Fn in
such a way that each inclusion Fnþ1 ! Fn is continuous. The projective limit of
this sequence is the space F :¼ \nFn, equipped with the weakest locally convex
topology �proj for which all the inclusions F ! Fn are continuous (usually called
projective topology). The name ‘‘dual’’ is justified by the following: If ðEnÞn is an
inductive sequence with inductive limit E and such that each En is dense in Enþ1,
then the adjoint of each inclusion En ! Enþ1 is a continuous injective linear
map ðEnþ1Þ0b ! ðEnÞ0b, that sends each v2E0

nþ1 to its restriction to En. Thus,
identifying ðE0

nþ1Þb with its image under this adjoint, we obtain a projective
sequence ððEnÞ0bÞn, whose projective limit F is algebraic isomorphic to E0

b. Even
more, there is a continuous bijective linear map

� : E0
b �!F; � 7�!�ð�Þ; ð�ð�ÞÞðxÞ ¼ �ðxÞ; x2En; n2N: ð1Þ

If, in addition, ðEnÞn is regular then � is a homeomorphism ([5], Theorem 1.3.5).
Also, the dual of a projective limit ‘‘is’’ an inductive limit, see Theorem 1.3.7 of
[5] for details.

We devote the end of these Preliminaries to some spaces of differentiable
functions that will be ones of the key ingredients of Counterexample 2.4. First
we recall the definition of a Cr(C1)-function (see [14]). Let X be a non-empty
open subset of Qp. For s2N set

5sX :¼ fðx1; . . . ; xsÞ2Xs : if i 6¼ j then xi 6¼ xjg

(notice that r1X ¼ X). For r2N [ f0g and f : X ! K let us define the rth order
difference quotient �rf : 5rþ1X ! K inductively by �0 f :¼ f and, for r2N,
ðx1; . . . ; xrþ1Þ2 5rþ1 X,

�rf ðx1; . . . ; xrþ1Þ :¼
�r�1 f ðx1; x3; . . . ; xrþ1Þ � �r�1 f ðx2; x3; . . . ; xrþ1Þ

x1 � x2

:

f is Cr at a point �2X if the limit

lim
�!a

�rf ð�Þ ða :¼ ð�; . . . ; �Þ2Xrþ1; �25rþ1 XÞ

exists. f is a Cr-function (on X) if f is Cr at each �2X, or equivalently ([14],
Theorem 29.9), if �rf can be extended to a continuous function �rf : X

rþ1 ! K
(observe that this extension is unique since 5rþ1X is dense in Xrþ1). We denote
by CrðXÞ the vector space of all Cr-functions X ! K. Also, the elements of
C1ðXÞ :¼ \rC

rðXÞ are the C1-functions (on X). Clearly, for each r, every
f 2CrðXÞ is continuous on X.

We equip C1ðXÞ with the topology �1c of uniform convergence of �r on com-
pact subsets of Xrþ1 for all r, which can be described as follows (see [15], Example
2.3). For each m2f0; 1; . . .g, set Xm :¼ fx2Qp : jxjp 4 pm; Bðx; p�mÞ � Xg (for
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x2Qp and R> 0, Bðx;RÞ :¼ fy2Qp : jy� xjp 4Rg). Each Xm is compact and
open in Qp, X0 � X1 � X2 � . . ., [mXm ¼ X. Then the topology �1c is defined
by the seminorms qm (m2f0; 1; . . .g) where, for each f 2C1ðXÞ,

qmð f Þ ¼ max
04 r4m

k�rð f jXmÞk1

(for Y � X and f : X ! K, f jY is the restriction of f to Y; k k1 is the canonical
supremum norm for continuous functions).

2. The counterexample

In Theorem 4 of [10] it was proved that any real or complex LB-space
with reflexive steps is regular. However, as a simple application of some known
p-adic facts, we prove in the next theorem that, for non-archimedean LB-spaces, this
result remains true when K is spherically complete but fails for non-spherically
complete K, revealing this failure a sharp contrast with the classical situation.

Theorem 2.1.

(i) If K is spherically complete every LB-space with reflexive steps is regular.
(ii) If K is not spherically complete there exist Hausdorff LB-spaces with

reflexive steps that are not regular.

Proof. (i) Let K be spherically complete and let ðEnÞn be an LB-space with
reflexive steps. Every En is finite-dimensional ([13], Theorem 4.16). So, for each n,
the topology on En is the one induced by Enþ1 and En is closed in Enþ1. Then
regularity follows from Theorem 1.4.13 (i) of [5].

(ii) Let K be not spherically complete. Let ðc0ðN; 1=bkÞÞk be the LB-space of
Example 3.2.14 of [5]. It was proved there that this inductive sequence is not
regular. Also, by Theorem 3.2.6 of [5], its inductive limit is Hausdorff. On the
other hand, the steps of this inductive sequence are Banach spaces of countable
type, hence reflexive ([13], Corollary 4.18). &

The distinction that we have made in Theorem 2.1 between spherically and non-
spherically complete ground fields, for LB-spaces, does not make sense for LF-
spaces. Indeed, for any K, there exist Hausdorff LF-spaces with reflexive steps that
are not regular, as we show in Counterexample 2.4. This is the non-archimedean
version of the classical one given in [11], which has a typically archimedean
character, forcing us to use a non-archimedean machinery for the construction
of our LF-space. We start with two basic lemmas.

Lemma 2.2. Let Y be a subset of f1
pj
: j2f0; 1; . . .gg. Then X :¼ QpnY is an

open dense subset of Qp.

Proof. For j 6¼ j0, j 1
pj
� 1

pj
0 jp ¼ pmaxðj;j0Þ 5 1, hence Y is closed and so X is open.

For the density it suffices to prove that, for each s2f0; 1; . . .g, 1
ps
2X. For that, let us

take such a s. Since limi p
i ¼ 0 in Qp, we have

1

ps
¼ lim

i

�
1

ps
þ pi

�
;
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and it is easily seen that 1
ps
þ pi 6¼ 1

pj
for all j2f0; 1; . . .g, i2N (this is clear when

j ¼ s; for j 6¼ s, note that j 1
ps
þ pijp ¼ ps 6¼ pj ¼ j 1

pj
jp). Therefore, for each i2N,

1
ps
þ pi2X, so that 1

ps
2X, and we are done. &

Lemma 2.3. For each �2Qp there exists a continuous function ’� : Qp ! Qp

such that ’�2C1ðQpnf�gÞ but ’� is not C1 at �.

Proof. In [14], proof of Example 26.6 of page 75 and of Remark 1 of page 77 it
was proved the existence of a continuous function g : Zp ! Qp that is locally
constant on Zpnf0g (hence is a C1-function on Zpnf0g, [14], Corollary 29.10)
but that is not C1 at 0. Then a straightforward verification shows that the function
’� : Qp ! Qp defined by

’�ðxÞ ¼
gðx� �Þ if x� �2Zp

0 otherwise

�

has the required properties. &

Now we have all the material to construct the announced non-regular LF-space.
Notice that its steps are Fr�eechet and nuclear, hence Montel and so reflexive.

Counterexample 2.4. There exists a non-regular Hausdorff LF-space whose
steps are Fr�eechet nuclear spaces.

Proof. Let n2N, Dn :¼ Qpnf1; 1
p
; . . . ; 1

pn�1g, En :¼ ðC1ðDnÞ; �1c Þ. Clearly Dn

is open in Qp. Also, En is a Fr�eechet nuclear space ([15], Example 2.3). Its topology
�1c is defined by the increasing sequence of seminorms qnm, m2f0; 1; . . .g, where

qnmð f Þ ¼ max
04 r4m

k�rð f jXn
mÞk1 ð f 2EnÞ;

with

Xn
m :¼

�
x2Qp : jxjp 4 pm;

����x� 1

pj

����
p

>
1

pm
for all j2f0; 1; . . . ; n� 1g

�

(see the Preliminaries). Put Bn
m :¼ f f 2En : q

n
mð f Þ4 1g.

For each n, the linear map in : En ! Enþ1, f 7! f jDnþ1 is continuous (because
Dnþ1 � DnÞ and injective (because Dnþ1 is dense in Dn, by Lemma 2.2). We
identify each En with its image inðEnÞ and then ðEnÞn is an inductive sequence.
Let E :¼ ðE; �indÞ be its inductive limit.

To see that E is Hausdorff, consider the (open, by Lemma 2.2) set D :¼
Qpnf1

pj
: j2f0; 1; . . .gg. The linear map E ! ðC1ðDÞ; �1c Þ, f 7! f jD is continuous

(because, as D � Dn for all n, the restriction of this map to each En is continuous)
and injective (because, for all n, D is dense in Dn by Lemma 2.2). Thus, since
ðC1ðDÞ; �1c Þ is Hausdorff, also so is E.

The proof of non-regularity of ðEnÞn is more involved. We will construct a
�ind-bounded subset B of E that is contained in En for no n.

Let n2N. Applying Lemma 2.3 for � :¼ 1
pn�1 we obtain a continuous function

’n : Qp ! Qp that is in C1ðQpnf 1
pn�1gÞ but that is not C1 at 1

pn�1. Set

Yn :¼ fx2Qp : jxjp < pn�1g:
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Yn is compact and open in Qp and is contained in Qpnf 1
pn�1g, where ’n is a

C1-function. So, k�rð’njYnÞk1<1 for all r2f0; 1; . . .g. Multiplying by an
adequate scalar we may assume that

max
04 r4 n

k�rð’njYnÞk1 4 1: ð2Þ

Let fn :¼ ’njDn. Then fn2En (because Dn � Qpnf 1
pn�1g). But fnþ1 62En. In fact, if

this last were not true then there would exist a gn2C1ðDnÞ such that gn ¼ ’nþ1

on Dnþ1. Thus, by continuity of gn and of ’nþ1 on Dn and by density of Dnþ1

in Dn (Lemma 2.2), gn ¼ ’nþ1 on Dn, from which we would deduce that
’nþ1jDn2C1ðDnÞ. In particular, ’nþ1 is C1 at 1

pn
2Dn, a contradiction.

Now let B :¼ ffn : n2Ng. The above tells us that B is not contained in any En.
It remains to show that B is �ind-bounded in E. For that, let U be an absolutely
convex zero neighbourhood in E. The inclusion E1 ! E is continuous, hence there
exist m2N and �2K such that B1

m � �U. Fix this m and take n>mþ 1. Since the
inclusion En ! E is continuous there exist k2N and �2K, j�j5 j�j, such that

Bn
k � �U; ð3Þ

and then also

B1
m � �U: ð4Þ

The formula

�nðxÞ ¼ ’nðxÞ if x2QpnBð 1
pn�1 ;

1
pk
Þ

0 otherwise

�

defines a function �n : Qp ! Qp that is in C1ðQpÞ (because ’n2C1ðQpnf 1
pn�1gÞ

and Bð 1
pn�1 ;

1
pk
Þ is clopen).

Now let hn :¼ �njDn. Clearly hn2En. Also, the following holds.

(i) qnkð fn � hnÞ ¼ 0. In fact, Xn
k � QpnBð 1

pn�1 ;
1
pk
Þ, so ’n ¼ �n on Xn

k i.e.
fn ¼ hn on Xn

k , and we are done.
(ii) hn2E1 and q1

mðhnÞ4 1. That hn2E1 is obvious because hn ¼ ð�njD1ÞjDn

and �njD1 2E1. Now let us see that q1
mð�njD1Þ4 1. For that, firstly note that from

the definitions of X1
m and Yn and since m< n� 1, we obtain

X1
m � Yn: ð5Þ

Also, one verifies that x2Yn ¼) jxjp < pn�1 ¼ j 1
pn�1 jp ¼) jx� 1

pn�1 jp ¼ pn�1 >
1> 1

pk
, from which we have

Yn � QpnB
�

1

pn�1
;

1

pk

�
;

so that

�n ¼ ’n on Yn: ð6Þ
Applying (5), (6) and (2) we arrive at

q1
mð�njD1Þ ¼ max

04 r4m
k�rð�njX1

mÞk1 4 max
04 r4m

k�rð�njYnÞk1

¼ max
04 r4m

k�rð’njYnÞk1 4 max
04 r4 n

k�rð’njYnÞk14 1;

and the proof of (ii) is finished.
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Next, by using (i) and (ii) we deduce that, for all n>mþ 1,

fn � hn2Bn
k ; hn2B1

m; ð7Þ
and taking into account (3), (4) and (7) we have

fn ¼ ð fn � hnÞ þ hn2�U þ �U ¼ �U:

Therefore, we have found m2N and �2K such that ffn : n>mþ 1g � �U: Also,
obviously there is a �2K with j�j5 j�j such that ff1; . . . ; fmþ1g � �U: Thus,
finally B ¼ ffn : n2Ng � �U and �ind-boundedness of B is proved. &

Remark 2.5. The natural version of Counterexample 2.4 for LB-spaces does not
hold. In fact, every LB-space ðEnÞn with semi-Montel steps is regular. To prove
this last assertion, note that, for each n, the unit ball of En is a compactoid and
hence En is finite-dimensional ([13], Theorem 4.37). Then regularity of ðEnÞn
follows with the same reasoning as in Theorem 2.1 (i).

We finish by giving some topological properties of the above inductive limit
and some applications.

Theorem 2.6. Let ðEnÞn be the inductive sequence of Counterexample 2.4, let E
be its inductive limit. Then we have the following.

(i) E is Hausdorff, nuclear (hence semi-Montel and of countable type),
polarly barrelled and polarly bornological.

(ii) E is not (weakly) sequentially complete (hence neither (weakly) (quasi)-
complete).

(iii) E is not (semi-)reflexive (hence neither Montel).
(iv) ððEnÞ0bÞn is a projective sequence such that, for its projective limit F, the

continuous bijective linear map

� : E0
b �!F; � 7�!�ð�Þ; ð�ð�ÞÞð f Þ ¼ �ð f Þ; f 2En; n2N ð8Þ

(see (1)) is not a homeomorphism.

Proof. (i) That E is Hausdorff was already proved in Counterexample 2.4.
Nuclearity (resp. polar barrelledness) follows from [8], Proposition 3.5 (resp. from
[5], Proposition 1.1.10 (ii)).

Now let us see that E is polarly bornological. Let A be a K-polar subset of
E that absorbs every bounded set in E. Then A is absolutely convex and, for
each n, A \ En is a K-polar subset of En that absorbs every bounded subset of the
(polarly bornological, [15], Proposition 6.9) space En. Hence A \ En is a zero
neighbourhood in each En i.e. A is a zero neighbourhood in E ([5], Proposition
1.1.6 (ii)).

(ii) ðEnÞn is not regular, hence E is not sequentially complete ([5], Propositions
2.3.2 and 2.3.3). Further, E is Hausdorff and of countable type by (i), so the weakly
convergent sequences of E coincide with the convergent ones ([15], Theorem 4.4
and Proposition 4.11). Thus, E cannot be weakly sequentially complete.

(iii) By (ii), E is not weakly quasicomplete, hence it is not reflexive. Also, by
(i), E is Hausdorff, polar and polarly barrelled. It follows from Lemmas 9.2 and 9.3
of [15] that reflexivity and semireflexivity of E are equivalent properties. There-
fore, E is not semireflexive.
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(iv) Firstly we see that, for each n, En is dense in Enþ1. Let f 2Enþ1,
m2f0; 1; . . .g. Define g : Dn ! K by

gðxÞ ¼ f ðxÞ if x2Xnþ1
m

0 otherwise

�

(we follow the same notations as in the proof of Counterexample 2.4). Then g2En

(because f jXnþ1
m 2C1ðXnþ1

m Þ and Xnþ1
m is clopen in Qp) and f ¼ g on Xnþ1

m , so
qnþ1
m ðgjDnþ1 � f Þ ¼ 0 and we are done.

Thus, ððE0
nÞbÞn is a projective sequence (see the Preliminaries). Let F be its

projective limit and let � : E0
b ! F be as in (8). Assume � is a homeomorphism;

we derive a contradiction. First we prove that this assumption implies that ðEnÞn
satisfies the following property:

For every �ind-bounded set B � E there exists an n2N and

a �n-bounded set Bn � En such that B � Bn
�ind ð9Þ

(�ind is the inductive topology of E and, for each n, �n is the topology of En).
In order to get (9), let B � E be �ind-bounded. Then Bo :¼ f�2E0 : j�ðBÞj4 1g

is a zero neighbourhood in E0
b. Since � is homeomorphic, there is an n and an ab-

solutely convex �n-bounded set An � En such that �ðBoÞ � fw2F : jwðAnÞj4 1g,
which implies that Bo � Ao

n :¼ fv2E0 : jvðAnÞj4 1g. Thus, Boo � Aoo
n (the two

bipolars are with respect to the duality ðE;E0Þ and are defined in the usual way).
As E is of countable type by (i), we have that Aoo

n � \f�An
�ind : �2K; j�j> 1g

([15], Theorem 4.4 and comments after Proposition 4.10). Therefore, by taking
�2K with j�j> 1, we obtain that B � Boo � Aoo

n � �An
�ind

. So, Bn :¼ �An meets
the requirements of (9).

Now we use (9) to prove that ðEnÞn is regular (then we arrive at the desired
contradiction and the proof of (iv) is finished). For that, let B � E be �ind-bounded,
let n and Bn be as in (9). We may assume that Bn is absolutely convex. As En is
a Fr�eechet semi-Montel space, Bn

�n
is metrizable, compactoid and complete in

En. Also, since �indjEn is Hausdorff and weaker than �n, we have �indjBn
�n ¼

�njBn
�n ([16], Proposition 9.1). Thus, Bn

�n is �ind-complete, hence �ind-closed, so
that Bn

�ind ¼ Bn
�n . By (9), B � Bn

�n , from which it follows that B is contained and
bounded in En. Then we get regularity of ðEnÞn. &

Finally we give some applications of our previous theory. As a direct conse-
quence of (iv) of Theorem 2.6 we obtain that

Application 2.7. The continuous linear bijection of the strong dual of an
inductive limit onto the projective limit of the strong duals of its steps (see (1))
may fail to be a homeomorphism.

Next, recall that to be of countable type, polarly barrelled (resp. nuclear, resp.
polarly bornological) are stable properties by taking inductive limits, see [5],
Proposition 1.1.10 (resp. [8], Proposition 3.5, resp. proof of (i) of Theorem 2.6).
However, there are other properties for which that stability does not hold. This is
the case for polarity and for metrizability, see Example 1.4.22 and Theorem 2.1.4
of [5] respectively. Also, Counterexample 2.4 leads to the following.
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Application 2.8. (Weak) (Quasi)completeness, (weak) sequential completeness,
(semi-)reflexivity and Montelness are not always stable by taking inductive limits.

Proof. Let ðEnÞn be as in Counterexample 2.4, let E be its inductive limit. Each
En is a Fr�eechet nuclear space, so it has all the properties mentioned in the state-
ment. On the other hand, (ii) and (iii) of Theorem 2.6 tell us that all of these
properties fail for E. &

Remark 2.9. In [5] one can find conditions under which inductive limits pre-
serve the above properties.

But the following is unknown.

Problem. Is semi-Montelness stable for taking inductive limits?
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