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Abstract. In an earlier work Hubert and the authors of this paper introduced and studied the notion of
pseudorandomness of binary lattices. Later in another paper the authors gave a construction for a large
family of “good” binary lattices by using the quadratic characters of finite fields. Here, a further large fami-
ly of “good” binary lattices is constructed by using finite fields and the notion of multiplicative inverse.
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1. Introduction

In a series of papers, the authors (partly with further coauthors) developed a
constructive theory of finite pseudorandom binary sequences. In particular, in [7]
they introduced the measures of pseudorandomness, and they showed that the
Legendre symbol sequence (%), (%), RN (‘%1) has strong pseudorandom proper-
ties in terms of these measures. Later constructions for large families of “good” se-
quences (finite binary sequences with strong pseudorandom properties in terms of
the measures introduced) were also given. In terms of computational time and bounds
for the pseudorandom measures, one of the best constructions is, perhaps, the one
in [8]. This construction is based on the use of the multiplicative inverse modulo p:

Assume that p is a prime number, k, /€N, 2 < /¢ < p,

K < g ,
and f(x) € F,[x] is of the form

fO)=x4+a)(x+a) - (x+ax)
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with ay,...,ar €F, and a; # a; for i #j. For (a,p) = 1, denote the multiplicative
inverse of a by a™!:
aa"'=1 (modp).
For a € Z, denote the least non-negative residue of a modulo p by r,(a):
a=ry(a) (modp), 0<ry(a)<p.
Define the binary sequence E, = (ey,...,e,) €{—1,+1}" by
. {+1 if (F(n).p) =1, p(F(m)™") <%

—1 if either (f(n),p) =1, rp(f(n)fl) > £ or p|f(n). (L.1)

It was proved in [8] (see Theorems 1 and 3) that this sequence E, has strong
pseudorandom properties. (See also [1], [3], [5], [6], [10], [11] and the references
in these papers for other results on the connection of the multiplicative inverse and
pseudorandomness.)

In [4], Hubert, Mauduit and Sarkoézy extended this constructive theory of
pseudorandomness to several dimensions. Let I, denote the set of the n-dimen-
sional vectors all whose coordinates are selected from the set {0,1,...,N — 1}:

Iy={x=(,....,x) : x1,...,x%€{0,1,...,N—1}}.
We call this set n-dimensional N-lattice or briefly (if n is fixed) N-lattice.
Definition 1. A function of the type
nix): Iy — {-1,+1} (1.2)
is called n-dimensional binary N-lattice or briefly binary lattice.

(Note that in the n = 1 special case these functions are the binary sequences
Eye{-1, —|—1}N.) In [3], the use of the following measures of pseudorandomness
of binary lattices was proposed:

Definition 2. If 7 = n(x) is an n-dimensional binary N-lattice of form (1.2),
keN, and u; (i =1,2,...,n) denotes the n-dimensional unit vector whose i-th
coordinate is 1 and the other coordinates are O, then write

I Iy
Ouln) =, max | > > n(jibiw + - jubten +dy)
J1=0 Jn=0
...n(j1b1u1+~~-+jnbnun +dk) (13)
where the maximum is taken over all n-dimensional vectors b = (by,...,b,),
dy,...,d;, t=(t1,...,t,) such that their coordinates are non-negative integers,
by,...,b, are non-zero, dy, . ..,d; are distinct, and all the points jibju; + --- +

Jnbntty +d; occurring in the multiple sum above belong to the n-dimensional
N-lattice I};. Then Qx(n) is called the pseudorandom (briefly PR) measure of order
k of 7. In the one-dimensional special case Qx(n) is the “combined PR-measure
Oy of order k> which was also introduced in [7]. This one-dimensional PR mea-
sure Q; is called ‘““combined PR measure” since it combines the ‘“well-distribution
measure” (which measures the irregularities of the distribution relative to arith-
metic progressions) with the “correlation measure of order k. Similarly, in the
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multi-dimensional case the PR measure of order k combines the estimate of the
irregularities relative to ““generalized arithmetic progressions” with the estimate of
a quantity of correlation type. Note that if # denotes the box

B = {jlblul + - +jnbnun : 0 <J1 <ty ,O <]n < tn}v
then (1.3) can be rewritten in the more compact form

O(n) = S on(v+dy)..on(v+d)|.

veER

max
Bd,,...dy

In [4] we proved that for a fixed k€ N and for a truly random n-dimensional
binary N-lattice n(x) we have

Nn/2 < Qk(n) < Nn/Z(logNn)l/Z

with probability > 1 — ¢, while the trivial upper bound for Qy(n) is N". Thus an
n-dimensional binary N-lattice n can be considered as a “good” pseudorandom
binary lattice if the PR measure of order k of n is “small” in terms of N (in
particular, Qx(n) = o(N") for fixed n and N — +00) for small .

Moreover, in [4] we gave an example for a “good” n-dimensional binary
lattice (for any n) by using quadratic characters of finite fields.

However, in the applications (e.g., in cryptography) one usually needs not just
a few “good” PR binary lattices but we need a ““large” family of binary lattices
with strong PR properties. Thus in [9] we presented a construction of this type
which was based again on the use of quadratic characters of finite fields.

In this paper our goal is to show that by using finite fields and a principle of
Davenport and Lewis [2], construction (1.1) based on the use of the multiplicative
inverse also can be adapted and extended to obtain a large family of binary lattices
with strong PR properties. It will take slightly more work than in [9] that the given
construction possesses strong PR properties but this is more than compensated by
the fact that the construction here can be generated at least as fast (note that the
multiplicative inverse can be computed fast, in polynomial time) and it can be
handled at least as well (perhaps, even slightly better) than the one in [9].

2. The construction and the result

Assume that g = p” is the power of an odd prime, /€N, ay, ..., a, are distinct
elements of [, and let

f)=@+a)(x+ax)---(x+ar) (€F,x]) (where a;#a; for i #j).

Let vy,...,v, be linearly independent elements of [, over the prime field [,
(whose elements we identify with the field of the modulo p residue classes, and
we write i for the residue class =i (mod p)). Define the boxes By, B, ..., B, by

)
n -3
Bl_{Zuivi: O0<u < Ta ”27"'7”"6”:17}’

i=1

n p—l
Bj:{Zuivi:u1:-~:uj_1:T,
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and write
B=|J8; (2.1)
j=1

Define the mapping n(x) : I} — {—1,+1} by

+1 if f(xjv1 + - + x,0,) #0 and
nx) = n((x1,..., %)) = (flrivr+ -+ +x0,)) ' €B (2.2)
—1 otherwise.

We remark that the definition of B is made slightly complicated by the fact that
we have to balance between two requirements: the structure of B must be sym-
metric, easy to handle and, on the other hand, its cardinality must approximate % well.

We will show that if & is not very large, then Qk(n) is “small” for this binary
lattice n:

Theorem. If p,q,n,¢,f(x),B and n are defined as above, k € N,

ki<p, k+f<p+1 (2.3)
and
q
= 2.4
k<, (2.4)
then we have
Or(n) < (27 + Dken*q'*(logp + 2)"**. (2.5)

3. Proof of the Theorem

We will use the following notations: {x} denotes the fractional part of x. ||x||
denotes the distance of x from the nearest integer: ||x|| = min({x}, 1 — {x}). We
write €™ = ¢(a). For p,q defined as in Sect. 2, F, denotes the finite field of
order g, and we write [F;< = [, \ {0}. We denote by 1) the trivial, by 1, the canonical
additive character of [y, and for & € [F, we define the additive character v, of [, by
Yu(n) = 1 (hn). vy, vz, ..., v, are linearly independent elements of F, over [,

Write d; = (dg’), ...,dV) (for i =1,... k), and consider the general term of
the n-fold sum in (1.3):

n(iibwur + -+ + jubptty +di) .. .n(jibiwy + - - + jubytty + di)
= (b +d b +dD)) (b + Vb +dD)). (3.1)
Now write
z=ji(brv1) + -+ + ju(bavy)

so that z belongs to the box

n
B = {Zji(bivi) c0<ji<y fori= 17---7’1}’
i=1
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and set
a=d"v +-+dVv, (fori=1,... k).
Then by (2.2), the i-th factor in the product (3.1) is
(b +di” by +df))
_ {+1 if f(z+2)#0and (f(z+2)) ' €B

_ (fori=1,...,k).
—1 otherwise

Clearly, for all ¢ €|, we have

(25 S wtne-o) -3 ) = {1} Fe%

9hecBner,

whence, for f(z + z;) #0,

1 W o DN [+ i (fz+z) ' eB
2<q1;ahezﬁ,wl(h((f(z+m) ?) 2) {1 if (f(z+z))" ¢B.

It follows that the n-fold sum in (1.3) can be estimated in the following way:

n Iy
ST S0l 4 jubaty +dy) - (b + -+ fubat, + dy)
J1=0 ju=0

- zkﬁ(lzzwmh«f(mi))l—b»—%)\

i€B i=t \1bcpncy,
Flatzp)of (z42) #0
< 1 <K (32)
zely,
Sflztzq)-of (z425)=0

Separating the # = 0 term in the general factor of the product we get

EZ > ih(fz+2)" = b)) 1

9bcBher, 2
S O R 3 SIS RE))
9z 2/ 4 ’

heBhe[F;

Here we have

IG-p—1 5 1
‘E}E_W 2
9=

_lp—1pt-1 1 _g¢g-1 1_ 1

g 2 p—-1 2 29 2 2g

1 I I¢ 1

9ycn
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so that on the left of (3.2) we have

> 20X S wower-m-1)

zEB i=1 beBhe[ﬁ,
flztz))-f (z4z) 0

) zkﬂ(zzwl fleta) ™ -0 -5 )

=y TbeBner,
Flatzy)f (z+2) #0
1 L& o
=% 2 ((—1) -2 S >
' sesal S = (brsenby) € B (hy...hy) € (F,Y

x Yy ¢1(h1((f(Z+Zi1))_l—b1)+"'+hj((f(2+zi,-))_l—bj))>‘

1<l‘1<-"<l‘j§k

k
<ted? Y%

j=1 (hy.. h |F*)11<l|< <<k

> wl(hl(f<z+zil))‘1+---+hj<f(z+zl-j))‘l>‘
4y 4
Flatzy)f (e+zg) #0

x Z wl(—hlbl — = hiby)). (3.3)
(b ,-sb))
Consider the penultimate sum. Clearly,
Y him(fetz) e+ (e + sz,»))l)'
I4y:4
flatzp)f (4g) #0
-1 ~1
< S iln(flzz)) " - h(fz+2) )| kL (34)
f(ZJrzilz).--ef(ﬁ:z,‘j )#0
To be able to estimate this sum, we will need
Lemma 1. Assume that g = p" is a prime power, jEN, €N,
he<p, jHL<p+1, (3.5)
. q
(< = 3.6
<3 (3.6)
ai,...,ay are distinct elements of by, hy,. .., h; are distinct nonzero elements of
Fy. and mi,...,m; are distinct elements of F,. Write f(x) =TI, (x+ a;)

(€F,ylx]). and define O(x). R(x) € Fyx] by

X) = Zhi H fx+my),

i=1 1<r<j
t#i
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R(x) = [0+ m)

t=1

so that
ih-(f(x—l—m-))fl = () for every xeF, with f(x +m;) #0 for 1 <i<j
- i i R(X) y q i SATE

Then, Q(x) is not the 0 polynomial.
Proof of Lemma 1. If % is a rational function over [, such that
degu(x) < deguv(x)
and v(x) is of the form
v(x) = (x+ap)---(x+ay)
with a; € [y,
ai#a; forl <i<j<A
and

I < A=degv(x) < %, (3.7)

then % has a unique partial fraction decomposition of the form

ux A]
Q — e over [Fq_
v(x) x+a x+ay
Again let vy, ..., v, denote a basis for the linear vector space [, over [,, and now

we take v; = 1 (which can be done without loss of generality). Then this decom-
position can be rewritten as

@ _ Z Axh.mx,, (38)

v(x) (X1 yeeyXn) € {0,...,p7]}"x X101 A e XU

where the coefficients Ay, . = Ay, ., (%) with (x1,...,x,)€{0,....,p—1}"
are also unique. For such a rational function '&—j)), we define the polynomial P of

n variables over [, by

P<%;y1,...,yn) = Z Axl,...,xny)f'..-yf,”.

Since f(x) = [[_;(x+a;) with ay,...,a;€F,, thus we have A, =0 for
(x2,...,%,) #(0,...,0) so that P(f(%);yl, e ,yn) € Fyly1]. We write

1 &
P*(y1) = P(ﬁ;yl,-u,yn> = ;aiy’,-
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We will prove by contradiction: assume that contrary to the conclusion of the
lemma Q(x) is the zero polynomial. Then it follows that

(9 ) ()

is the zero polynomial; note that now (3.7) holds with this R(x) in place of v(x) by
(3.6) thus the partial fraction decomposition is unique.

On the other hand, if we write m; = uf) vy
we have

1 U o
Pl ——:y1,...,y. | =P — ey,
<f(x+ml-) ! y) <Zx+m,+1 . y)
p—1
_ @ .
_P<Z (i) (i) 0} ,Y1,~--7}’n>

Sox+ (1 F v v+ v

p—1—p
—P< . %

7 x+ (,u(l') +j)v + ug)vz +o 4 uﬁi)vn

)y, fori=1,...,j, then

n

i
+ Z (i) . l (i) (i) Y153 Vn
4:pfxlr<li>x+ ()" —p+J)o1 + py 2 4 -+ + fin Uy
= +j M( ) —pj M) 0
Z a,y ) yﬁ" Z sy Yol oy
j=p—
0 p=1-p N i o
j ) —p i
_ <yllll < 3 ajy’l) Z ap't J>y§2 oyt
=0 j=p—u"

(1) (i)
1 +p; —1
! P*<YI)_( N RN R S Y ))

+ bt ) )
a i a ) e a _ e n
p—pl? p—p1Y1 p—1)1 Y2 Yn

a0 a1
yllP(y1)+ a, oo o it oyt (1-))

J 1 * () 1 ug’) H(i)
=> il )+ o, o ooy T (L= )
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Substituting y, = --- =y, = 1 and writing

thyl )

we obtain

0 = Hy)P* (1) <y”—1ihz( o).

It follows that :
OF = DIHE)P (1) (in Fylyi)). (3.9)

If g(y1) € Fy[y1] is not the zero polyn0m1a1 let #(g(y1)) denote the greatest non-
negative integer ¢ such that (y; — 1)7 divides g(y;) in F,[vi]. We have

i =1 =y -1
in F,[yi] (since the characteristic of F, is p), thus it follows from (3.9) that
J(H(y)P*(y1)) = p. (3.10)

Now we will show that it suffices to prove

Lemma 2. Assume that t€N and L(x) € Fyx] is a nonzero polynomial of
the form

Lix) = Mx" + -+ Ax" withO<nj<mp< --- <n <p—1. (3.11)
Then we have ¢(L(x)) <t—1.

Indeed, assume that Lemma 2 has been proved. The polynomials H(y;) and
P*(y;) are polynomials of form (3.11) with j, resp. £ in place of ¢, so that we have
J(H(y1)) <j—1and #(P*(y1)) <{— 1.1t follows that

SHE)P (1)) < S (HO1)) + F(PF (1) <j+ -2

which contradicts (3.5) and (3.10) and this completes the proof of Lemma 1.
It remains to prove Lemma 2.

Proof of Lemma 2. Lemma 2 was proved in the special case ¢ = p in [8]; see
Lemma 7 there. Since the polynomials involved in Lemma 2 here have degree
< p, thus it is easy to check that the proof of Lemma 7 in [8] goes through if we
replace [, by F, and [F,[x] by [F,[x]; we leave the details to the reader.

We will need a result of Eichenauer-Herrmann and Niederreiter [3]:

Lemma 3. Assume that g = p" is a prime power, and let W) pe g rational
function over F, which is not of the form (A(x))” — A(x) with a rational function
A(x) over F,. If 1 is a nontrivial additive character of [, then

> (i)

nel,
R(n) %0

< (2max(deg Q,degR) — 1)¢'/> + 1.
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Proof of Lemma 3. This is a trivial consequence of Lemma 1 in [3] (indeed, our
Lemma 3 is a slightly weaker form of Lemma 1 of Eichenauer-Herrmann and
Niederreiter).

We will use the incomplete version of this result:

Lemma 4. Assume that g = p" is a prime power. 2 is a nonzero rational

> R(x
function over [, such that v
deg O < degR (3.12)

and there is no polynomial L(x) € F,[x] with (L(x))"|R(x) and deg L(x) >0, ¢ is a
nontrivial additive character of [, and B is a box of form

n
_:{Zjivi: 0<ji<t; fori:1,2,...,n}
i=1

(Where vy, ..., v, are linearly independent over the prime field of ;). Then we have

> (i)

&SHo

<3(degR + 1)¢'?(2 + logp)".

Proof of Lemma 4. This can be derived from Lemma 3 in the same way as
Theorem 2 is derived from Lemma 1 in [3] in the special case n = 1. Indeed, by
W #p for any m, b€ F, we have

Zd’ ») {1 if m=b,
— m .
q,(T, 0 if m#b,

and thus

S (70|71 2 v(Rm ) g 3 voim )
R(z) #£0 m%O

< IZ Z¢<Q( );hmR >

9het,  met,
R(m)#0

Zzbhb‘

beB

B2 (5)
5 () e

(3.13)

Write  Qy(m) = Q(m) + hmR(m). If h#0, then by (3.12), deghmR(m)>
deg Q(m), thus Qj, is not the zero polynomial:

On(m) #0. (3.14)
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If h =0, then
Qo(m) = Q(m) #0

by the assumptions of the lemma, so (3.14) holds for every A.

Now we want to use Lemma 3 with Qj(m) in place of Q(m). In order to ensure
the applicability of the lemma we have to show that % is not of the form A” — A.
We will prove this by contradiction: assume that there are polynomials K, L € [, [x]
with

(K,L) =1 (3.15)
and
%: <1L<)”1L< (3.16)
hence
O’ = RK(K"™' —1P71). (3.17)

By (3.12), (3.14) and (3.15) it follows from (3.17) that deg L > 0 and L”|R which
contradicts our assumption on R. Thus, indeed, Lemma 2 can be applied, and by
(3.12) we obtain that

Z ¢<Qh )' < (2max(deg Oy, degR) — 1)g'/* + 1

nel,
()%“

< (2degR+1)g'? +1
<2(degR + 1)g'/?* for all heF,. (3.18)
Thus it follows from (3.13) that

255 < (G405
R@)#0

)

bEB

> w(hb)D (3.19)

beB

qheP

l
2(degR + 1)q1/2<1 +- Z

9yer,

since we have B C [, whence |B| < |F,| =gq. If we write ¢(hm) = 9 (m),
then as & runs over the elements of [F,, zp,f runs over the additive characters
of F,. Thus using the definition of B the last double sum in (3.19) can be
rewritten as

DL

hely'beB ¥

=2

)

In

Z th Jior+ - )
J1=
Z ACH)
-0

n

-2 11

¢y r=1

H Z Uy (jror)

r=1 j,=0

(3.20)
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For every he F, and 1 < r < n, ¥} (v,) is a p-th root of unity, say, ) (v,) = e(}%)
with 0 < s <p. If s =0, then we have

t

M

=0

=t+1<p (fors=0),

S Wi )"

jr=0

while for 0 <s <p,

S W (1)

=0

& s ‘ 2 1
i— | < < , for 0 <s<p).
>e(irr) e(n)] Sapgy Poro=s<p)

=0

Moreover, as 1} runs over the additive characters of [,, the n-tuple (¢} (vy),.

¥jf (va)) runs over the n-tuples (e (% z )y e()) of the p-th roots of unity, each of
the latter n-tuples is assumed exactly once. [t follows from these considerations
that the double sum in (3.20) is

5[5 ] <5t

helby'peB

pl

- (r+ 2" 2) < ogp) = a2+ logp)'. (321
It follows from (3.19) and (3.21) that

Zw( )‘ 2(degR + 1)g""*(1 + (2 + logp)")

z€B
R(2)

<3(degR + 1)¢'?(2 + logp)"

which completes the proof of Lemma 4.

By Lemma 1 and the assumptions of our theorem, the numerator of the rational
function in the general term in the last sum in (3.4) is nonzero, thus we may use
Lemma 4 to estimate this sum provided that the rational function

Zhr (z+2z,)) -

is such that
deg O < degR (3.22)
and
there is no L(x) € F,(x) with degL >0 and L”|R. (3.23)
(3.22) is trivial, while (3.23) follows from the facts that

J

R =[]fz+2),

r=1
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and the zeros of f(z) are distinct elements of [F,, thus the multiplicity of every zero
of R(z) is at most j < k which is less than p by (2.3). Thus, indeed, we may use
Lemma 4 and we obtain that the sum in (3.4) is

Yoo m(fetw) T + e+ (et z) )

zeB
Sflz+z)-of (2425) 20

<3(degR + 1)g"*(2 + logp)" + k¢
3(j+1)g'*(2 4 logp)" + kt
< Tklg'? (2 + logp)". (3.24)
It follows from (3.3) and (3.24) that

k
>, 21 (12 ST G h((f(z+2) " = b)) _%)‘

z€EB i=1 beBhel,
Fetz)f () 20
1 &
—kz ( >7k€q1/2(2—|—10gp (Z > i (hb) D (3.25)
Jj=1 he[F* beB
Here we have
S| wtn)| = 3| X o)
he[Fj[ beB Y#py ' bEB
S INTIED IS HCED
V2o | i=1 bEB; VAo i=1 | bEB;
Fori=1,2,...,n we have
p3 ool
2 n —
S Y ww|= ¥ [ Swer| IT [ Seer e
WAy | bEB; W2 | =0 t=it1 | ;=0

If ¢(v,) # 1 for some i + 1 <t < n, then we have

5 oo

so that the contribution of these terms is 0. Thus we may restrict ourselves to the
characters ¢ with

P(vigr) = - = P(va) = 1,

when each of the innermost sums in (3.27) is p. In the penultimate sum in (3.27)
we have

P(v;) = e(j—j) with some k€ {0,1,...,p — 1}; (3.28)
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if k = 0, then the sum is

while for 1 <k < p — 1 we have

z 2 2 2
2 | < T S T S Al 2Tkl

If ¥(vi),...,¢¥(v,) are fixed, then the values of the i — 1 p-th roots of unity
¥(vy),...,%(vi_1) can be chosen in atmost p'~! ways (in exactly p'~! ways if
k#0 in (3.28) but only p'~! — 1 ways if k =0 since now ¢y is excluded). It
follows that the double sum in (3.27) is

2 b;,.l/’(”)'@ (%3 +p22||k/p||)

»# o
n—1 p_l : P 3 | —
p <T+k§l%><q<logp+§> (fori=1,2,...,n).

&1
\

(3.29)
By (3.25), (3.26) and (3.29) the upper bound in (3.3) is

3 j
1 ) Tklg'?(2 + 1 1 -
<+Z(>q(+ogp)q0gp+2
/ S 3\Y
— 12
—l—i—q Tklq''*(2 + logp)" Z( ><2nq(10gp+§>>

Tkt 3\ \*
<1 +?q1/2(2+ 10gp)"<1 +2nq<logp+§)>

<1+ Tklg"*(2 + logp)" (2n(logp + 2))*
<23 kn*q'? (log p +2)" . (3.30)

(2.5) follows from (1.3), (3.2), (3.3) and (3.30), and this completes the proof of
the theorem.
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