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Abstract. Let x: M — S"*” be an n-dimensional submanifold in an (n + p)-dimensional unit
sphere "7, M is called a Willmore submanifold (see [11], [16]) if it is a critical submanifold to the

Willmore functional [,,(S — nH?)*dv, where § = D i j(h;;)z is the square of the length of the second

fundamental form, H is the mean curvature of M. In [11], the second author proved an integral
inequality of Simons’ type for n-dimensional compact Willmore submanifolds in $"*”. In this paper,
we discover that a similar integral inequality of Simons’ type still holds for the critical submanifolds of
the functional JM (S — nH?)dv. Moreover, it has the advantage that the corresponding Euler-Lagrange
equation is simpler than the Willmore equation.
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1. Introduction

For brevity, we use the same notations as [11] in this paper. Let M be an
n-dimensional compact submanifold of an (n + p)-dimensional unit sphere space
ST If hj; denotes the second fundamental form of M, S denotes the square of the
length of the second fundamental form, H denotes the mean curvature vector and
H denotes the mean curvature of M, then we have

S=> (),  H=) H',, H“:%Zh?k, H = |H|,
« k

a,i,j
where e, (n+ 1 < a < n+ p) are orthonormal normal vector fields of M in
Sn+17'
We define the following non-negative function on M,

p* =S — nH*, (1.1)
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which vanishes exactly at the umbilic points of M. The Willmore functional (see
[11], [5], [16]) is

W(x) = J

pdv = J (S — nH?)dv, (1.2)
M

M

the Euler-Lagrange equation (i.e. Willmore equation) can be found in (1.2) of [11].
In this paper, we consider the following non-negative functional

F(x) = JM prdv = JM(S — nH*)dv, (1.3)

which vanishes if and only if M is a totally umbilical submanifold, so the function
F(x) measures how derivation x(M) is from totally umbilical submanifold.

Remark 1.1. When n = 2, F(x) reduces to the well-known Willmore functional
W (x), and its critical points are called Willmore surfaces. The Willmore surfaces in
a sphere were studied by Thomsen [20], Willmore [22], Bryant [3], Pinkall [17],
Weiner [21], Montiel [15], Li [7], Li and Simon [12], Li and Vrancken [13] and
many others (also see Blaschke [2]).

In this paper, we first calculate the Euler-Lagrangian equation of F(x) given
by (1.3).

Theorem 1.1. Let x: M — S"™? be an n-dimensional submanifold in an
(n+ p)-dimensional unit sphere S"*P. Then M is a extremal submanifold of
F(x) ifand only if forn+1 <a<n+p

(1= DAH" + Y7 hihyhy — > Hhjhy —SpHT =0, (14)
Bii,jk By
where A*H® = >". H% (for notations here, see [11]).
We call x: M — S"*7 an extremal submanifold if it satisfies Euler-Lagrange
equation (1.4).

Remark 1.2. When n = 2, Theorem 1.1 was proved by Weiner in [21]. In this
case (1.4) reduces to the following well-known equation of Willmore surfaces
(see [21] or [7])

« ayp By @
ATHY 4+ HGhIHT — 2HH® =0, 3<a<2+p. (1.5)
Biisj
Remark 1.3. Tt is remarkable that when n > 3, the Euler-Lagrange equation
(1.4) of the functional F(x) is much simpler that the Willmore equation (1.2)
of [11].
In order to state our main result, we recall the following important examples

Example 1 (see [4] or [6]). The Clifford torus

m 1 m 1 _
Cm,m:S ( 5) xS < 2), n—2m, (16)
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is an extremal hypersurface in S"*!. In fact, the principal curvatures ki, ...k, of
Cnm are

ki==knp=1, kpo1 = =ko=—1, n=2m. (1.7)
We have from (1.7)
H=0, S=n Y k=0. (1.8)

Thus we easily check that (1.4) holds, i.e., Gy, is an extremal hypersurface. In
particular, we note that p? of C,,, satisfy

o’ =n. (1.9)

Example 2 (see [4] or [7], [11]). The Veronese surface satisfies (1.5) and p* = ‘3—‘.

Example 3. If x: M — S$"*” is a minimal surface or an n-dimensional (n > 3)
Einstein and minimal submanifold, then it must be an extremal submanifold. It can
be checked directly that in this case (1.4) is satisfied by use of Gauss equation and
minimal condition H* = 0.

In [10], [11], the second author proved the following integral inequality of
Simons’ type:

Theorem 1.2 ([10], [11]). Let M be an n-dimensional (n = 2) compact Willmore
submanifold in (n + p)-dimensional unit sphere S"*P. Then we have

n n 2
— dv <0. 1.10
JM,O (2_1/19 p) ( )

2<L
S2-1p’
n

then either p*> =0 and M is totally umbilical, or p> = i In the latter case,
either p =1 and M is a Willmore torus W, ,_pm, or n =2, p =2 and M is the
Veronese surface.

In particular, if

0<p (1.11)

In this paper we discover that a similar integral inequality of Simons’ type still
holds for compact extremal submanifolds in $"*7.

Theorem 1.3. Let M be an n-dimensional (n = 2) compact extremal submani-
fold in (n + p)-dimensional unit sphere S"™P. Then we have

JMp2<2_nl/p—p2)dv<0. (1.12)

) n
S 57
2-1/p
then either p2 =0 and M is totally umbilic, or ,02 = ii/p. In the latter case, either
b

p=1,n=2m and M is a Clifford torus C,,,, defined by (1.6); orn=2,p=2
and M is the Veronese surface.

In particular, if

0<p (1.13)
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Remark 1.4. When n = 2, Theorem 1.3 was proved by the second author in [7]
(also see Li and Simon [12]).

2. Proof of Theorem 1.1

We use the same notations as in [11]. Let xg: M — S"*? be an n-dimensional
compact submanifold. Now we calculate the first variation of the functional F(xo)

Let x: M x R — S"*? be a smooth variation of xy such that x(-,7) = x on the
boundary. Along x: M x R — S"*7, we choose a local orthonormal basis {e4} for
TS"*? with dual basis {w4}, such that {e;(-,7)} forms a local orthonormal basis
for x;: M x {t} — S"™™P. Since T*(M x R) = T*M & T*R, the pullback of {ws}
and {wap} on §"7 through x: M x R — S"*P have the decomposition

x*w, = agdt, x*w; = 0; + aydt, (2.1)
x*w,j = 0;j + aydt, X wiq = i + aindt, x*w(w = Onp + agpdt, (2.2)

where {a;, a,, ajj, aia, aqp} are local functions on M xR with a; = —aj;,

aop = —Apg and
Za dX() + Zaa’eav (23>

is the Variation vector field of x;: M — S™™7. We note that the one forms
{60i, 0, bia, 0} are defined on M x {t}, for t = 0, they reduce to the forms
with the same notation on M.

We denote by d, the differential operator on 7*M, then we have d = dy; + dt 2 5
on T*(M x R).

V=

dtzo

Lemma 2.1. Under the above notations, we have
Z(a, i+a;)b Z hi;a.0;, (2.4)

Qio = Ao + Zh aj, (2.5)

00;
fo_ 3" ( # St~ S aui] + )e (2.6)
j k
where hg and the covariant derivatives a; j, a, ; and a;, ; are defined on M x {t} by

Oia =D _ligt), (2.7)
j
Z a; j0j = dya; + Z a;0ji, (2.8)
i i
D daifi = duda + 3 50, (2.9)
i 3

Z aimﬂj =dya;, + Zajaeji + Za,ﬂﬁﬁa. (210)
J J B
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Proof. These are direct calculations. In fact, substituting (2.1) and (2.2) into the
following equations, respectively,

d(x*w,-) = x* (dw;) = x <Zwu A wj~+ Zwm /\wa>
d(x*w(y) = x* (dwy) = <Zw”f A wj + Zwaﬂ A wﬂ>
d(x*wia) = X (dwja) = x* (Zwly A wijo + Zwiﬁ N Wga — Wi A wa)a
j 8

and comparing the terms in 7*M A dt for each equation on the both sides, we can
get (2.4), (2.5) and (2.6), respectively.

Lemma 2.2.

ah? a1l
8tj = Gy + Z (a,kh,g + aihl, + hl]kak> + Zaaﬁhy + b0 + Z hhjag.

(2.11)

Remark 2.1. When p = 1, Lemma 2.2 was proved by Barbosa and Colares [1]
(see Lemma 6.1 of [1]). We also note that the sign of the second fundamental form
here is different from theirs.

Proof. Differentiating (2.7) with respect to ¢ and using (2.4) and (2.6), we get
811“

= Qjq,j + Z azkh 'k Z aﬂah + aa ij Z(hg(ak,j + h:;{ak]) + Z h?;(h]f]aﬂ
k k.3

Covariant differentiating (2.5) over M x {¢} and using the Codazzi equation for
X M — S, we get

« «
Qio,j = Qo ij + E (ak,jhik + akhikj)
k
_ « «
= Qqjj + E (ax,jhy + achy,).
k

Combining the above two equations, we prove Lemma 2.2.
Set i =j in (2.11) and making summation over i with using th aighy; = 0,
we get

OHY 1

T:—ALaaﬂLZH ak+zaaﬁH += Zh”hfiag—l—aa. (2.12)
t n % s

From (2.11) and the fact that

S = Z(h3)27 Z Aaf 3h3ha =0, Z a]khl(:zh;j =0,

i,j,a i,j,0,0 i,].k,c
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we obtain
108 N 1 N aro
T Z hiiae ;i + Ezk:s’kak +nH%, + A ;ﬂhth has. (2.13)
i,j,o i,].k,o,

From (2.12) and ), ;a.sH"H” = 0, we obtain

naH o 1 n 2 1. 3 (6}
RS _za:H A aa+§zk:(H )’kak+i%:ﬁH hoh, ag—l—nZH ay. (2.14)

For x;: M — S", we consider the functional

F(x,) = J pPdv = J (S—nH»O, A--- N6, (2.15)
M M
From (2.4), we have
g(al A Zel /\8—9/\ A0,

= Z ai;i + ai — hijaa )0y A -+ A0y
i

= <Za,~ﬁi—nZH“aa>01/\-~/\9n. (216)

Differentiating (2.15) with respect to ¢, we get by use of (2.13), (2.14) and (2.16)

N A

ij,a
« 3 o
+22[%huhlk% E:Hﬁh[h -5 }aa}dv (2.17)
@ i

We note that
S+ 0> k=Y (P°ar) 4 (2.18)
k k k

and M is compact (without boundary), also noting

Z hi; = nHY, Z hg = nATH®, (2.19)
i
it follows from (2.17), (2.18) and Green’s formula that

aF(xt) B10871a 816870 M 2750 1Lyya
7:2JMZ ’gﬁhuhﬁ,{hk] ZﬂH highty =5 p°H® + (n = 1)AH® | agdv
« i,],k, 1,],

(2.20)

From (2.3) and (2.20) with restriction to t = 0, we have proved Theorem 1.1.



A variational problem for submanifolds in a sphere 301

3. The Lemmas and Proof of Theorem 1.3
Define tensors
hy; = b — HOG, (3.1)
~a [3 o
Ua’f = Z ij Oap = Zhl]hﬁ (32)
i,j
By use of Theorem 1.1, (3.1) and (3.2), we can get

Lemma 3.1. Let M be an n-dimensional submanifold in an (n+ p)-dimen-
sional unit sphere S"P. Then M is an extremal submanifold if and only if it
satisfies forn+1 < a<n+p

S bk = —(n— DATHY =S HG.5 - HOpP +SHO. (33)
- 2
B, j.k I6]

Lemma 3.2 (see Lemma 4.5 of [11]). Let x: M — S"*P be an n-dimensional
submanifold in S"*P. Then

1 ara
5 Apz = |Vh|2 2|VLH| + Z hah;cykz Z Hﬁhm]hzjhzm
a,i,j.k ,B,0,j,m
2 2 2 1 4 1 2

From (3.3), we have

n Z Hdhﬂ Wk, =—n(n—1) ZALH’B “H" — nZH“Hﬁ&ag —nH*p?

1} tm
.60, ],k B

n o 2
+?|H| P (3.5)
Integrating (3.4) over M and using Stokes’ formula, we have by use of (3.5),

0> J [|Vh|2 — |V H]> —n(n = 1)) HOAH® —n > H H’G05 + np?
M

2 1
Ly =0 (2 - —>p4] dv
2 p
1 —-2
> J [n(sz2 — HH643) + p* (n — (2 - —>p2> + %Hzpz} dv
M p

e

where we used Lemma 4.2 of [11] and 7,3 = 04 0as (see (4.9) of [11])
S HH G5 =Y (H"Y6a < Y (H")-) 65 =H*p". (3.7)
a,B o «a B

Thus we reach the integral inequality (1.12) in Theorem 1.3.
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If (1.12) holds, then we conclude from (5.4) that either p?>=0, or
pr=n/(2— Il,) In the first case, we know that S =nH?, i.e. M is totally umbilic;

in the latter case, i.e.,
~a 1
7= Y r=n (2=, (33)

i, j

(3.6) becomes an equality, we conclude that either H =0 if n > 3, or n = 2.
If n >3 and H = 0, from Main Theorem of Chern, Do Carmo and Kobayashi

[4] we get p =1 and
M=s" <\/%> x S"""( " . m) (3.9)

combining (3.9) with (1.4), we conclude that n =2m and M = C,,,, thus we
prove Theorem 1.3. If n = 2, our Theorem 1.3 comes from Theorem 3 of [7] (also
see [12]). We complete the proof of Theorem 1.3.
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