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Abstract. Let x: M ! Snþp be an n-dimensional submanifold in an ðnþ pÞ-dimensional unit
sphere Snþp, M is called a Willmore submanifold (see [11], [16]) if it is a critical submanifold to the

Willmore functional
Ð
M
ðS� nH2Þ

n
2dv, where S ¼

P
�;i; jðh�ijÞ

2
is the square of the length of the second

fundamental form, H is the mean curvature of M. In [11], the second author proved an integral
inequality of Simons’ type for n-dimensional compact Willmore submanifolds in Snþp. In this paper,
we discover that a similar integral inequality of Simons’ type still holds for the critical submanifolds of
the functional

Ð
M
ðS� nH2Þdv. Moreover, it has the advantage that the corresponding Euler-Lagrange

equation is simpler than the Willmore equation.
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1. Introduction

For brevity, we use the same notations as [11] in this paper. Let M be an
n-dimensional compact submanifold of an ðnþ pÞ-dimensional unit sphere space
Snþp. If h�ij denotes the second fundamental form of M, S denotes the square of the
length of the second fundamental form, H denotes the mean curvature vector and
H denotes the mean curvature of M, then we have

S ¼
X
�;i; j

ðh�ijÞ
2; H ¼

X
�

H�e�; H� ¼ 1

n

X
k

h�kk; H ¼ jHj;

where e� (nþ 14�4 nþ p) are orthonormal normal vector fields of M in
Snþp.

We define the following non-negative function on M,

�2 ¼ S� nH2; ð1:1Þ
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which vanishes exactly at the umbilic points of M. The Willmore functional (see
[11], [5], [16]) is

WðxÞ ¼
ð
M

�ndv ¼
ð
M

ðS� nH2Þ
n
2dv; ð1:2Þ

the Euler-Lagrange equation (i.e. Willmore equation) can be found in (1.2) of [11].
In this paper, we consider the following non-negative functional

FðxÞ ¼
ð
M

�2dv ¼
ð
M

ðS� nH2Þdv; ð1:3Þ

which vanishes if and only if M is a totally umbilical submanifold, so the function
FðxÞ measures how derivation xðMÞ is from totally umbilical submanifold.

Remark 1.1. When n ¼ 2, FðxÞ reduces to the well-known Willmore functional
WðxÞ, and its critical points are called Willmore surfaces. The Willmore surfaces in
a sphere were studied by Thomsen [20], Willmore [22], Bryant [3], Pinkall [17],
Weiner [21], Montiel [15], Li [7], Li and Simon [12], Li and Vrancken [13] and
many others (also see Blaschke [2]).

In this paper, we first calculate the Euler-Lagrangian equation of FðxÞ given
by (1.3).

Theorem 1.1. Let x: M ! Snþp be an n-dimensional submanifold in an
ðnþ pÞ-dimensional unit sphere Snþp. Then M is a extremal submanifold of
FðxÞ if and only if for nþ 14�4 nþ p

ðn� 1Þ�?H� þ
X
�;i; j;k

h�ijh
�
ikh

�
kj �

X
�;i; j

H�h
�
ijh

�
ij �

n

2
�2H� ¼ 0; ð1:4Þ

where �?H� ¼
P

i H
�
;ii ( for notations here, see [11]).

We call x: M ! Snþp an extremal submanifold if it satisfies Euler-Lagrange
equation (1.4).

Remark 1.2. When n ¼ 2, Theorem 1.1 was proved by Weiner in [21]. In this
case (1.4) reduces to the following well-known equation of Willmore surfaces
(see [21] or [7])

�?H� þ
X
�;i; j

h�ijh
�
ijH

� � 2H2H� ¼ 0; 34�4 2 þ p: ð1:5Þ

Remark 1.3. It is remarkable that when n5 3, the Euler-Lagrange equation
(1.4) of the functional FðxÞ is much simpler that the Willmore equation (1.2)
of [11].

In order to state our main result, we recall the following important examples

Example 1 (see [4] or [6]). The Clifford torus

Cm;m ¼ Sm
� ffiffiffi

1

2

r �
� Sm

� ffiffiffi
1

2

r �
; n ¼ 2m; ð1:6Þ
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is an extremal hypersurface in Snþ1. In fact, the principal curvatures k1; . . . ; kn of
Cm;m are

k1 ¼ � � � ¼ km ¼ 1; kmþ1 ¼ � � � ¼ kn ¼ �1; n ¼ 2m: ð1:7Þ
We have from ð1:7Þ

H ¼ 0; S ¼ n;
X
i

k3
i ¼ 0: ð1:8Þ

Thus we easily check that ð1:4Þ holds, i.e., Cm;m is an extremal hypersurface. In
particular, we note that �2 of Cm;m satisfy

�2 ¼ n: ð1:9Þ

Example 2 (see [4] or [7], [11]). The Veronese surface satisfies (1.5) and �2 ¼ 4
3
.

Example 3. If x: M ! Snþp is a minimal surface or an n-dimensional ðn5 3Þ
Einstein and minimal submanifold, then it must be an extremal submanifold. It can
be checked directly that in this case (1.4) is satisfied by use of Gauss equation and
minimal condition H� ¼ 0.

In [10], [11], the second author proved the following integral inequality of
Simons’ type:

Theorem 1.2 ([10], [11]). Let M be an n-dimensional ðn5 2Þ compact Willmore
submanifold in ðnþ pÞ-dimensional unit sphere Snþp. Then we haveð

M

�n
�

n

2 � 1=p
� �2

�
dv4 0: ð1:10Þ

In particular, if

04 �2 4
n

2 � 1=p
; ð1:11Þ

then either �2 � 0 and M is totally umbilical, or �2 � n
2�1=p. In the latter case,

either p ¼ 1 and M is a Willmore torus Wm;n�m, or n ¼ 2, p ¼ 2 and M is the
Veronese surface.

In this paper we discover that a similar integral inequality of Simons’ type still
holds for compact extremal submanifolds in Snþp.

Theorem 1.3. Let M be an n-dimensional (n5 2) compact extremal submani-
fold in ðnþ pÞ-dimensional unit sphere Snþp. Then we haveð

M

�2

�
n

2 � 1=p
� �2

�
dv4 0: ð1:12Þ

In particular, if

04 �2 4
n

2 � 1=p
; ð1:13Þ

then either �2 � 0 and M is totally umbilic, or �2 � n
2�1=p. In the latter case, either

p ¼ 1, n ¼ 2m and M is a Clifford torus Cm;m defined by ð1:6Þ; or n ¼ 2, p ¼ 2
and M is the Veronese surface.
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Remark 1.4. When n ¼ 2, Theorem 1.3 was proved by the second author in [7]
(also see Li and Simon [12]).

2. Proof of Theorem 1.1

We use the same notations as in [11]. Let x0: M ! Snþp be an n-dimensional
compact submanifold. Now we calculate the first variation of the functional Fðx0Þ

Let x: M�R ! Snþp be a smooth variation of x0 such that xð�; tÞ ¼ x0 on the
boundary. Along x: M�R ! Snþp, we choose a local orthonormal basis feAg for
TSnþp with dual basis f!Ag, such that feið�; tÞg forms a local orthonormal basis
for xt: M�ftg ! Snþp. Since T�ðM�RÞ ¼ T�M � T�R, the pullback of f!Ag
and f!ABg on Snþp through x: M�R ! Snþp have the decomposition

x�!� ¼ a�dt; x�!i ¼ �i þ aidt; ð2:1Þ
x�!ij ¼ �ij þ aijdt; x�!i� ¼ �i� þ ai�dt; x�!�� ¼ ��� þ a��dt; ð2:2Þ

where fai; a�; aij; ai�; a��g are local functions on M�R with aij ¼ �aji,
a�� ¼ �a�� and

V ¼ d

dt

����
t¼0

xt ¼
X
i

aidx0ðeiÞ þ
X
�

a�e�; ð2:3Þ

is the variation vector field of xt: M ! Snþp. We note that the one forms
f�i; �ij; �i�; ���g are defined on M�ftg, for t ¼ 0, they reduce to the forms
with the same notation on M.

We denote by dM the differential operator on T�M, then we have d ¼ dM þ dt @
@t

on T�ðM�RÞ.
Lemma 2.1. Under the above notations, we have

@�i
@t

¼
X
j

ðai; j þ aijÞ�j �
X
j;�

h�ija��j; ð2:4Þ

ai� ¼ a�;i þ
X
j

h�ijaj; ð2:5Þ

@�i�
@t

¼
X
j

�
ai�; j þ

X
k

aikh
�
jk �

X
�

a��h
�
ij þ a��ij

�
�j; ð2:6Þ

where h�ij and the covariant derivatives ai; j, a�;i and ai�; j are defined on M�ftg by

�i� ¼
X
j

h�ij�j; ð2:7Þ

X
j

ai; j�j ¼ dMai þ
X
j

aj�ji; ð2:8Þ

X
i

a�;i�i ¼ dMa� þ
X
�

a����; ð2:9Þ

X
j

ai�; j�j ¼ dMai� þ
X
j

aj��ji þ
X
�

ai����: ð2:10Þ
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Proof. These are direct calculations. In fact, substituting (2.1) and (2.2) into the
following equations, respectively,

dðx�!iÞ ¼ x�ðd!iÞ ¼ x�
�X

j

!ij ^ !j þ
X
�

!i� ^ !�

�
;

dðx�!�Þ ¼ x�ðd!�Þ ¼ x�
�X

j

!�j ^ !j þ
X
�

!�� ^ !�

�
;

dðx�!i�Þ ¼ x�ðd!i�Þ ¼ x�
�X

j

!ij ^ !j� þ
X
�

!i� ^ !�� � !i ^ !�

�
;

and comparing the terms in T�M ^ dt for each equation on the both sides, we can
get (2.4), (2.5) and (2.6), respectively.

Lemma 2.2.

@h�ij
@t

¼ a�;ij þ
X
k

�
aikh

�
kj þ ajkh

�
ki þ h�ijkak

�
þ
X
�

a��h
�
ij þ �ija� þ

X
k;�

h�ikh
�
kja�:

ð2:11Þ

Remark 2.1. When p ¼ 1, Lemma 2.2 was proved by Barbosa and Colares [1]
(see Lemma 6.1 of [1]). We also note that the sign of the second fundamental form
here is different from theirs.

Proof. Differentiating (2.7) with respect to t and using (2.4) and (2.6), we get

@h�ij
@t

¼ ai�; j þ
X
k

aikh
�
jk �

X
�

a��h
�
ij þ a��ij �

X
k

ðh�ikak; j þ h�ikakjÞ þ
X
k;�

h�ikh
�
kja�:

Covariant differentiating (2.5) over M�ftg and using the Codazzi equation for
xt: M ! Snþp, we get

ai�; j ¼ a�;ij þ
X
k

ðak; jh�ik þ akh
�
ikjÞ

¼ a�;ij þ
X
k

ðak; jh�ik þ akh
�
ijkÞ:

Combining the above two equations, we prove Lemma 2.2.
Set i ¼ j in (2.11) and making summation over i with using

P
i;k aikh

�
ki ¼ 0,

we get

@H�

@t
¼ 1

n
�?aa þ

X
k

H�
;kak þ

X
�

a��H
� þ 1

n

X
i;k;�

h�ikh
�
kia� þ a�: ð2:12Þ

From (2.11) and the fact that

S ¼
X
i; j;�

ðh�ijÞ
2;

X
i; j;�;�

a��h
�
ijh

�
ij ¼ 0;

X
i; j;k;�

ajkh
�
kih

�
ij ¼ 0;
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we obtain

1

2

@S

@t
¼

X
i; j;�

h�ija�;ij þ
1

2

X
k

S;kak þ nH�a� þ
X

i; j;k;�;�

h�ijh
�
ikh

�
kja�: ð2:13Þ

From (2.12) and
P

�;� a��H
�H� ¼ 0, we obtain

n

2

@H2

@t
¼

X
�

H��?a� þ n

2

X
k

ðH2Þ;kak þ
X
i; j;�;�

H�h�ijh
�
ija� þ n

X
�

H�a�: ð2:14Þ

For xt: M ! Snþp, we consider the functional

FðxtÞ ¼
ð
M

�2dv ¼
ð
M

ðS� nH2Þ�1 ^ � � � ^ �n: ð2:15Þ

From (2.4), we have

@

@t
ð�1 ^ � � � ^ �nÞ ¼

X
i

�1 ^ � � � ^ @�i
@t

^ � � � ^ �n

¼
X
i

ðai;i þ aii � h�iia�Þ�1 ^ � � � ^ �n

¼
�X

i

ai;i � n
X
�

H�a�

�
�1 ^ � � � ^ �n: ð2:16Þ

Differentiating (2.15) with respect to t, we get by use of (2.13), (2.14) and (2.16)

@FðxtÞ
@t

¼
ð
M

��
2
X
i; j;�

h�ija�;ij � 2
X
�

H��?a� þ
X
k

ð�2Þ;kak þ �2
X
k

ak;k

�

þ 2
X
�

� X
i; j;k;�

h
�
ijh

�
ikh

�
kj �

X
i; j;�

H�h
�
ijh

�
ij �

n

2
�2H�

�
a�

�
dv ð2:17Þ

We note that X
k

ð�2Þ;kak þ �2
X
k

ak;k ¼
X
k

	
�2ak



;k
; ð2:18Þ

and M is compact (without boundary), also notingX
j

h�ijj ¼ nH�
;i ;

X
i; j

h�ijji ¼ n�?H�; ð2:19Þ

it follows from (2.17), (2.18) and Green’s formula that

@FðxtÞ
@t

¼ 2

ð
M

X
�

� X
i; j;k;�

h
�
ijh

�
ikh

�
kj �

X
i; j;�

H�h
�
ijh

�
ij �

n

2
�2H� þ ðn� 1Þ�?H�

�
a�dv

ð2:20Þ

From (2.3) and (2.20) with restriction to t ¼ 0, we have proved Theorem 1.1.
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3. The Lemmas and Proof of Theorem 1.3

Define tensors

~hh
�

ij ¼ h�ij � H��ij; ð3:1Þ

~���� ¼
X
i; j

~hh
�

ij
~hh
�

ij; ��� ¼
X
i; j

h�ijh
�
ij: ð3:2Þ

By use of Theorem 1.1, (3.1) and (3.2), we can get

Lemma 3.1. Let M be an n-dimensional submanifold in an ðnþ pÞ-dimen-
sional unit sphere Snþp. Then M is an extremal submanifold if and only if it
satisfies for nþ 14�4 nþ pX

�;i; j;k

~hh
�

ij
~hh
�

ik
~hh
�

kj ¼ �ðn� 1Þ�?H� �
X
�

H� ~���� � H��2 þ n

2
H��2: ð3:3Þ

Lemma 3.2 (see Lemma 4.5 of [11]). Let x: M ! Snþp be an n-dimensional
submanifold in Snþp. Then

1

2
��2 5 jrhj2 � n2jr?Hj2 þ

X
�;i; j;k

ðh�ijh�kkiÞj þ n
X

�;�;i; j;m

H�~hh
�

mj
~hh
�

ij
~hh
�

im

þ n�2 þ nH2�2 �
�

2 � 1

p

�
�4 � 1

2
�ðnH2Þ: ð3:4Þ

From (3.3), we have

n
X

�;�;i; j;k

H�~hh
�

mj
~hh
�

ij
~hh
�

im ¼ �nðn� 1Þ
X

�?H� � H� � n
X
�;�

H�H�~���� � nj~HHj2�2

þ n2

2
j~HHj2�2: ð3:5Þ

Integrating (3.4) over M and using Stokes’ formula, we have by use of (3.5),

05
ð
M

�
jrhj2 � n2jr?Hj2 � nðn� 1Þ

X
H��?H� � n

X
H�H�~���� þ n�2

þ n2

2
H2�2 �

�
2 � 1

p

�
�4

�
dv

5
ð
M

�
nð�2H2 � H�H�~����Þ þ �2

�
n�

�
2 � 1

p

�
�2

�
þ nðn� 2Þ

2
H2�2

�
dv

5
ð
M

�2

�
n�

�
2 � 1

p

�
�2

�
dv; ð3:6Þ

where we used Lemma 4.2 of [11] and ~���� ¼ ~������ (see (4.9) of [11])X
�;�

H�H� ~���� ¼
X
�

ðH�Þ2~��� 4
X
�

ðH�Þ2 �
X
�

~��� ¼ H2�2: ð3:7Þ

Thus we reach the integral inequality ð1:12Þ in Theorem 1.3.
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If ð1:12Þ holds, then we conclude from ð5:4Þ that either �2 � 0, or
�2 � n=

	
2 � 1

p



. In the first case, we know that S� nH2, i.e. M is totally umbilic;

in the latter case, i.e.,

�2 ¼
X
�;i; j

ð~hh�ijÞ
2 � n=

�
2 � 1

p

�
; ð3:8Þ

ð3:6Þ becomes an equality, we conclude that either H ¼ 0 if n5 3, or n ¼ 2.
If n5 3 and H ¼ 0, from Main Theorem of Chern, Do Carmo and Kobayashi

[4] we get p ¼ 1 and

M ¼ Sm
� ffiffiffiffi

m

n

r �
� Sn�m

� ffiffiffiffiffiffiffiffiffiffiffiffi
n� m

n

r �
; ð3:9Þ

combining (3.9) with (1.4), we conclude that n ¼ 2m and M ¼ Cm;m, thus we
prove Theorem 1.3. If n ¼ 2, our Theorem 1.3 comes from Theorem 3 of [7] (also
see [12]). We complete the proof of Theorem 1.3.
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