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Abstract. In this article we study surfaces in S? x R for which the unit normal makes a constant
angle with the R-direction. We give a complete classification for surfaces satisfying this simple geo-
metric condition.
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1. Introduction

In recent years there has been done some research about surfaces in a 3-dimen-
sional Riemannian product of a surface M? and R. This was motivated by the study
of minimal surfaces. In particular, Rosenberg and Meeks initiated this in [5] and [6].
This work inspired other geometers, for example in [1], [2], [3] and [4].

In this article we consider a special case of a M? x R, namely we take M? to be
the unit 2-sphere S?. In this space we look at constant angle surfaces. By this we
mean a surface for which the unit normal makes a constant angle with the tangent
direction to R. We show that this simple geometric condition locally completely
determines the surface intrinsically. Furthermore, we prove in the classification
theorem that we can construct a constant angle surface starting from an arbitrary
curve in S%.

2. Preliminaries

Let S? x R be the Riemannian product of the 2-sphere S*(1) and R with the
standard metric (, ) and Levi-Civita connection V. We denote by £ a unit vector
field in the tangent bundle T(S? x R) that is tangent to the R-direction.
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For pe(S* x R), the Riemann-Christoffel curvature tensor R of S x R is

given by
(R(X,Y)Z,W) = (X2, Wer) (Y2, Zep) — (X2, Ze2) (Y2, We2)

where X,Y,Z, W €T,(S* x R) and Xs» = X — (X,2) 2 is the projection of X to
the tangent space of S2. B

Let us consider F : M — M, an isometric immersion of a submanifold M into a
Riemannian manifold M with Levi Civita connection V. Then we have the for-
mulas of Gauss and Weingarten which state that for every X and Y tangent to M
and for every N normal to M the equations

VxY = VxY + h(X,Y), (1)

VxN = —AyX + VN, (2)
hold, with V the Levi Civita connection of the submanifold. Here, /4 is a symmetric
(1,2)-tensorfield, taking values in the normal bundle, called the second funda-
mental form of the submanifold, Ay is a symmetric (1, 1)-tensorfield, called the
shape operator associated to N and V* is a connection in the normal bundle. For
hypersurfaces, V* vanishes, but further on we will need the Weingarten formula
also for codimension 2 immersions.

Now consider a surface M in S? x R. Let us denote with £ a unit normal to M
with shape operator A. Then we can decompose g as

0
E_T_I_ cos O &, (3)

where T is the projection of g on the tangent space of M and @ is the angle function
defined by

cosf(p) = <%,§> (4)

for every point p € M.
If we denote by R the curvature tensor of M, then with the previous notation,
the equations of Gauss and Codazzi are given by

(R(X,Y)Z,W) = (AY,Z)(AX, W) — (AX, Z)(AY, W) + (X, W)(Y,Z)
— (X, Z)(Y, W)+ (Y, TYW,TYX,Z) + (X, T)(Z, T){Y,W)
— (X, T)(W,T)(Y,Z) — (Y, T)(Z, T)(X, W) (5)
VxAY — VyAX —A[X,Y] = cosf ({Y,T)X — (X, T)Y). (6)
Furthermore, we have the following proposition.
Proposition 1. For every X € TM, we have that
VxT = cosf AX, (7)
X[cosb] = —(AX,T). (8)

We can prove this by using that g is a parallel vector field in S* x R and the
decomposition (3).
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Equations (5), (6), (7) and (8) are called the compatibility equations for S?x R
In [4], the following theorem was proven.

Theorem 1 (B. Daniel). Let M be a simply connected Riemannian surface,
ds® its metric and V its Levi Civita connection. Let A be a field of symmetric
operators A, : Ty(M) — T,(M), T a vector ﬁeld on M and 6 a smooth function on
M such that HT| = sm29 Assume that (ds®, A, T, 0) satisfies the compatlblltty
equations for S© X R. Then there exists an isometric immersion F : M — S*x R
such that the shape operator with respect to the unit normal £ is given by A and
such that

0
% T + cosf &.
Moreover the immersion is unique up to global isometries of S’x R preserving
the orientations of both S* and R.

3. Characterizations of constant angle surfaces

In this section we introduce the notion of constant angle surfaces and give
some first characterizations.

By a constant angle surface M in S* x R, we mean a surface for which the
angle function 6 is constant on M. There are two trivial cases, § =0 and 6 = 7.
The condition # = 0 means that g is always normal, so we get a S* x {fp}. In the
second case gt is always tangent. This corresponds to the Riemannian product of a
curve in S? and R.

Now suppose 6 ¢{0,7}. From (8) we immediately see that as ¢ is a constant,

(AX,T) = (AT,X) = 0 9)

for every X € T,(M). This implies that 7' is a principal direction with principal
curvature 0.
Thus if we take an orthonormal basis {e;, e, } with e; = HTII and e, a unit vector

field perpendicular to e;, the shape operator A takes the following form:

0 0
A= (0 A) (10)
for a function A on M.

Combining this with Gauss’ equation (5) we find for the Gaussian curvature K
K= <R(€1,€2)62,€1> = 00829. (]])
We can summarize this in the following proposition.

Proposition 2. If M is a constant angle surface in S* x R with constant angle
0, then M has constant Gaussian curvature K = cos*6 and the projection T of % is
a principal direction.

Remark that with Proposition 2 the intrinsic geometry of constant angle sur-
faces is locally completely determined.
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4. Classification theorem

In this section we completely describe the constant angle surfaces. We look at
S*x R as a hypersurface in F* and denote % by (0,0,0,1). We then prove the
following classification theorem.

Theorem 2. A surface M immersed in S* x R is a constant angle surface if
and only if the immersion F is (up to isometries of S* x R) locally given by
F:M— S*xR: (u,v)— F(u,v), where

F(u,v) = (cos(ucos 0)f (v) + sin(ucos)f(v) x f'(v), usin6), (12)
f:l— S? is a unit speed curve in S* and 0 € [0, 7] is the constant angle.

Proof. First we prove that the given immersion (12) is a constant angle surface
in S? x R. To see this we first calculate the tangent vectors

F, = (cos6(— sin(ucos 0)f (v) + cos(ucos 0)f (v) x f'(v)), sin6)
F, = (cos(ucos O)f'(v) + sin(ucos )f (v) x f"(v),0)
= ((cos(ucos ) + sin(ucos )7 (v))f' (v),0)
for some function 7 on M. We know that f x f” is a scalar multiple of f’ since f is a
unit speed curve in S2.

The normal é of S x Rin F* is nothing but the position vector where we take
the last component to be 0, thus

€ = (cos(ucos )f (v) + sin(ucos)f(v) x f'(v),0).
So we find that the unit normal £ on M in S* x R is given by
& = (—sinO(—sin(ucos 0)f (v) + cos(ucos )f (v) x f'(v)), cosb),

and thus we see that

<§,%> = cosf

is a constant.

Suppose now that we have a surface M in S? x R with constant angle function
6. If M is one of the trivial cases, M can be parameterized by (12) as can easily be
seen. Suppose from now on that & ¢ {0,7}. Then we can take an orthonormal basis
of the tangent space e; = H% and e, perpendicular to e;. As we saw earlier, the
shape operator A corresponding to the unit normal £ with respect to e; and e; is

then given by
0 0
A= (09 )

for a function A on M.
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Using (7), one can calculate that the Levi-Civita connection V of M satisfies

V. e =0, (14)
Veer =0, (15)
Ve,e1 = Acotf e, (16)
Ve,e2 = —Acotd e;. (17)

Now take coordinates (u,v) on M with 2 5. = aep and % = (e,. From the con-
dition [, 2] =0 we find, using (15) and (16):

a, =0, (18)
By = afAcot. (19)

Equation (18) implies that, after a change of the u-coordinate, we can assume o = 1
and thus the metric takes the form

ds* = di® + (*(u,v) dv* (20)
and the Egs. (14), (15), (16) and (17) become

0
Voo =0, (21)
\Y% 0 Acotd 22
%% = Acot 0 ( )
8 ﬁ o
2 3 ) 23
Furthermore we find from Codazzi’s equation (6) that A must satisfy
Ay = —cosfsinf — \? cot . (24)
Solving (19) and (24) we find '
Au,v) = —sinf tan(ucos 6 + C(v)), (25)
B(u,v) = D(v) cos(ucosf + C(v)) (26)

for some functions C and D on M.

Now let us consider our surface M as a codimension 2 immersed surface in F*
and denote with D the Euclidean connection and with V- the normal connectlon
Then we have two unit normals: & = (&;,&,&3, cosf) tangent to S? x R and
£ = (F\,F,,F3,0) normal to S* x R with shape operator A respectively A. We
have for every X = (X, X, X3,X,) € T,(M),

Vi€ = (Dx€,€)¢
= <(X13X2aX3a 0)7 5)5
= —cos(X,T)¢ (27)

and hence

Vi€ = cos (X, T)E. (28)
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From (27) and the formula of Weingarten (2) we get

e |
A<%) =—((Fv),, (F2),,(F3),,0) — cos0sin0(&;, &, &3, cosd)  (29)
~( 0
A(%) = _((Fl)m (FZ)U, (Fg)“()) (3())
Since ;= e1 = Ty and 2 = Be, with e, normal to e; we find that
9 .
(F4), = <Fu,5> = sin#, (31)
0
(F4)v - <FU7&> =0. (32)

Thus we can take F, = usin 6, since translations in the direction of (0,0,0, 1)
are isometries of S? x R.

By looking at (30) and at the fourth component of (29) we see that the shape
operator A with respect to % and % is of the following form:

~ —cos?0 0
A= ( o 1). (33)
Comparing the other components of (29) we get
& = —tan6(F;), (34)

forj=1,2,3.
Now applying the formula of Gauss (1), using (21), (22), (23), (13), (33) and
(34) we find

(F]'>uu == COSQ&F]’ (35>
(Fj)uy = Acotb(Fj),, (36)
() = ~08,(F),+ 2 (B), - AP ano(F), - 5°F,  (30)

forj=1,2,3.

From (36) we find that
(Fj), = cos(ucos b + C(v))H;(v) (38)
and hence

Fy= | coslucos0+ CONH) s +10) (39)

for j = 1,2,3 and with H; and I; arbitrary functions on M.
From (35) we find that the function /; from (39) also must satisfy

Ii(u) = Kjcos(ucos 0) + L; sin(ucos 6), (40)

where K; and L; are constants.
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To summarize, we see that our immersion F' is of the following form:

F= <<K, + J cos(C(y))Hi (y) dy> cos(u cos )

Vo

+ <L1 - JU sin(C(y))H; (y) dy) sin(ucos®), ..., usin 6). (41)

Vo

Now define the functions

ﬁ@=&+JaMQM%M@, (42)

g0) =1 | sin(CONH) av. 43)
Moreover we have the following conditions
(Fu,Fu) = 1, (Fo, Fy) = (u,0), (Fu, F,) =0,
(Fu, §) =0, (Fy,§) =0, (£,&) =1,
(Fi&) =0, (F,,§) =0, (£6) =1,
(€. =0,

which are equivalent to

> =1, (44)

3
Zgjz =1, (45)
=

3
> g =0, (46)
j=1
3
Zﬂgj =0, (47)
j=1
3 3
d_H =) () +(g) =D0)" (48)

From (44) and (45) we see that f(v) = (fi(v),/(v),f3(v)) and g(v) = (g1(v),
22(v), g3(v)) are curves in S°. Moreover if we change the v- coordmate such that f

becomes a unit speed curve, which corresponds to setting D(v)* = sec2(C(v)), we
see from (46) and (47) that g is a unit vector perpendicular to the unit vectors
f and f'. Thus g = +f x f’ and we can choose g = f x f’. Then the immersion
F:M — S* x R is given by

F(u,v) = (cos(ucos 0)f (v) + sin(ucos 0)f (v) x f'(v), usin6) (49)

as we wished to prove. O



96 E. Dillen et al.: Constant angle surfaces in S x R

5. Final remarks

We see that Eq. (37) is also satisﬁed. After a straightforward computation, we
see that (37) expresses thatf2 + gj + (%)2 must be a constant for every j. This is
the case since (H 1, Ha, H3) is a unit vector in the direction of f’ and thus f, g and

L(Hy,H,, H3) form an orthonormal basis. Also the equations from the formula of
Welngarten are satisfied.
Remark also that the two trivial cases are included in the parametrization (12).

If 8 =0, (12) becomes

Flu,v) = (cos(u)f (v) + sin(u)f(v) x£'(¢),0) (50)
which gives us S* x {0}.
For § =7, (12) becomes

Fu,v) = (f(v), u). (51)
This clearly gives the Riemannian product of a curve in S* and R.

Finally we want to give a non-trivial example of a constant angle surface. In
fact we can construct many examples since we know from Theorem 2 that there is
a constant angle surface for every curve in S?%. We want to give one special case
explicitly. Therefore look at the immersion F : M — S x R C E* given by

F(u,v) = (cosu cosv, cosu sinv, sinu, utan) (52)

where #€]0,5[ is a constant. This is a reparametrization of (12) if f is a great
circle. We can see geometrically that this is a constant angle surface. If we take
v =0, then we get a curve in S! x R. This curve is nothing but a helix which has
the property that the tangent vector makes a constant angle with % Now we get the
surface (52) by rotating this curve.
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