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Constant angle surfaces in S2 �R
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Abstract. In this article we study surfaces in S2 �R for which the unit normal makes a constant
angle with the R-direction. We give a complete classification for surfaces satisfying this simple geo-
metric condition.
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1. Introduction

In recent years there has been done some research about surfaces in a 3-dimen-
sional Riemannian product of a surface M2 and R. This was motivated by the study
of minimal surfaces. In particular, Rosenberg and Meeks initiated this in [5] and [6].
This work inspired other geometers, for example in [1], [2], [3] and [4].

In this article we consider a special case of a M2 �R, namely we take M2 to be
the unit 2-sphere S2. In this space we look at constant angle surfaces. By this we
mean a surface for which the unit normal makes a constant angle with the tangent
direction to R. We show that this simple geometric condition locally completely
determines the surface intrinsically. Furthermore, we prove in the classification
theorem that we can construct a constant angle surface starting from an arbitrary
curve in S2.

2. Preliminaries

Let S2 �R be the Riemannian product of the 2-sphere S2ð1Þ and R with the
standard metric h ; i and Levi-Civita connection er. We denote by @

@t a unit vector
field in the tangent bundle TðS2 �RÞ that is tangent to the R-direction.
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For p2ðS2 �RÞ, the Riemann-Christoffel curvature tensor eRR of S2 �R is
given by

heRRðX; YÞZ;Wi ¼ hXS2 ;WS2ihYS2 ; ZS2i � hXS2 ;ZS2ihYS2 ;WS2i
where X; Y ;Z;W 2TpðS2 �RÞ and XS2 ¼ X � hX; @@ti @

@t is the projection of X to
the tangent space of S2.

Let us consider F : M ! eMM, an isometric immersion of a submanifold M into a
Riemannian manifold eMM with Levi Civita connection er. Then we have the for-
mulas of Gauss and Weingarten which state that for every X and Y tangent to M
and for every N normal to M the equationserXY ¼ rXY þ hðX; YÞ; ð1ÞerXN ¼ �ANX þr?

XN; ð2Þ
hold, with r the Levi Civita connection of the submanifold. Here, h is a symmetric
(1,2)-tensorfield, taking values in the normal bundle, called the second funda-
mental form of the submanifold, AN is a symmetric ð1; 1Þ-tensorfield, called the
shape operator associated to N and r? is a connection in the normal bundle. For
hypersurfaces, r? vanishes, but further on we will need the Weingarten formula
also for codimension 2 immersions.

Now consider a surface M in S2 �R. Let us denote with � a unit normal to M
with shape operator A. Then we can decompose @

@t as

@

@t
¼ T þ cos � �; ð3Þ

where T is the projection of @
@t on the tangent space of M and � is the angle function

defined by

cos �ðpÞ ¼
D @

@t
; �
E

ð4Þ

for every point p2M.
If we denote by R the curvature tensor of M, then with the previous notation,

the equations of Gauss and Codazzi are given by

hRðX;YÞZ;Wi ¼ hAY ;ZihAX;Wi � hAX; ZihAY;Wi þ hX;WihY ; Zi
� hX; ZihY ;Wi þ hY ; TihW ; TihX; Zi þ hX; TihZ; TihY ;Wi
� hX; TihW ; TihY ; Zi � hY ; TihZ; TihX;Wi ð5Þ

rXAY �rYAX � A½X;Y � ¼ cos � ðhY ; TiX � hX; TiYÞ: ð6Þ
Furthermore, we have the following proposition.

Proposition 1. For every X2TM, we have that

rXT ¼ cos � AX; ð7Þ
X½ cos �� ¼ �hAX; Ti: ð8Þ

We can prove this by using that @
@t is a parallel vector field in S2 �R and the

decomposition (3).
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Equations (5), (6), (7) and (8) are called the compatibility equations for S2 �R.
In [4], the following theorem was proven.

Theorem 1 (B. Daniel). Let M be a simply connected Riemannian surface,
ds2 its metric and r its Levi Civita connection. Let A be a field of symmetric
operators Ay : TyðMÞ ! TyðMÞ, T a vector field on M and � a smooth function on
M such that kTk2 ¼ sin2�: Assume that ðds2;A; T ; �Þ satisfies the compatibility
equations for S2 �R. Then there exists an isometric immersion F : M ! S2 �R
such that the shape operator with respect to the unit normal � is given by A and
such that

@

@t
¼ T þ cos � �:

Moreover the immersion is unique up to global isometries of S2 �R preserving
the orientations of both S2 and R.

3. Characterizations of constant angle surfaces

In this section we introduce the notion of constant angle surfaces and give
some first characterizations.

By a constant angle surface M in S2 �R, we mean a surface for which the
angle function � is constant on M. There are two trivial cases, � ¼ 0 and � ¼ �

2
.

The condition � ¼ 0 means that @
@t is always normal, so we get a S2 �ft0g. In the

second case @
@t is always tangent. This corresponds to the Riemannian product of a

curve in S2 and R.
Now suppose � 2= f0; �

2
g. From (8) we immediately see that as � is a constant,

hAX;Ti ¼ hAT ;Xi ¼ 0 ð9Þ

for every X2TpðMÞ. This implies that T is a principal direction with principal
curvature 0.

Thus if we take an orthonormal basis fe1; e2g with e1 ¼ T
kTk and e2 a unit vector

field perpendicular to e1, the shape operator A takes the following form:

A ¼ 0 0

0 �

� �
ð10Þ

for a function � on M.
Combining this with Gauss’ equation (5) we find for the Gaussian curvature K

K ¼ hRðe1; e2Þe2; e1i ¼ cos 2�: ð11Þ
We can summarize this in the following proposition.

Proposition 2. If M is a constant angle surface in S2 �R with constant angle
�, then M has constant Gaussian curvature K ¼ cos2� and the projection T of @

@t is
a principal direction.

Remark that with Proposition 2 the intrinsic geometry of constant angle sur-
faces is locally completely determined.
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4. Classification theorem

In this section we completely describe the constant angle surfaces. We look at
S2 �R as a hypersurface in E4 and denote @

@t by ð0; 0; 0; 1Þ. We then prove the
following classification theorem.

Theorem 2. A surface M immersed in S2 �R is a constant angle surface if
and only if the immersion F is (up to isometries of S2 �R) locally given by
F : M ! S2 �R : ðu; vÞ 7!Fðu; vÞ, where

Fðu; vÞ ¼ ðcosðu cos �Þf ðvÞ þ sinðu cos �Þf ðvÞ� f 0ðvÞ; u sin �Þ; ð12Þ

f : I ! S2 is a unit speed curve in S2 and �2 ½0; �� is the constant angle.

Proof. First we prove that the given immersion ð12Þ is a constant angle surface
in S2 �R. To see this we first calculate the tangent vectors

Fu ¼ ð cos �ð� sinðu cos �Þf ðvÞ þ cosðu cos �Þf ðvÞ� f 0ðvÞÞ; sin �Þ
Fv ¼ ðcosðu cos �Þf 0ðvÞ þ sinðu cos �Þf ðvÞ� f 00ðvÞ; 0Þ

¼ ððcosðu cos �Þ þ sinðu cos �Þ�ðvÞÞf 0ðvÞ; 0Þ

for some function � on M. We know that f � f 00 is a scalar multiple of f 0 since f is a
unit speed curve in S2.

The normal ~�� of S2 �R in E4 is nothing but the position vector where we take
the last component to be 0, thus

~�� ¼ ðcosðu cos �Þf ðvÞ þ sinðu cos �Þf ðvÞ� f 0ðvÞ; 0Þ:

So we find that the unit normal � on M in S2 �R is given by

� ¼ ð� sin �ð� sinðu cos �Þf ðvÞ þ cosðu cos �Þf ðvÞ� f 0ðvÞÞ; cos �Þ;

and thus we see that D
�;

@

@t

E
¼ cos �

is a constant.
Suppose now that we have a surface M in S2 �R with constant angle function

�. If M is one of the trivial cases, M can be parameterized by ð12Þ as can easily be
seen. Suppose from now on that � 2= f0; �

2
g. Then we can take an orthonormal basis

of the tangent space e1 ¼ T
kTk and e2 perpendicular to e1. As we saw earlier, the

shape operator A corresponding to the unit normal � with respect to e1 and e2 is
then given by

A ¼ 0 0

0 �

� �
ð13Þ

for a function � on M.
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Using (7), one can calculate that the Levi-Civita connection r of M satisfies

re1
e1 ¼ 0; ð14Þ

re1
e2 ¼ 0; ð15Þ

re2
e1 ¼ � cot � e2; ð16Þ

re2
e2 ¼ �� cot � e1: ð17Þ

Now take coordinates ðu; vÞ on M with @
@u ¼ �e1 and @

@v ¼ �e2. From the con-
dition

�
@
@u ;

@
@v

�
¼ 0 we find, using (15) and (16):

�v ¼ 0; ð18Þ
�u ¼ ��� cot �: ð19Þ

Equation (18) implies that, after a change of the u-coordinate, we can assume � ¼ 1
and thus the metric takes the form

ds2 ¼ du2 þ �2ðu; vÞ dv2 ð20Þ
and the Eqs. (14), (15), (16) and (17) become

r @
@u

@

@u
¼ 0; ð21Þ

r @
@u

@

@v
¼ � cot �

@

@v
; ð22Þ

r @
@v

@

@v
¼ ���u

@

@u
þ �v

�

@

@v
: ð23Þ

Furthermore we find from Codazzi’s equation (6) that � must satisfy

�u ¼ � cos � sin �� �2 cot �: ð24Þ
.

Solving ð19Þ and ð24Þ we find

�ðu; vÞ ¼ � sin � tanðu cos �þ CðvÞÞ; ð25Þ
�ðu; vÞ ¼ DðvÞ cosðu cos �þ CðvÞÞ ð26Þ

for some functions C and D on M.
Now let us consider our surface M as a codimension 2 immersed surface in E4

and denote with D the Euclidean connection and with r? the normal connection.
Then we have two unit normals: � ¼ ð�1; �2; �3; cos �Þ tangent to S2 �R and
~�� ¼ ðF1;F2;F3; 0Þ normal to S2 �R with shape operator A respectively eAA. We
have for every X ¼ ðX1;X2;X3;X4Þ2TpðMÞ,

r?
X
~�� ¼ hDX

~��; �i�
¼ hðX1;X2;X3; 0Þ; �i�
¼ � cos �hX;Ti� ð27Þ

and hence

r?
X � ¼ cos �hX;Ti~��: ð28Þ
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From ð27Þ and the formula of Weingarten (2) we get

eAA� @

@u

�
¼ �ððF1Þu; ðF2Þu; ðF3Þu; 0Þ � cos � sin �ð�1; �2; �3; cos �Þ ð29Þ

eAA� @

@v

�
¼ �ððF1Þv; ðF2Þv; ðF3Þv; 0Þ: ð30Þ

Since @
@u ¼ e1 ¼ T

kTk and @
@v ¼ �e2 with e2 normal to e1 we find that

ðF4Þu ¼
D
Fu;

@

@t

E
¼ sin �; ð31Þ

ðF4Þv ¼
D
Fv;

@

@t

E
¼ 0: ð32Þ

Thus we can take F4 ¼ u sin �, since translations in the direction of ð0; 0; 0; 1Þ
are isometries of S2 �R.

By looking at ð30Þ and at the fourth component of ð29Þ we see that the shape
operator eAA with respect to @

@u and @
@v is of the following form:

eAA ¼ � cos2� 0

0 �1

� �
: ð33Þ

Comparing the other components of ð29Þ we get

�j ¼ � tan �ðFjÞu ð34Þ

for j ¼ 1; 2; 3.
Now applying the formula of Gauss (1), using (21), (22), (23), (13), (33) and

(34) we find

ðFjÞuu ¼ � cos2�Fj; ð35Þ
ðFjÞuv ¼ � cot �ðFjÞv; ð36Þ

ðFjÞvv ¼ ���uðFjÞu þ
�v

�
ðFjÞv � ��2 tan �ðFjÞu � �2Fj ð37Þ

for j ¼ 1; 2; 3.
From ð36Þ we find that

ðFjÞv ¼ cosðu cos �þ CðvÞÞHjðvÞ ð38Þ

and hence

Fj ¼
ðv
v0

cosðu cos �þ CðyÞÞHjðyÞ dyþ IjðuÞ ð39Þ

for j ¼ 1; 2; 3 and with Hj and Ij arbitrary functions on M.
From ð35Þ we find that the function Ij from ð39Þ also must satisfy

IjðuÞ ¼ Kj cosðu cos �Þ þ Lj sinðu cos �Þ; ð40Þ

where Kj and Lj are constants.
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To summarize, we see that our immersion F is of the following form:

F ¼
��

K1 þ
ðv
v0

cosðCðyÞÞH1ðyÞ dy
�

cosðu cos �Þ

þ
�
L1 �

ðv
v0

sinðCðyÞÞH1ðyÞ dy
�

sinðu cos �Þ; . . . ; u sin �

�
: ð41Þ

Now define the functions

fjðvÞ ¼ Kj þ
ðv
v0

cosðCðyÞÞHjðyÞ dy; ð42Þ

gjðvÞ ¼ Lj �
ðv
v0

sinðCðyÞÞHjðyÞ dy: ð43Þ

Moreover we have the following conditions

hFu;Fui ¼ 1; hFv;Fvi ¼ �2ðu; vÞ; hFu;Fvi ¼ 0;

hFu; �i ¼ 0; hFv; �i ¼ 0; h�; �i ¼ 1;

hFu; ~��i ¼ 0; hFv; ~��i ¼ 0; h~��; ~��i ¼ 1;

h�; ~��i ¼ 0;

which are equivalent to X3

j¼1

f 2
j ¼1; ð44Þ

X3

j¼1

g2
j ¼1; ð45Þ

X3

j¼1

fjgj ¼0; ð46Þ

X3

j¼1

f 0j gj ¼ 0; ð47Þ

X3

j¼1

H2
j ¼

X3

j¼1

ð f 0j Þ
2 þ ðg0jÞ

2 ¼ DðvÞ2: ð48Þ

From ð44Þ and ð45Þ we see that f ðvÞ ¼ ðf1ðvÞ; f2ðvÞ; f3ðvÞÞ and gðvÞ ¼ ðg1ðvÞ;
g2ðvÞ; g3ðvÞÞ are curves in S2. Moreover if we change the v-coordinate such that f
becomes a unit speed curve, which corresponds to setting DðvÞ2 ¼ sec2ðCðvÞÞ, we
see from ð46Þ and ð47Þ that g is a unit vector perpendicular to the unit vectors
f and f 0. Thus g ¼ � f � f 0 and we can choose g ¼ f � f 0. Then the immersion
F : M ! S2 �R is given by

Fðu; vÞ ¼ ðcosðu cos �Þf ðvÞ þ sinðu cos �Þf ðvÞ� f 0ðvÞ; u sin �Þ ð49Þ
as we wished to prove. &
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5. Final remarks

We see that Eq. (37) is also satisfied. After a straightforward computation, we
see that ð37Þ expresses that f 2

j þ g2
j þ

� Hj

D

�2
must be a constant for every j. This is

the case since 1
D
ðH1;H2;H3Þ is a unit vector in the direction of f 0 and thus f , g and

1
D
ðH1;H2;H3Þ form an orthonormal basis. Also the equations from the formula of

Weingarten are satisfied.
Remark also that the two trivial cases are included in the parametrization ð12Þ.

If � ¼ 0, (12) becomes

Fðu; vÞ ¼ ðcosðuÞf ðvÞ þ sinðuÞf ðvÞ� f 0ðvÞ; 0Þ ð50Þ
which gives us S2 �f0g.
For � ¼ �

2
, ð12Þ becomes

Fðu; vÞ ¼ ðf ðvÞ; uÞ: ð51Þ
This clearly gives the Riemannian product of a curve in S2 and R.

Finally we want to give a non-trivial example of a constant angle surface. In
fact we can construct many examples since we know from Theorem 2 that there is
a constant angle surface for every curve in S2. We want to give one special case
explicitly. Therefore look at the immersion F : M ! S2 �R � E4 given by

Fðu; vÞ ¼ ðcos u cos v; cos u sin v; sin u; u tan �Þ ð52Þ
where �2 �0; �

2
½ is a constant. This is a reparametrization of ð12Þ if f is a great

circle. We can see geometrically that this is a constant angle surface. If we take
v ¼ 0, then we get a curve in S1 �R. This curve is nothing but a helix which has
the property that the tangent vector makes a constant angle with @

@t. Now we get the
surface ð52Þ by rotating this curve.
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