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Abstract. By investigating hypersurfaces M in the unit sphere $"*!(1) with H; = 0 and with two
distinct principal curvatures, we give a characterization of torus the S'(y/k/n) x §*1(\/(n — k) /n).
We extend recent results of Perdomo [9], Wang [10] and Otsuki [8].
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1. Introduction

Let M be an n-dimensional compact hypersurface in a unit sphere S"*!(1) of
dimension n + 1. Denote by S the square norm of the second fundamental form of
M. Perdomo [9] and Wang [10] proved

Theorem 1.1. ([9], [10]) Let M be an n(=3)-dimensional compact minimal
connected hypersurface in a unit sphere S™'(1) with two distinct principal cur-
vatures. Let V be the volume of M and assume that one of the principal curvatures
of M is simple (i.e. multiplicity 1). Then the square norm S of the second funda-
mental form of M satisfies

JMS<nV (1.1)

with equality holding if and only if M is a Clifford minimal hypersurface

(=) <5 ()

In this paper, we consider n-dimensional hypersurfaces with Hy =0 of a
unit sphere $"*!(1) and with two distinct principal curvatures. We general-
ize Theorem 1.1 to hypersurfaces with H;, = 0. In fact, we prove the following
result

Theorem 1.2. If M is an n-dimensional compact connected hypersurface
(n = 3) in S"7 (1) with Hy = 0 (k <n) and with two distinct principal curvatures.
Let V be the volume of M and assume that one of the principal curvatures of M is



344 G. Wei

simple (i.e. multiplicity 1). Then the square norm S of the second fundamental form
of M satisfies

n 2 _ n
JMK Wv (1.2)

with equality holding if and only if M is isometric to the Riemannian product

S 1(y/(n — k) /n) x S'(\/k/n), where Hy is the normalized k—th symmetric func-

tion of the principal curvatures of the hypersurface.

Remark 1.1. When k = 1, our Theorem 1.2 reduces to Theorem 1.1 of Perdomo
and Wang also to Hasanis-Vlachos’s result in [4].

2. Preliminaries

Let M be an n-dimensional hypersurface in an (n + 1)-dimensional unit sphere
§™1(1) with H;, = 0. Let {ey,...,e,} be a local orthonormal basis of M with
respect to the induced metric, wy, . . . ,w, their dual form. Let ¢, be the local unit
normal vector field. In this paper we shall make use of the following convention on
the ranges of indices:

1<AB,C,...<n+1, 1<ijk,...<n, 1<ab,...<n—1. (2.1)

Then we have the structure equations

dx = Z wie;, (2.2)
de; = Z wijej + Z hijwjen1 — wix, (2:3)
J J

deyy1 = — Zhijwjeiv (2.4)
iy

where h;; denotes the components of the second fundamental form of M. The
Gauss equations are

R = (6w — 6udix) + (hichj — hahjr), (2.5)

n(n— 1R =n(n—1) +n*H* -, (2.6)
i Rijij
where R = -

=) is the normalized scalar curvature of M and S =), jhizj is
the norm square of the second fundamental form and H is the mean curvature,
then we have

S=Y (hy)?, H= %Z By (2.7)
ij k

The Codazzi equations are (see [2], [3], [6])
hije = higg, (2.8)
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where the covariant derivative of &;; is defined by
Z h,-jkwk = dh,'j + Z hkjwki + Z h,-kwkj. (29)
k k k
The second covariant derivative of &;; is defined by (see [2], [6])

Z h,‘jk[u)l = d]’l,'jk + Z ]’lljkwl,' + Z hilkwlj + Z ]’l,'j]w[k. (210)
1 1 [ 1

By exterior differentiation of (2.9), we have the following Ricci identities

ukl ylk - Z hijmzkl + Z hszmjkl (211>
We may choose proper frame field {ej,...,e,1} such that
Win+1 = )\,w,-, that is ]’l,j = )\,’6,‘1', i= 1, 2, Lo, n, (212)

where ); are principal curvatures.
Now we assume that M has two distinct principal curvatures A (multiplicity
n— 1) and p (multiplicity 1), that is,

AM=X== 1=\ N=u (2.13)
From (2.6), we have
nn—1)R=n(n—1)+ (n—1)A[(n —2)X +2pu]. (2.14)

Let Hy be the normalized k—th symmetric function of the principal curvatures
of an hypersurface:

CrHy = Z Ay A
I<ii<ip<-<ix<n
where C* k,(,:" o
From (2.13) and H, =0, We deduce that
C'H = C*_ N+ eI\ u=o. (2.15)
and it follows that
N — k)X + k) =0. (2.16)

If A = 0 at some point p, we can deduce from (2.16) that A=0 on M. In fact,
let N={x|xeM, \x)#0}, Q={y|yeM,(n—k)A(y) + ku(y) =0}. Since
these principal curvatures A and p are continuous on M, we know that N is an
open set, Q is a closed set and N # M (since A\(p) = 0). Next we prove N = Q. On
the one hand, if x € N, then A(x) # 0. By (2.16), we obtain (n — k)\(x) + ku(x) = 0,
that is, x€ Q. Hence N C Q. On the other hand, if yeQ, then (n —k)\(y) +
ku(y) = 0. Since A and p are two distinct principal curvatures of M, we have
A(y) # p(y). We see from (n—k)A(y) + ku(y) =0 that A(y)#0 (If A\(y) =0
then p(y) =0 = A(y). This is a contradiction.) That is y€ N, then we have
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Q C N. Therefore N = Q. We see that N is not only an open set but also a closed
set. Combining M connected with N # M, we obtain N is an empty set. It follows
that A=0 on M.

From Gauss Eq. (2.14), we know that R = 1. By (2.5), we obtain that the
sectional curvature of M is not less than 1. Hence M is compact by use of
the Bonnet-Myers Theorem. According to Theorem 2 in [2] due to Cheng and
Yau, we know that M is a totally umbilical hypersurface. As a result, we get
A#0 and

(n—k)A+kp=0. (2.17)
Example. My, = S'(\/k/n) x S"1(\/(n—k)/n), 1<k<n-—1. Then

M, has two distinct constant principal curvatures

A== =Vhk/(n—k), A=—+/(n—k)/k. (2.18)

Hence, H, =0 and the square norm of the second fundamental form of M ,_;
satisfies

n(k* — 2k + n)
k(n—k)
In [8], Otsuki proved the following

S = (2.19)

Lemma 2.1. (see p. 150 of [8]) Let M be an n-dimensional compact hypersur-
face in a unit sphere S"*'(1) such that the multiplicities of principal curvatures are
all constant. Then the distribution of the space of principal vectors corresponding
to each principal curvature is completely integrable. In particular, if the multi-
plicity of a principal curvature is greater than 1, then this principal curvature is
constant on each integral submanifold of the corresponding distribution of the
space of principal vectors.

By Lemma 2.1 and (2.17), we have

)\71 — .. = )\7’171 = O7 /_,(,’1 == /vl',nfl = 0 (220)
By means of (2.9) and (2.13), we obtain
h,-jkwk = (5ijd)\j + ()\, - )\j)wij. (221)
Summarizing the arguments above, we obtain
hije =0, if i#j, Ni= N, (2.22)
haab = 07 haan = )\,n; (2'23)
hnna = Oa hnnn = HKn- (224>

By making use of methods similar to those in [8], we can prove the following

Proposition 2.1. If M is an n-dimensional connected hypersurface (n = 3) in
S"1(1) with Hy = 0 (k<n) and with two distinct principal curvatures \ and i
with multiplicities (n — 1) and 1, respectively. Then M is a locus of the moving
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(n — 1)-dimensional submanifold M~ (s) along which the principal curvature
A of multiplicity n — 1 is constant and which is locally isometric to an (n — 1)-
dimensional sphere S"~'(c(s)) = E"(s) N S""1(1) of constant curvature and X
satisfies the ordinary differential equation of order 2

&2\ k ( dX BN n)
_nt ( ) _nn— X (2.25)

4~ ax \ds e e
where E"(s) is an n-dimensional linear subspace in the Euclidean space R""?

which is parallel to a fixed E".

Remark 2.1. When H=0, our Proposition 2.1 reduces to Theorem 4 of
Otsuki in [8].

3. Proof of Theorem 1.2
We first prove the following key lemma

Lemma 3.1. Let M be an n-dimensional (n > 3) hypersurface in S™'(1) with
H; =0 (k<n) and with two distinct principal curvatures and assume that one of
the principal curvatures of M is simple. Then we have

1 2 (k 2k+l’l

— Sy) = 3.1

S;( #) (3n — 2)k2 2nk+nZZ ijk- (3.1)
Proof. Let \j = -+ =X \,-1 = A, A\, = U, then we have (n — k)X + kp = 0.

A direct calculation then gives

n(k? — 2k +n)\?

S=(mn—1)\+ 2 , (3.2)
2n(k* — 2k + n)
Si= T)\)\’i' (3.3)
By use of (3.2), (3.3) and (2.20), we have
1 1 4n(k* — 2k + n)
E;(S,k)z =3 (Sn)” = — (An). (34)
On the other hand, by use of (2.22), (2.23) and (2.24), we have
Z hz]k - Z habc +3 Z habn +3 Z hann + hﬁnn
ij,k a,b,c
=3 th FR = 3= DO+ () (3.5)
B (3n—2)k — 2nk + n?

k2 ()\7”)2'

This completes the proof.
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Lemma 3.2. ([7]) Let M be an n( >2)-dimensional hypersurface in "', then

we have
7AS Zhuk+z>\ (nH) ; ZR,,,, )7, (3.6)

ij.k

where \; are principal curvatures of M, ( .)J.j is the covariant derivative relative to
the induced metric.

Proof of Theorem 1.2. First, we compute

1 1 1
EA(lnS) :E; (InS) 4 :Eg ( >

LAS  137,(50)°

28 2 s
By use of Lemma 3.2 and the Gauss equation Ry, = 1 + Ay, we obtain

—AS th/k +%ZRijij()\i - )\j)z + Z)‘i(”H),ii
ij !

* (3.7)

ijk
= Z hl]k + ZRanan(/\ - M)z + Z )‘i(nH>,ii
ij,k i
/ ) (3.8)
=D i+ (= DA+ M)A =)’ + Y N(nH)
ijk i
( 1)712 n—k |
i, i
From (2.10) and (2.12), we have
)\’,-jwj = d)\’i + )\JWji. (39)
From (2.21), (2.22), (2.23) and (2.24), we obtain
An
Wan = Wy
A—p
Therefore, we have dw, = ), w,; A w; = 0, which shows that we may put
w, = ds.
Then we have
kX,
Wan = n—/{wa = (log )\k/")/wa,
where the prime denotes the derivative with respect to s.
Let i = a in (3.9), we see from (2.20), (2.22), (2.23) and (2.24) that
/\,ajwj = d)\,a + /\ija = >\7nwna
Ay k ) (3.10)
= )\n—’ a — T T\ )\n a-
A () w
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It follows that
k 2
Aaa = =75 (An)™ 3.11
Let i = n in (3.9), we know from (2.20) and (2.25) that
Awwj = dAy + A jwjn = d\,

[ n+k ,» nn—k)XN  n\ (3.12)
_{ n\ ()‘n) k2 + k Wy .
It follows that
n+k n(n—k)A  n\
A = TN ()‘n) _T—i_?' (3.13)
Putting (3.11) and (3.13) into (3.8), we have
n’ n—k.,l»
—AS ”Zkhz,k {1— - )\])\ + DN,
n? —k k—1
=Yg+ {1—" AZ]AZHn—l)A"( N
ij k X
ij.k
nk—1)
+ k )\7,1,,
n’ n—k | 2
_Zhljk 1- k ATIA +(I’l— 1)(1 _k)()\,n) (3.]4)
ijk
nn—k)(k—1)[n+k » n(n—k) 4 )
- An _—A )\
K2 n (An) o +k

=Dl —2)R + ] i
{1_($%—@W—2M+qﬂ}<%;%J
n?(k* — 2k + n)
IR A N

i
Putting (3.14), (3.1) and (3.2) into (3.7), we have

LAS  130,(84)°
28 2 s

! (k—1)((n—2)k* +n?)
_ZS{ {1 "~ (3n—2)k? — 2nk +n? ] (;hvk>
R o - IEDIIEN

Nk — (n—k)M\*}.

2Aas)

k* 2 8

{Qn_ZMQ_bﬁ;;téﬁlxKn_my+%q_%}<Z£gii)
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n k(n —k)

+k{1_n(k2—2k+n)s}
k=2 — 1) (S0 n k(n — k)
__4n(k2—2k+n){ kszk }+%{1_n(k2—2k+n)s}

n k(n—k
< %{1 —mS}. (3.15)

Integrating (3.12) over M, we get

2 _
J S< n(k* — 2k + n)
Thus we get (1.2). If equality holds in (1.2), then we see from (3.15) that
S :W. It follows that X\ is constant. Then we have from Example
and a result of Cartan [1] that M is isometric to the Riemannian product

§"1(y/(n —k)/n) x S'(\/k/n). This completes the proof of Theorem 1.2.
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