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Abstract. By investigating hypersurfaces M" in the unit sphere $"*!(1) with constant mean cur-
vature and with two distinct principal curvatures we give a characterization of the torus S'(a) x

n. 2 n— .
§" 1 (V1 — a?), where a® =2 2”( lzjj; =DM \We extend recent results of Hasanis et al. [5] and
Otsuki [10].
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1. Introduction

Let M be an n-dimensional hypersurface in a unit sphere $"™!(1) of dimension
n+ 1. Denote by S the square norm of the second fundamental form of M. In [5],
Hasanis et al. proved

Theorem 1.1 ([5]). Let M be an n-dimensional connected, complete and mini-
mal hypersurface with at most two principal curvatures in S"*'(1). If S = n, then
S=n and M is the minimal Clifford torus S"(\/m/n) x §""(y/(n —m)/n),
I<m<n—1.

In this paper, we consider n-dimensional hypersurfaces with constant mean
curvature and with two distinct principal curvatures in a unit sphere S""!(1). In
fact, we prove the following results.

Theorem 1.2. Let M be an n-dimensional (n = 3) connected, complete hyper-
surface with constant mean curvature H and with two distinct principal curvatures
such that the multiplicity of one of the principal curvatures is n — 1 in S"*'(1). If

wH?>  n(n—2)
2n—1) 2(n—1)
then S=n+ ”H')—i—"" 2) \/n2H4+4(n—1)H2 and M is isometric to the

2( 2( 2 24 2
Riemannian product S'(a) x "' (V1 — a?), where a* = 2 anllil_;;‘(n DAY

S=n+ V/n2H* + 4(n — 1)H2, (1.1)
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Remark 1.1. When H=0, our Theorem 1.2 and Proposition 2.1 reduce to
Theorem 1.1 of Hasanis et al. in [5].

Theorem 1.3. Let M be an n-dimensional (n = 3) connected, complete hyper-
surface with constant mean curvature H and with two distinct principal curva-
tures such that the multiplicity of one of the principal curvatures is n—1 in
S"+1(1). If

S<n+2gjiﬂl)—322:?§ ViPH 1 4(n — D, (12)

then S=n+ 2’(’;1_{21) — ;EZ:?; VM2H* +4(n— 1)H? and M is isometric to the

2 \/247_2
Riemannian product S'(a) x S""'(V1 — a2), where a*> = i A DR

2n(1+H?)

Theorem 1.4. Let M be an n-dimensional (n = 3) connected, complete and
minimal hypersurface with two distinct principal curvatures. If

S <n,
then S=n and M is isometric to the Riemannian product S"(\/m/n) x

Sm(/(n—m)/n), 1 <m<n-—1.

2. Preliminaries

Let M be an n-dimensional hypersurface in an (n + 1)-dimensional unit sphere
§"1(1) with constant mean curvature H. Let {ey,...,e,} be a local orthonormal
basis of M with respect to the induced metric, wy, .. ., w, their dual form. Let e,
be the local unit normal vector field. In this paper, we shall make use of the
following convention on the ranges of indices:

1<i,j,k,... <n, 1<a,b,... <m, m+l1<a,f,... <n (2.1

Then we have the structure equations

dx = Z wie;, (22)
de; = Z wije;j + Z h,-jwjenH — WX, (23>
J J

d€n+1 = — Zh,-jwje,-, (24)
iJ

where h;; denotes the components of the second fundamental form of M. The Gauss
equations are

R = (661 — 6udjx) + (hihy — hahjr), (25)

nin—1)r=nn—1)+n*H -8 (2.6)
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where r is the normalized scalar curvature of M and S =}, hizj is the norm square
of the second fundamental form and H is the mean curvature, then we have

S=> (hy)?, H= %Z P (2.7)
ij k

The Codazzi equations are

hije = higj, (2.8)
where the covariant derivative of &;; is defined by
Z hijwr = dhij + Z hijwii + Z higwy;. (2.9)
3 k 3

The second covariant derivative of &;; is defined by
Z hijuwr = dhjj + Z hyjrwi; + Z hiwy; + Z hijiwig. (2.10)
] 1 ] 1

By exterior differentiation of (2.6), we have the following Ricci identities

ljkl ulk - Z hijmzkl + Z hszmjkl (21 1)
We may choose a frame field {ey,..., e, 1} such that
Win+1 = )\iw,’, that is h,j = )\,’(Sij, i = 1,2, RN (X (212)

where ); are principal curvatures.
Now we assume that M has two distinct principal curvature A and p, that is,

)\1:)\2:'”:)\,,,:)\; )\m+1:"‘:>\n:M- (2.13)
We have
m\+ (n—m)pu =nH, thatism(A\—H)+ (n—m)(p—H) =0, (2.14)
H — mA)\
A=), o MHZmVA (2.15)

n—m n—m

Example. My ,,_1 = S'(a) x S""'(v/1 — a?). Then M, has two distinct con-
stant principal curvatures
V1—a2 a
A:Azi )\:---:)\: = -
1 a 9 2 n H m
and constant mean curvature H =13 '\ = mj&%
The square norm of the second fundamental form of M, ,_; satisfies

1— e
S= ZAz @), (n=1a

1—a2

By a straightforward computation for M; ,_; = S'(a) x $""!(v/1 — a2), we obtain

» (24 nH?) £ \/n?H* +4(n — 1)H?
= 2n(1 + H?) ’
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and

wH?>  n(n—2)
2i—1)  2(n—1)

Now we have to consider two cases.

S=n+ V/n2H* 4 4(n — 1)H2.

Case 1: 2 <m < n— 2. In [10], Otsuki proved the following

Lemma 2.1. (Theorem 2 and Corollary of [10]). Let M be an n-dimensional
hypersurface in a unit sphere S""'(1) such that the multiplicities of principal
curvatures are all constant. Then the distribution of the space of principal vectors
corresponding to each principal curvature is completely integrable. In particular,
if the multiplicity of a principal curvature is greater than 1, then this principal
curvature is constant on each integral submanifold of the corresponding distribu-
tion of the space of principal vectors.

From Lemma 2.1. we can easily obtain the following

Proposition 2.1. Let M be an n-dimensional hypersurface in a unit sphere
S"1(1) with constant mean curvature H and with two distinct principal curvatures.
If the multiplicities of these two distinct principal curvatures are greater than 1, then
M is isometric to the Riemannian product S™(a) x S*"(V1 —a?),2 <m < n—2.

Case 22 m=n—1.Inthiscase, m =n—1 = 2.
M=-= 1= AEpu=AA—pu=nA—H),\p=nH\— (n—1)\?, (2.16)

where ); are the principal curvature of M.
By Lemma 2.1 and (n — 1)\ + pu = nH, we have

)\’1 == >\,n—1 = 0, H1=""=MUp-1= 0. (2.17)
By means of (2.9) and (2.12), we obtain
From these and (2.16), we obtain
hije =0, if i#}], Ai = Ny, (2.19)
haab = 0, haan = /\,nv (220>
hnna = 07 hnnn = HKn- (221)

Let us define a positive function w(s) over s € (—oo, +00) by
_ A—H)""" for A—H>0
(H=XN""" forA—H<O0
By making use of the similar methods in [10], we can prove the following

Proposition 2.2. Let M be an n-dimensional connected hypersurface (n = 3)
in S"™(1) with constant mean curvature H and with two distinct principal
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curvatures A and p with multiplicities (n — 1) and 1, respectively. Then M is a
locus of the moving (n — 1)-dimensional submanifold M;"l(s) along which the
principal curvature X\ of multiplicity n — 1 is constant and which is locally iso-
metric to an (n — 1)- dzmennonal sphere S (c(s)) = E"(s) N S"™(1) of constant
curvature and w = |\ — H | " satisfies the ordinary differential equation of
order 2

2

d—v;+w[1 FH A Q2—n)HW "+ (1 —n)w 2 =0, for A\—H>0, (2.22)
A)

or

d*w n Zon _
il +H +(n—=2)Hw "+ (1 —n)w " =0, for \—H<0, (2.22)
where E"(s) is an n-dimensional linear subspace in the Euclidean space R"™
which is parallel to a fixed E".

Remark 2.1. When H =0, our Proposition 2.2 reduces to Theorem 4 of Otsuki
in [10].

3. Proof of the Theorems
We first give the following lemmas

Lemma 3.1. Equations (2.22)* are equivalent to their first order integral

d 2
(d—w> + (1 + H)W +2HW* " + w2 = C, for \—H>0, (3.1)"
S

or

o\ 2
<a’w> + (1 + H)W? = 2HW* ™" + w2 = C, for \—H <O, (3.1)”
s

where C is a constant. Moreover, the constant solution of (2.22)* corresponds to
the Riemannian Product S'(a) x "~ '(V/1 — a2).

Proof. From the assumption, and by making use of computations similar as in
[10], we have V., e, = 0. Hence, we know that any integral curve of the principal
vector field corresponding to y is a geodesic. Then we can get that w(s) is a func-
tion defined in (—oo,+00) since M is complete and any integral curve of the
principal vector field corresponding to p is a geodesic.

The left hand side of equation (2. 22) multlphed by 2 o is precisely the
derivative of the left hand side of equation (3.1)". Similarly, the left hand side
of equation (2.22)” multiplied by Zd—w is precisely the derivative of the left hand
side of equation (3.1)". Combining w( ) = wo with w = [A — H| """ and (2.16),
we have that A and p are constant. Hence the constant solution of (2.22)* corre-
sponds to the Riemannian product S!(a) x $"~!(v/1 — a2). We complete the proof
of Lemma 3.1.
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Lemma 3.2. If M is an n-dimensional connected hypersurface (n = 3) in
S"t1(1) with constant mean curvature H and with two distinct principal curvatures
A and p with multiplicities (n — 1) and 1, respectively. Then

n’H? n(n—2)
2(n—1) 2(n-1)

S>n+ V/n2H* + 4(n — 1)H? (3.2)

holds if and only if
(n—=2)|H|++\/n?H*+4(n—1)

T=|AN—-H| > 33
Similarly, we have
mwH?>  n(n—2)
S < — 2H4 4+ 4(n — 1)H? 34
n+2(n_ ] 2(n—1)\/n +4(n—1) (3.4)
holds if and only if
2—n)|H 2H?2 +4(n—1

2(n—1)
Proof. Using (2.16), we have the calculation that
S=(n—1)A+ i
=n[(n— )X* —2(n — 1)H\ + nH?
=n[(n — Hw™" + H.
It
n’H? n(

n—2)
> HY 1 4(n — DH?,
SZntan Ty P VEH A1)

then we obtain

I R 2n42 )
w2 = A~ HP > LA, 2 e A - DI
1)?

n—1 " 2(n—1) 2(n —
(3.6)
That is,
(n—=2)|H|++/n?H*+4(n—1)
2(n—1) ’

Similarly, we can get the other result. Lemma 3.2 is proved.

w=|A—H| >

The proof of Theorem 1.2. Since we see from Proposition 2.2 that

d2

d—v;—f—w[l +H* 4+ (2—n)Hw "+ (1 —n)w ] =0, for \—H>0.
s

or

2

d
d—f+w[1 FH + (n—2)Hw " + (1 —n)w 2" =0, for \— H<O0.
A)
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A direct calculation then gives

if and only if

(2—n)H++/n?H?>+4(n—1)

, for A\—H>0

wrg o ) (3.8)
(n=2) +2(nn_1)+ (n” ), for A\ — H<0
From Lemma 3.2, we have
. (m=2)H| 4+ /n?H?> +4(n —1)
w o=
2(n—1)
Summarizing the arguments above, we have
d*w
A 3.9

Thus ©* is a monotonic function of s€ (—o0,+00). Therefore, w(s) must be
monotonic when s tends to infinity.

We see from (3.1)* that the positive function w(s) is bounded. Since w(s) is
bounded and is monotonic when s tends to infinity, we find that both limy_,_, w(s)
and lim,_, ., w(s) exist and then we have

im W) iy W0)
§——00 S s—+00 ds

By the monotonicity of %, we see that ‘Z—V; =0 and w(s) is a constant. Then,

according to Lemma 3.1, it is easily known that M is isometric to the Riemagnr;ian
product S'(a) x " '(V/1 —a?). From Example, we have S=n+ 2?;1—5[1) +

_ 2+nH?—/n2H4+4(n—1)H?
32271; VWH +4(n - H>  and @ = 2n(1+H7) ‘
Theorem 1.2.

=0. (3.10)

This  proves

The proof of Theorem 1.3. Since we see from Proposition 2.2 that

2

d
d—vvarw[l +H* +2-n)Hw " + (1 —n)w™" =0, for \—H>0.
s

or

2

d
d—2”+w[1 FH 4 (n—2)Hw " + (1 —n)w 2] =0, for A\— H<0.
A\

A direct calculation then gives

if and only if

(2—n)H++/n*H?*+4(n-1) for A\ — H>0

e - NN, (3.11)
RV for A — H <0
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From Lemma 3.2, we have

(2—n)|H|+\/n*H>+4(n—1)

0<w™ <
v 2(n—1)
Summarizing the arguments above, we have % < 0. We see from (3.1)* that the

positive function w(s) is bounded. Combining ‘573" < 0 with the boundedness of
w(s), we see that w(s) is a constant. Then, according to Lemma 3.1, it is easily
known that M is isometric to the Riemannian product S'(a) x $"~'(v/1 — a?).
From Example, we have §=n-+ o 22 0pF T4 — 1)H?  and

2(n—1)  2(n—1)
2= 2+nH?++/n2H*+4(n—1)H?

(1) . Theorem 1.3 is proved.

The proof of Theorem 1.4. From Proposition 2.1 and Theorem 1.3, we can
easily get our result.
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