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1. Introduction

Let Py,...,Pyand Qy, ..., Ok be two k-tuples of points in the Euclidean space
R". Poulsen [17], Kneser [15] and Hadwiger [14] asked whether the inequalities
d(P;, P;) > d(Q;, Q;) for all 1 <i<j <k imply that

Vn<lCJlB(Pi,r)> > Vn<IOIB(Qi,V)>7

where V, is the n-dimensional volume, r is an arbitrary positive number, B(P, r) is
the ball of radius r around P.

Though this question is still open for n > 3, there have been many papers
devoted to the verification of the conjecture and its generalizations in special cases.
The first series of papers [6], [8], [3], [9], [13], [12], [10] considered the special
case, when the balls are moved smoothly in such a way that during the motion all
the center—center distances change in a monotonous way. In this special case
monotonicity results were obtained not only for the volume of the union of con-
gruent balls of the Euclidean space, but also for the volume of flowers, i.e. domains
in the hyperbolic, Euclidean, or spherical space obtained from not necessarily con-
gruent balls with the help of the operations N and U (see [10]).
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It is not true in general that if Py, ..., P, and Qy, ..., O are two configurations
in R", and d(Q;, Q;) < d(P;,P;) for all 1 <i<j <k, then there are continuous
curves 7; : [0, 1] — R" connecting ~;(0) = P; to 7;(1) = Q; such that the distances
d(vi(r),7;(t)) weakly decrease, however, one can always construct such curves in
R*". This simple observation, called the Leapfrog Lemma yields that if we want to
show that a certain function on k-tuples of points in R" does not increase when the
points are contracted, it is enough to find an extension of that function to arbitrary
k-tuples in R?" which does not increase when the points are contracted continu-
ously. This idea has been fruitfully applied in [1], [7], [4], [5]. For instance in the
remarkable paper [4], Bezdek and Connelly could prove the Kneser-Poulsen con-
jecture in the plane using this method.

When the balls are moved smoothly, the change of the volume of the union of
the balls can be controlled by a formula expressing the variation of the volume as a
linear combination of the derivatives of the center—center distances with coeffi-
cients equal to the volumes of the walls of the Dirichlet-Voronoi decomposition of
the union of the balls (see [9]). This formula and its extension for flowers obtained
in [10] resemble the classical Schlafli formula expressing a multiple of the varia-
tion of the volume of a simplex in the hyperbolic or spherical space as a linear
combination of the derivatives of the dihedral angles with coefficients equal to the
volumes of the 2-codimensional faces. The author’s primary motivation for the
study of Schlafli-type formulae was to find a common root of these formulae.
Roughly speaking, simplices and unions of balls belong to the class of polytopes
with curved faces. The family of polytopes with curved faces contains also com-
pact domains bounded by smooth hypersurfaces. For such domains lying in
Einstein manifolds, Rivin and Schlenker proved a Schlafli-type formula in [18].
Analysing the sketch of the proof of the formula in [18] the author found a
Schlafli-type formula for polytopes with curved faces in Riemannian Einstein
manifolds which contained both the classical Schlafli formula and the formula
of Rivin and Schlenker as a special case. This formula and some of its applications
to the Kneser-Poulsen conjeture was presented at the Bolyai Bicentennial Confer-
ence in Budapest in 2002. Right after the conference the author received a preprint
from R. Souam devoted to the proof of a Schlafli-type formula for piecewise
smooth immersions of simplicial complexes into pseudo-Riemannian Einstein
manifolds. The Schlafli-type formula we present in this paper is an extension of
the formula presented at the Bolyai Conference to the pseudo-Riemannian case.
Our formula is proved in a different setting and is slightly more general than that
of R. Souam, which appeared recently in [19]. The main difference is that in
Souam’s formula the infinitesimal variation of the polytope is assumed to be
continuous on the boundary, while in ours the faces of the polytope are deformed
separately and the infinitesimal variations of the faces may not coincide on the
walls between the faces. The formula in this paper contains exactly the same terms
as Souam’s formula together with an extra term which is related to the disconti-
nuity of the infinitesimal variations of the faces along the walls between the faces.
This extension of Souam’s formula turns out to be quite useful when the formula is
applied to the union of some smoothly moving balls. Since the balls move rigidly,
we can choose Killing fields for the infinitesimal variations of the faces in our
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formula which simplifies the evaluation of the formula. However, in general it is
impossible to choose a continuous infinitesimal variation compatible with the de-
formation of the boundary the restrictions of which onto the faces of the union are
Killing fields.

The paper has the following structure. In Section 2 we give an exact definition
of a polytope with curved faces in a manifold, and we introduce some basic
notions related to polytopes (faces, walls between the faces, dihedral angles,
variation of a polytope and compatible infinitesimal variations, etc.). Section 3
contains some variational formulae which culminate in the Schlafli-type formula in
Theorem 2. In Section 3, our formula is specialized for polytopes made of some
rigidly moving balls. The relation of the resulting formula to the Kneser-Poulsen
conjecture is illuminated by an ‘“Archimedean” formula for solids of revolution
(Theorem 5). The main result of this section is Theorem 6 extending some of the
results of [9], [10] and [4].

2. Polytopes with Curved Faces

Intuitively, a polytope with curved faces is a compact domain in a manifold,
bounded by a finite number of smooth hypersurfaces. There are several mathemat-
ical models grasping this intuitive concept. We shall use the approach of Con-
structive Solid Geometry (CSG) and define polytopes with curved faces as solids
that can be obtained by applying regularized Boolean set operations to regular
domains of a manifold.

2.1. CSG representations of polytopes with curved faces. Let X be a topo-
logical space and denote by éx the distributive lattice of closed subsets of X, by .£x
the ideal in ¥y formed by the nowhere dense closed subsets of X. The factor lattice
%x/Ix is a Boolean algebra since a closed set intersects the closure of its comple-
ment in a nowhere dense set, thus we have complements in €x/#x.

A regular closed subset of X is a subset, which is equal to the closure of its
interior. There is a regularization operator px : Px — Rx from the power set Zx of
X to the set Zx of regular closed subsets of X defined by py(A) = int(A). Every
(mod fx) congruence class in @y contains a unique regular closed set, which
can be obtained by the regularization of any of the closed sets belonging to the
equivalence class, thus, there is a natural bijection between the Boolean algebra
%x/Ix and the set Ry. Transferring the Boolean algebra structure from %x/.#x
to Zx we obtain a Boolean algebra structure on the set of regular closed subsets
of X. The induced operations on #x are the regularized Boolean operations

AU*B=px(AUB), AN*B=px(ANB), A\*"B=px(A\B).

A Boolean expression f is a formal expression (a finite sequence of symbols)
such that f is either a symbol for a single variable or an expression of the form
(fi xf>), where fi and f> are Boolean expressions, * is one of the symbols U, N, \.
Each Boolean expression f corresponds to a regularized Boolean expression f™
obtained from f by replacing each operation symbol by the symbol of the corre-
sponding regularized operation. Two Boolean expressions are considered to be the
same if and only if they are identical as sequences of symbols. Thus, x, (x U x),
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((xUy)Nx) are different Boolean expressions. If f(x;,...,x;) is a Boolean
expression in k variables, Ay, ..., Ay € Px are subsets of X, then we denote by
f(A1,...,Ay) and f*(Ay,...,A;) the evaluation of the expressions on the sets
Aq,...,A;. If the sets Ay, ...,A; are contained in a subset Y of X, then we denote
by fy (A, ..., A) the evaluation of f* in ¥ computed with operations regularized
by py instead of px. The following proposition is a straightforward corollary of
the definitions.

Proposition 1. If Ay, ..., Ay € Zx, By, ...,By € Px are subsets such that the
symmetric differences A;AB; are nowhere dense, f(xi,...,xx) is an arbitrary
Boolean expression, f*(xi, .. .,x;) its regularization, then we have

f*(Al, e ,Ak) = px(f(Al, e ,Ak)> = px(f(Bl, e ,Bk)).

Let M be an n-dimensional smooth manifold. A regular domain in M is a
subset of the form {peM | f(p) < 0}, where f : M — R is a smooth function on
M, such that O is a regular value of f. (Another equivalent definition can be found
in 4.8. [20].) M and ( are regular domains in M. Regular domains are n-di-
mensional manifolds with or without boundary embedded as regular closed sets
in M. The boundary of a regular domain is either empty, or it is a smooth hypersur-
face in M.

A CSG solid in a manifold M is a compact set which can be obtained as the
evaluation of a regularized Boolean expression on some regular domains of M. A
CSG representation of a CSG solid P is a regularized Boolean expression

f*(x1,...,x) together with a collection of regular domains Py, ..., Py such that
P=f*Py,...,P).
In Constructive Solid Geometry, the regular domains Py, ..., Py are called the

primitives from which P is built, and CSG representations are depicted by a rooted

= ¢(_, )

-

Figure 1. Example of a CSG tree
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binary tree, called CSG ftree, in which the leaves are marked with primitives, and
the internal nodes are marked with regularized Boolean operations (see Fig. 1).
The CSG representation of a CSG solid is not unique.

Definition 2.1. Let s > 1 be a natural number. A CSG solid P with a fixed CSG
representation f*(Py,...,P;) will be called s-transversal if the following two
properties hold:

(i) each of the variables xy,...,x; occurs in f*(xy,...,x;) exactly once;

(ii) any/ < s of the hypersurfaces oP;, (1 <i<k) 1ntersect transversally (We
say that the hypersurfaces >1,...,2 intersect transversally if dlmﬂ i1 X =
(n—1) for all pe N_, =)

Throughout this paper the term polytope with curved faces or simply polytope
will be used for 3-transversal CSG solids.

2.2. Faces of a polytope and the walls between them

Definition 2.2. Let P = f*(Py, ..., P;) be a 2-transversal CSG solid in M. The
ith face F; of P is the regularized contribution of the hypersurface 3; = OP; to the
boundary of P, that is F; = px,(3; N OP).

Remark that the definition above is slightly different from the ones commonly
used in CSG, where the faces are the (n — 1)-dimensional cells of a CW structure
on the boundary.

Proposition 2. The faces of an s-transversal CSG solid with s = 2 have the
following properties.

(i) F;isan (n— 1)-dimensional (s — 1)-transversal CSG solid in ¥;, that can
be built up from the primitives P; N'Y;, (1 <j < k), that is, there is a regularized
Boolean expression (O,f ) (x1, . . ., xx) in which each of its variables occurs exactly
once and

Fi=0f%(P1NZ,..., PN ).

Oif* depends only on f* and can be defined recursively by the following rules:
O0x; = x; and if g* and W™ are Boolean expressions with single use of disjoint sets
of variables and x; is a variable of g*, then

0i(g" U™ h*) = 0,(n" U g%) = (g™ \" 1) = (9:g™) \" 1",
Ai(g " h)=(0g) " h, (k" g) = di(h\" g) = hN* (dig).
(ii) The union of all the faces equals the boundary of P.

Proof. (i) The proof of the first part of the proposition goes by induction on the
length of f*. Though it is a bit lengthy due to the several cases for the structure of
f*, it is quite straightforward, so we omit the details.

(ii) SetN; = <isk >); N %;. Denote by F; the set of those boundary points of

P which belong only to >, that is,
F? = (3;N0P)\ N,
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F7} is open in X; and therefore F; C F;. We show that F7} is dense in F;. Indeed,
if UC%; is an arbitrary open neighborhood of a point p € F;, then since F; is
regular closed in ¥;, U contains a non-empty open (in ¥;) subset V C F; N U.
Since V is (n — 1)-dimensional, while the intersections 3; N 3; are (n — 2)-dimen-
sional, V must have a point, which is not in N;. Thus F; = F}.

Finally we claim that | J; _; . F7 is a dense subset of OP. To prove this, take a
point p € OP and an arbitrary connected neighborhood U of it. Since P is regular
closed, the interior of P is dense in P, therefore U contains an inner point g of P. U
must contain also a point 7 in the exterior of P, since p is on the boundary. Connect
q to r by a curve 7 in U keeping away from the intersections 3; N %;. This is
possible since the intersections are (n — 2)-dimensional. As -y connects an interior
point of P to a point in its exterior, v must cross the boundary of P at a point
s€ 0P NU. Since OP is covered by | J; ¥;, s is contained in X; for an i. i is uniquely
determined as ~ misses the intersections 3; N YJ;. Consequently, s € U belongs to

F?. We conclude that 9P = |J,_, F? = U, F7 = U, Fi. O

Using the above notation and the terminology of Chap. XVII of [16], the
interior of a 2-transversal CSG solid P is a manifold with singular boundary in
M. As Ul | F? consists of regular frontier points, the set of singular frontier points
is covered by the union of the (n — 2)-dimensional intersections 3; N%;. This
means that Theorem 3.3 in Chap. XVII [16] is applicable to P and yields the
following version of Stokes’ theorem:

Proposition 3. If M is oriented, and the regular frontier of the 2-transversal
CSG solid P is equipped with the usual induced orientation, then

i=1
for any differential (n — 1)-form w on M.

If P is a polytope, i.e. 3-transversal, then we can apply Proposition 2 to the
faces F;. The ith face of F; is empty since O, (X; N P;) = (), the jth face for j#i is
the regularized contribution of ¥J; N J; to the boundary of the face F;, i.e. the set
Wi = px,(Xi N X;) N s, Fi. Wy is an (n — 2)-dimensional CSG solid in ¥; N %;.
Comparision of the CSG representations of W;; and Wj; derived in the proof of
Proposition 2 reveals that W;; = Wj;. The solid Wj; will be called the wall between
the faces F; and F;.

2.3. Polytopes in pseudo-Riemannian manifolds. Assume that the manifold
M is equipped with a pseudo-Riemannian metric {, }. For a tangent vector X of M,
we define the norm |X| and the sign €(X) of X by |X| = |{X, X}|1 /2 and e(X) =
sgn({X, X}) respectively.

Definition 2.3. A regular domain P of M will be called pseudo-Riemannian if
the restriction of {, } onto the boundary ¥ = OP is non-degenerate and has con-
stant index, i.e., if > is a pseudo-Riemannian submanifold of M. A pseudo-
Riemannian s-transversal CSG solid in a pseudo-Riemannian manifold M is an
s-transversal CSG solid P = f*(Py, ..., P;) for which the intersection of any [ < s
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of the hypersurfaces OP; is a pseudo-Riemannian submanifold of M. In particu-
lar, a pseudo-Riemannian polytope is a pseudo-Riemannian 3-transversal CSG
solid.

A pseudo-Riemannian regular domain P has a unique outer unit normal vector
field Np €T'(TM|y;) along ¥ = OP. If P is defined by the inequality f < 0, where f
is a smooth function on M and O is a regular value of f, then Np is given by the
equation

gradf
|gradf|

A pseudo-Riemannian 2-transversal CSG solid P = f*(Py, ..., P;) has a well-
defined smooth outer unit normal vector field along each face. If Np, is the outer
unit normal vector field of P;, then the outer unit normal vector field N; of P along
the face F; is equal to (—1)"Np,, where s; is the number of those subtractions in
f where an expression containing the ith variable is subtracted from another
expression.

Each face F; of a pseudo-Riemannian polytope P =f*(Py,...,P;), is a
pseudo-Riemannian 2-transversal CSG solid within the pseudo-Riemannian mani-
fold 3; and the faces of F; are the walls between F; and the other faces. Applying
the above reasoning to F; we obtain that F; has a well defined smooth outer unit
normal vector field n; € T'(T3; \W ) along the wall Wj;.

We are going to define the i inner dihedral angle oy of the pseudo-Riemannian
polytope P along the wall Wj;. cy;; is a smooth function on W;; computed as follows.
Set €;; = €(n;;) and ¢; = €(N;). For any p € Wy, the vectors n;(p) and N;(p) form an
orthonormal basis of the 2-dimensional orthogonal complement of 7,W;; in T,M.
Since nj;(p) is also in this orthogonal plane, we can write the vector field n;; as a
linear combination of n;; and N;:

Np = e(gradf)

nj; = Aegny; + pN;, 2)
where A and 11 are smooth functions on the wall Wj;. As |nj;| = [n;;| = |N;| = 1 and
{n;,N;} = 0, Eq. (2) implies

€ji = >\26ij + ,uze,». (3)

We have three possibilities for Eq. (3) depending on the signs ¢, €; and ¢;.

If \2 + 4? = 1, then we define a;; by the relations 0 < ay; < 2, €A = cos o
and €;/1 = sin o o;.

If A2 — p? = 1, then we define «; by the equations |A| = cosh o ay;, sgn(A)u =
sinh o Qj.

Finally, if x> — A\*> =1, then «y; is the function determined by sgn(u)\ =
sinh o cyj, || = cosh o ay;.

The ordered basis (nji(p), N;(p)) is orthonormal and has the same orientation
as the ordered basis (N;(p),n;(p)) for all pe W;;. These conditions allow us to
compute that N; is expressed as a linear combination of nj; and N; in the follow-
ing way

Nj = €igjipmy; — €; AN;. 4)
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As a corollary of (2), (3) and (4) we obtain that
n; = Ainy; + uNj, (5)
which shows that o;; = ay;.

2.4. Variations of CSG solids. A CSG structure has a discrete component,
the Boolean expression (or the CSG tree encoding it), which can not be de-
formed continuously. However, one can deform a CSG solid by deforming its
primitives.

Throughout this section, I will denote an open interval around 0. When
H : X x I — Y is an arbitrary homotopy and t €1, H; : X — Y will denote the map
defined by H,(p) = H(p,?).

Definition 2.4. A variation of a regular domain P = Py in M is a one-parameter
family of regular domains P;, t € I, for which

(i) there is a proper isotopy ® : OP x I — M such that @ is the inclusion of
OP, and ®,(0OP) = OP, for all r€1;

(ii) for any point peM the sets {r€l|pc intP,} and {t€l | p € extP,} are
open in /.

Less formally, during a variation of a regular domain the boundary is trans-
formed by a proper isotopy and the domain is not allowed to flip from one side of
the boundary to the other.

The trace of a variation is the set P = {(x,7) €M x I | x€ P,}. The trace of a
variation of a regular domain in M is a regular domain in M X I.

The variation of the boundary of P determines the variation of P uniquely,
so studying variations of regular domains we may focus on the variation of the
boundary.

A vector field X € ['(TM|y, ) along ¥ is said to be an infinitesimal variation of
X0, compatible with the given variation if one of the following equivalent condi-
tions is fulfilled:

e The isotopy @ in Definition 2.4 (i) can be chosen in such a way that

_ 92(pyt)
Xl’ -0t

=0
e The vector field (X,9/9t) eI(T(M xI)ls, , (o) is tangential to the bound-
ary of P.

The difference of two infinitesimal variations compatible with the same variation
can be an arbitrary tangential vector field along 3.

In particular, if Py is a pseudo-Riemannian regular domain in a pseudo-
Riemannian manifold M, Np is the outer unit normal vector field of P, then every
infinitesimal variation X compatible with the given variation has the same normal
component vNp, where v = ¢(Np){X,Np}.

Definition 2.5. A variation of a (pseudo-Riemannian) s-transversal CSG
solid

P=f"(Py,...,P) (6)
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consists of variations Py ,,..., Py, t €1 of the primitives Py,. .., Py respectively,
such that

G) P, =f* (Pisy...,Pk;) is a (pseudo-Riemannian) s-transversal CSG solid
for all tel;

(ii) forany /< sand 1 <i; < --- <i; < k, there is a proper isotopy ®,, €1 of
ﬂ;:] OP;; in M such that @ is the inclusion map and @,(ﬂjl.:l OP;) = ﬂ]l.:] OP;
for all ¢;

(iii) there is a compact set K C M such that P, C K for all r€1.

Proposition 4. Let ¢ : M x I — R be an arbitrary continuous function, P; =
f*(Pi4y...,Pxy) avariation of a CSG-solid in M. Then the integral

L o(p,1)dp )

taken with respect to the measure induced by the pseudo-Riemannian metric of
M is a continuous function of t.

Proof. Denote by ¥, the characteristic function of P,. For any number ¢ € I, the
union of the boundarles of the primitives Py, ..., Py, has measure 0. However,
for any point peM \ Ul | Pi,, the function x;(p) is constant in a small neighbor-
hood of 7y and therefore lim,_,, ¢(p,t)x:(p) = ¢(p, 1o)Xy, (p) for almost all p e M.
Since the characteristic functions , (¢ €/) have a common compact support, the
statement follows from the Lebesgue lemma. O

Let P; be the trace of the variation of the primitive P;. The trace of the variation
of the solid is defined to be the set P = f*(IPy, ..., P;). The trace of the variation of
an s-transversal solid is not an s-transversal solid in M because of the lack of
compactness. However, for any [a,b] C I, setting H, = {(p,1)eM x|t > a}
and H” = {(p,1) €M x I |t < b}, we have:

Proposition 5. The truncated trace f* (P, ..., Py) 0* H, N* H® of the varia-
tion of an s-transversal solid is an s-transversal solid in M x I. O]

Consider now a variation of a pseudo-Riemannian polytope (6) in a pseudo-
Riemannian manifold (M, {, }). Denote by ¥; the boundary of the primitive P; and
let X; € I'(TMy; ) be an infinitesimal variation of ¥; compatible with the variation
of P;. A vector field X € [(TM |w,) along the wall W is said to be an infinitesimal
variation of the wall Wj compatlble with the variation of the polytope if the
isotopy @, of the intersection ¥; N Y; in part (ii) of Definition 2.5 can be chosen

in such a way that X, = dq)dt(m for all p € Wj;.
=0

3. Variational Formulae

3.1. Variation of the volume. Consider a variation P, = f* (Pigy...,Pr;)ofa
pseudo-Riemannian polytope in a pseudo-Riemannian manifold (M, {,}) and
denote by V(¢) the volume of P, with respect to the measure induced by the
pseudo-Riemannian metric.



282 B. Csikds

Theorem 1. If F, . .., F} are the faces of Py, N; is the outer unit normal vector
field of Py along F; and the vector fields X; € T'(TM| F[) are compatible with the
variation, then we have

k k
V/(0) = ZJ vido; = ZJ e{X,N;}do;. (8)
i=1 JF i=1 JFi

Proof. We can use the standard idea to prove this theorem. If M is orientable,
then we can take the volume form w of M and apply Stokes’ theorem for the pull-
back 7*w of w by the canonical projection 7 : M x I — M on the truncated trace
Py =P N* HoN* H' C M x1I of the variation. As d(n*w) = 7*(dw) = 0, the
integral of 7*w on the boundary of P} is 0. P} has k lateral faces Fy,..., F;
and two additional faces P, x {r} and Py x {0}. Computing the integrals on the
lateral faces of P}, by the Fubini theorem we obtain

t k
V() — V(0) = J <ZJ aX. N,-}dal-) . )
0 \=1 JFi
For every 0 <i <k, F;; is a 2-transversal CSG solid in OP;, and there is an
isotopy @ : 8P X I — M for which ®,(0P;) = OP;,. Pulling back the domain
of the inner integral on the right hand side of (9) by ®, onto ®,'(F;,), we
obtain an integral of type (7). Therefore by Proposition 4, the integral in the
bracket in (9) is a continuous function of ¢, thus, differentiating (9) gives (8).

If M is not orientable, then take its 2-fold orientable covering p : M — M and
apply the above arguments to the lift p~!'(P,) of the variation. O

3.2. Some useful formulae. Concerning the pseudo-Riemannian analogues of the
fundamental equations of Riemannian submanifold theory, used below, we refer to [2].

Lemma 1. Let M be an (m+ 1)-dimensional pseudo-Riemannian Einstein
manifold, . be a smooth pseudo-Riemannian hypersurface in M with a fixed unit
normal vector field N. Denote by H : 3. — R the trace of the Weingarten map and
by II the second fundamental form of X. Then for any tangential vector field X
along ¥, we have

XH + 6II(X) = 0, (10)

where 611 denotes the divergence of the second fundamental form.
Proof. To prove the identity at a given point of ¥ choose a tangential ortho-
normal frame E,...,E, in an open neighborhood U of that point and restrict

attention to U. Since M is Einstein, the Ricci endomorphism Ric and the curvature
tensor R of M satisfies

“ s
Ric(X z::e R(X,E)E; + ¢(N)R(X,N)N = X

where s is the scalar curvature of M. Taking the inner product of this equation with
N we obtain

ie E){R(X,E)E;,N}. (11)



A Schlifli-Type Formula for Polytopes with Curved Faces and Its Application 283

According to the Codazzi-Mainardi equation
{R(X, E))E;,N} = e(N)(Vxl(E;, Ei) — Vg II(X, E)), (12)
where V is the Levi-Civita connection of 3. Plugging (12) into (11) we get

0= Z V(VxII(Ei, E;) — Ve II(X,E)) = {I,VyIl} + 61(X).  (13)

Since H = {I,II} and VyI = 0, we also have

XH = {Vyl, II} + {1, Vxll} = {I,VlI}. (14)
Equation (10) is an obvious consequence of (13) and (14). O

Lemma 2. If ¥ is a pseudo-Riemannian smooth hypersurface in an (m + 1)-
dimensional pseudo-Riemannian manifold (M, {, }), L is the Weingarten map with
respect to a fixed unit normal field N, I and Il are the first and second fundamental
forms, then for any tangent vector field X on X we have

1
OI(X) = E{QXI, I} — div L(X),
where Fx is the Lie derivative with respect to X.

Proof. Choose a local orthonormal frame Ey, ..., E, on Y. Then
m

SH(X) == e(E)VE (X, Ey),
and .
Lxl(Ei, Ej) = —{ZxE;, Ej} — {E;, xEj} = —{[X, E}|, Ej} — {E;, [XE}]}
= {~VxEi + Vi X,E} + {Ei, ~VxEj + Vg X}
= —X{E,E}+ {/VSE,-X, E;} + {Ei,$EjX}
= {VeX,E} + {E, VEX),

from which

—{g’xl 1} = Z E){VeX,E}MI(E;, E)

= Z O (E;, Vi X).
Finally

divL(X) = 3 e(EN{VE (L(X)), E}

-

Il
=

e(E)(EAII(X, E;)) — II(X,VEE;))

|
.M§

I
—

e(E)(VeII(X,E)) + (Vg X, E)).

I
g

1
Combining these formulae we obtain the statement. O
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Lemmas 1 and 2 yield the following.

Corollary 1. For pseudo-Riemannian hypersurfaces lying in pseudo-Riemannian
Einstein manifolds we have

1
0=XH +§{£,/XI, I} —divL(X) for any X eI'(TX).

Let ¥ be a smooth pseudo-Riemannian hypersurface in a pseudo-Riemannian
manifold M, NeI'(TM|y;) be a unit normal vector field along X. Consider an
isotopy @, : ¥ — M, r€(—¢,¢) and the induced vector field X e I'(TM|y), X, =
4®,(p)|,o- Denote by I, II, and H, = {I,,1I;} the pull-backs of the first and
second fundamental forms and the Minkowski curvature of ®,(X) onto ¥ by ®,.
Denote by I = Iy, Il = Il and III the first, second and third fundamental forms of
%, and let the symbols ', II' and H' stand for & (0), 2% (0) and % (0) respectively.
Let X = X” + vN be the decomposition of X into components tangential and
normal to 3.

Choose a point p € ¥ and let 7y : t— D,(p) be the curve drawn by p during the
isotopy. Extend N, to a smooth vector field N, along  for which N, () is a unit
normal of ®,(X) at y(z).

Lemma 3. Using the notation introduced above we have
I'= —2vll + Lxrl, (15)
VN, (0) = —€(N,) grad v — L, (X)), (16)
II' = eN)V*v 4+ v(R(N,...,N) = IIl) + LI, (17)
H = v{II,II} — ¢(N)Av + ¢(N)vr(N) + X"H, (18)
where L, is the Weingarten map of 3. at p, the gradient of v is taken in 3., Vv is
the Hessian of v with respect to the Levi-Civita connection, Av = —div(gradv) =

—{I,V*} is the Laplacian of v, r(N) is the Ricci curvature of M in the direc-
tion N.

Proof. Observe first that (15) and (17) claim the equality of symmetric (0,2) tensor
fields, for which it is enough to show the equality of the corresponding quadratic
forms. Choose an arbitrary tangent vector Y € 7, and a curve 7 : (—6,6) — 3 such
that 7(0) = p and 1/ (0) = Y. Consider the parameterized surface r: (—¢, e) X
(=6,6) = M, r(t,u) = P,(n(u)) Differentiating the equation [(Y,Y)=
{0,x(2,0),0,r(2,0)} at t = 0 we get

I'y,y)=2{Vv,0,r(0,0),Y} =2{V,0r(0,0),Y} = 2{VyX,Y}.
Plugging in the decomposition of X, we obtain
I'(Y,Y) =20{VyN, Y} + 2{VyX", Y} = —2ull(Y,Y) + LxrI(Y,Y).

This proves (15).
Extend N, to a smooth vector field N, along r in such a way that N (¢, u)
is a unit normal of the hypersurface ®,(X) at ®,(y(u)). Since {N;,N;} is
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constant £1, V,;N;(0,0) = V,N,(0) is tangent to ¥ at p. On the other hand,
differentiating {N;, 9,r} =0 with respect to ¢ we obtain

{ViIN,(0),Y} = —{N,, V;0,r(0,0)} = —{N,, V,0r(0,0)} = —{N,, VyX}.
Decomposing X gives
—{Np, VyX} = =Y (1)e(N,) — l(X;, Y) = {—€(N,) grad v — L,(X;), Y},
which yields (16). Differentiating the equation
III(Y7 Y) = _{qur(ta 0)7 aur(ta 0)}
with respect to ¢ at t = 0 we obtain
Ir'y,y)=—{V,V.N:(0,0),Y} — {VyN, V,9,r(0,0)}
= —{V,ViN;:(0,0),Y} —R(X,,Y,N,,Y) — {VyN,V,0r(0,0)}
= e(N,){Vygradv, Y} + {Vy(L(X")),Y} + v(p)R(N,,Y,Y,N,)
—{VyN,VyX} —R(X],Y,N,,Y)
=€e(N,){Vygradv,Y} +v(p)(R(N,,Y,Y,N,) — {VyN, VyN})
+{Vy(L(X")), Y} —{VyN,VyX"} —R(X],Y,N,,Y).

In the special case when X is tangent to 3 and @, is the flow generated by X on 3,
the above formula reduces to

Lxrll(Y,Y) = {Vy(L(X")), Y} = {VyN,VyX"} = R(X],Y,N,, Y),
from which
II'(Y,Y) = e(N,){Vygradv,Y} + v(p)(R(N,,Y,Y,N,) — {VyN, VyN})
+ Lxrll(Y,Y),

proving (17).

Let %, and 4; be the matrices of I; and II; with respect to a local orthonormal
frame over an open subset U of X. Then H, =tr¥%, '%,. Differentiating this
equation we obtain

H =t(9," By — 9, 9,9, Bo) = {1, 1I'} — {I',1I}
= 20{II, 11} — ¢(N)Av + e(N)vr(N) — v{I,IIl} + X"H
= v{II,II} — ¢(N)Av + ¢(N)vr(N) + X" H.
O

Corollary 2. If M is an (m + 1)-dimensional pseudo-Riemannian Einstein
manifold with sectional curvature s, . is a smooth pseudo-Riemannian hypersur-
face, X is an infinitesimal variation of 3 as above, then

s
m+1

{X,N} =H + % {I', 1T} — div(e(N) grad v + L(X")).
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Proof. Using (18), (15) and Corollary 1

o =e(N)ur(N) = H' — v{IL, I} + ¢(N)Av — X"H
=H + % {I',II} + ¢(N)Av — % {Lxel I} —X"H
=H + % {I', 1T} — div(e(N) grad v + L(X")).
[
3.3. Variation of the dihedral angle. Consider a variation P; =
f*(Piyy...,Py,) of a pseudo-Riemannian polytope in a pseudo-Riemannian mani-

fold (M, {, }), let W;; be the wall of P = P, between the i-th and j-th faces. Choose
an isotopy @ : (OP; N OP;) x I — M such that ®,(0P; N OP;) = (OP;, N OP;,) and
Dy is the inclusion, and let X;; e I'(TM |W ) be the initial speed vector field
Xii(p) = o Define the signs €;, €, €5, €ji, "the functions aj, A, 1 and the vector
fields N;, Nj, n;, n; along Wj; as in subsection 2.3. These functions and vector fields
can be extended to functions and Vector fields along the isotopy ®. For example
we extend oy to a smooth function o : (OP; N dP;) x I — R in such a way that

1/( ,0) = ay; and o (p, 1) is one of the angles between the 8P,-‘r, and OP;, at the
point ®(p,1). Derlvatlves of the extended functlons a‘I’ A%, 1® and covariant de-
rivative of the extended vector fields N<I> N; L w1th respectto tatt = 0 will be

’ lJ’ i
denoted by Xj; au, Xij A X,j,u in,» i VXU VX n and VX n respectively. It
will be seen that these derivatives depend only on X, , SO to 31mp11fy notation we
drop the ®’s from the upper indices.
Our aim is to find an expression for the derivative Xj;cy; of the dihedral angle.

Differentiating the relation

{Ni,N;} = —€i€iA
and making use of
XA = —eie (Xjjoi)p
we obtain
eijeji( Xy ) = {VX,,NHN b+ {Nqu i} (19)
A computation similar to the one used in the proof of (16) shows that
Vx,Ni = —egrady; — Li(Xy; — viNy),

where v; = ,{X;;,N;}, L; is the Weingarten map of the hypersurface OP;. Taking
the inner product with (4) and using {Vx,N;, N;} = 0 this yields

{VX,.],NZ‘, Nj} = —eieﬁu{ei grad v + L,'(Xij — U,'N,')7 Ilij} (20)
Plugging (20) into (19) and dividing by u (# 0 by 2-transversality) we get
Xijaij = —Gi{Ei grad v + L,(X,j — I/l'Ni), 6,’]11,‘]'}

(21)
— e grady; + Li(X;; — vN;), gimi }.
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3.4. Schlafli formula for polytopes

Theorem 2. We have the following formula for the variation of the volume of a
polytope in an (m + 1)-dimensional pseudo-Riemannian Einstein manifold with
scalar curvature s

k
Z J <H’+ {r; Ui}>d0i+ > J (Xijouy)do;
m+ i-1 1<i<j<k!Wy
k
+Z

i=1

J eiei{ Li(Xy — Xi),my }doy;. (22)

~. .
MM»

Proof. By Theorem 1 and Corollary 2, we have

k k

K 1
-S| « doi =" | (H +- {111} )do;
/ JFiem+1 9 EJF,( 1+2{17 }) 9

i=1 i=1

k
_ Z € J div(e; grady; + L,-(Xl.T))da,».
i=1

Fi

The last family of integrals can be computed by the divergence theorem

J div(e; gradv; + Li(X] ))doi = J {e gradv; + Li(XT), e;ny; }do;
Fi 1<j<k?Wy
J#i

and thus the theorem follows from (21) and the equation XIT = X; — vN,. O

4. Application to the Kneser-Poulsen Conjecture

Let M be the (m + 1)-dimensional hyperbolic, Euclidean or spherical space of
constant sectional curvature K = s/(m*+ m). Complete connected umbilical
hypersurfaces in M will be called *-spheres. The term x-ball will be used for
any ball if K >0 and for any convex regular domain bounded by a x-sphere if
K < 0. In this section we study the consequences of the Schlafli-type formula (22)
for polytopes made of *-balls in M.

Let P = f*(By, ..., By) be a polytope made of *-balls in M, such that the bound-
ary of B; is a *-sphere with constant normal curvature ;. Consider a variation P; of P,
obtained by moving the primitives B; rigidly. In this case we can choose Killing fields
for the infinitesimal variations X;. Doing so, the integrals fF,» (H,’ + % {r;, IIi})da,- in
(22) will all vanish. The intersection angle of *-spheres is constant along the inter-
section, so the funtions v; depend only on 7 and the derivative j;(0) = Xja; does
not depend on the actual choice of Xj;. By umbilicity, the Weingarten map L; of OB, is
simply a multiplication by «;, thus, formula (22) reduces to the following form

s
1 (0) = Z J 1) 0)ay( ’/)—'—ZZJ ri{ (X — Xi), my }doy;.
m+ 1<i<j<kI Wi W;

i=1 j=1
J#i
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Smce X isa K1111ng field, and Xj; is a compatible infinitesimal variation of the wall

Wi, Z, | jw Xi),nj}doj; is the derivative of the m-dimensional volume of
the i-th face att = O (cf. Theorem 1). Thus we obtain the following special case of
Theorem 2.

Theorem 3. For a polytope built of x-balls in M, we have the following
variational formula

d s k
- V- i0i(Fi
dt<m+1 ;’”( )>

Corollary 3. If a polytope P = f*(By,...,By) is varied within the class of
polytopes by moving the x-balls B; smoothly and rigidly in such a way that the
inner dihedral angles oy of the polytope weakly decrease, then the quantity
(sV/(m+1) = >, kioi(F;)) does not increase. 0

= Y ay(0)oy(Wy). (23)

=0 1<i<j<k

For simplicity call CSG objects made of ordinary balls flowers. We are going to
extend Corollary 3 for piecewise analytic variations of flowers.

The boundary of a flower is typically not a smooth submanifold of M, but
the singular points always form a negligible set (see [16]). At smooth points of
the boundary, the boundary is umbilical and its principal curvature x with respect
to the outer unit normal is well defined. The function which assigns to a flower
P the number sV(P)/(m+ 1) — |;, kdo is a natural extension of the function
“sV/(m+1) =", kioi(F;)”, which was defined only for polytopes. It is not
difficult to see that this function varies continuously under a variation of the
flower.

For ordinary intersecting balls B; = B(P;, r;) and B; = B(P;, r;), the inner dihe-
dral angle o(B;, B;) of the union B; U B; is an increasing function of the distance
d(P;, P;) between the centers. Taking a regularlzed Boolean expression f* in which
each variable is used exactly once, one can define a sign ef depending only on f*
such that for any 3-transversal family of balls the inner dlhedral angle ay; of the
polytope f*(B1, . .., By) coincides with ef a(B;, B;) plus a constant multiple of 7.
Therefore, the inner dihedral angle oy; of a 3-transversal flower built of balls with
fixed radii is an increasing function of the signed distance J d(P;,P;) of the
centers.

Theorem 4. If a flower P = f*(By, ..., By) is varied by moving the balls B; =
B(P;,r;) by piecewise analytic rigid motions in such a way that the signed dis-
tances ef dij(t) = ef d(Pi;, PJ 1) between the moving centers weakly decrease, then
the quannty sV(P,) /(m+1) = [,p rdo does not increase.

Proof. Since the quantity sV (P;)/(m+ 1) — fap, kdo varies continuously dur-
ing the variation, it is enough to show monotonicity on intervals where the
variation is analytic. Configurations of balls not satisfying the 3-transversality
condition can be characterized by the vanishing of some analytic functions so by
the unicity theorem, if P, is a polytope for at least one moment of time, then it
will break the 3-transversality condition only at a finite number of moments.
These singular moments cut the time interval into a finite number of intervals. On
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each subinterval, sV (P;)/(m + 1) — [, rdo does not increase, so we are done by
continuity.

If the configuration of the balls is singular during the whole variation, then we
can perturb the radii. The set .% of vectors § = (61, ...,6) for which r; + 6; >0
and the balls B?[ = B(P;, r; + 6;) do not satisfy the 3-transversality condition is
nowhere dense in R¥. For § € Rk \ %, we know the monotonicity of “sV(P?)/
(m+1) — [, kdo” for the variation P! = f*(BS ..., By,). Taking the limit as
e Rﬁ\&” tends to 0 we get the required monotonicity in the general case.  []

Theorem 4 has the same flavour as the Kneser-Poulsen conjecture. It will turn
out below that the connection is more organic than just a superficial similarity.

Let N be an (m — 1)-dimensional complete totally geodesic subspace of M.
In the spherical case, let N* be the polar circle of N and set N *—( for K <0.
The group G of orientation preserving isometries of M leaving each point of N
fixed consists of rotations of M about N, hence G is isomorphic to the circle
group S'.

Theorem 5. Suppose that a the set of singular points of the boundary of a G-
invariant CSG object P in M is negligible and that the boundary hypersurfaces of
the primitives of P intersect N transversally. If a non-singular boundary point
pEOP is not in N, then denote by kg(p) the normal curvature of OP in the
direction tangent to the circle Gp, relative to the exterior unit normal vector field
of P. Then the following identity holds

N

Vi (P) - J kedo = 27V 1 (PON), (24)

oP

where V.1, V1 and o are the volume measures induced by the Riemannian
metric on M, N and the smooth part of OP respectively.

Proof. First we recall some formulas concerning tubular hypersurfaces around
N. We refer to [11] for details. Tubular hypersurfaces around N are obtained as the
level sets of the function p : M — R, which assigns to a point in M its geodesic
distance from N.

By the symmetry properties of the tubular hypersurfaces around N, the tubular
hypersurface of radius a (a < m/(2v/K) in the spherical case) has two principal
curvatures x(a) and x(a) with multiplicities 1 and (m — 1) respectively. These
principal curvature functions satisfy the Riccati differential equation /, = x2 + K
with initial condition £;(0) = —oco and ky(0) =0, from which & (a) =
—+/K cot (\/I?a) and ky(a) = VK tan (v/Ka). In particular, the trace of the
shape operator of the tubular hypersurface of radius a around N is
VK((m — 1)tan(v/Ka) — cot (v/Ka)). Observe that ,(a) is the principal curva-
ture of a sphere of radius a with respect to the outer unit normal vector field.

The normal bundle of N is trivial and carries a natural Riemannian product
metric, so it can be identified with N x R%. The exponential map of the normal
bundle gives a diffeomorphism between N x R? in the non-positively curved cases
and between the tube of radius 7/(2+/K) around the zero section of the bundle and
M\ N* in the spherical case. The pull-back of the volume measure of M onto
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N x R? by the exponential map is the volume measure of N x R? multiplied by a
smooth function of the form ¥ o p, where p : N x R* — R is the pull-back of the
distance function p, i.e. p(p,x) = |x|, ¥ is a smooth function whose logarithmic
derivative is

19/
9
Integrating (25) taking care of the initial condition ¢#(0) = 1 we obtain

9(a) = Sin(ﬁa>\;(l>_(s: (VKa)

Let X be the unit vector field on M \ (N U N*) whose restriction onto a tubular
hypersurface around N is the unit normal vector field of the hypersurface pointing
away from N.

The vector field Y = (k; o p)X has a singularity along N, but extends smoothly
to N* in the spherical case. By symmetry, the divergence of Y depends only on the
distance of a point from N, thus divY = g o p for a suitable function g. To deter-
mine g explicitly, take the solid tubes A, and A; of radii @ >b >0 around an
arbitrary compact regular domain A in N and apply the divergence theorem for
the vector field Y over A, \* A,. Then dividing by the volume of A we get

o J“ <0 sin(v/Kt) cos ™ (v/Kt)
b VK
from which divY = g o p turns out to be constant Km = s/(m + 1).

Let ¢ be a positive number and consider the solid tube N. around N. If ¢ is
sufficiently small, then the boundary of N, intersects the smooth part of the
boundary of P almost orthogonally and therefore transversally and the intersection
ON. N (OP) is covered by the 2e-neighborhood of N N OP. In that case we can
apply the divergence theorem for the domain P \* N.:

(a) = —(a~" + VK((m — 1) tan(vVKa) — cot(v'Ka))). (25)

(26)

dt = 2m[ky (1)19(1)];,

J LdeH = J k10 p{X,N}do — k()0 (ON: N P), (27)
pFn.m+1 OP\N.

where N is the outer unit normal vector field on the smooth part of the boundary of
P, {,} is the Riemannian metric of M, o is the m dimensional volume measure
induced by the Riemannian metric on smooth hypersurfaces of M.

Study the limit of the components of the Eq. (27) as € tends to 0. The limit of
the left hand side is just sV,,1(P)/(m + 1). If p € OP is a smooth boundary point
of P, then OP contains the circle Gp. The curvature of this circle is x;(p(p))
provided that the orientations are chosen in such a way that X is the second Frenet
vector field of the circle. According to Meusnier’s theorem, the curvature of the
circle is related to the normal curvature of the hypersurface in the direction tangent
to this circle by the equation x; o p{X,N} = k¢. This implies that the integral on
the right hand side of (27) converges to fap kgdo.

Consider the intersection PN N and the 2e-neighborhood U,. of its rela-
tive boundary in N. The orthogonal projection of ON. NP is contained in
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(PNN)UU,. and it contains (PNN)\ Uy, therefore k;(c)o(ON.NP) is
between 27rki(e)ed(€)Vy1(PNN)UUs) and 27ki(e)ed(€) Vi1 ((PNN)\
Us.). Since

III%mel((PﬂN) U U25) = III% Vm,]((PﬂN) \ U25> = mel(PmN)

and lim._ —k1(e)ed(e) = 1, the limit of (27) as ¢ tends to O yields (24). O

Corollary 4. Suppose that P = f*(By,...,By;) is a CSG object in M made of
G-invariant x-balls. Denote by k the principal curvature function on the smooth
part of the boundary OP and by o the m-dimensional volume measure on OP. Then
we have

s
—Vm_H(P) — J rdo = ZWVm_l(f*(Bl NN,...,By ﬁN))
m+1 op
]
Combining Theorem 4 and Corollary 4 we obtain
Theorem 6. Let f* be a Boolean expression as usual, Pi,...,P; and
01, ..., 0Ok be points in the (m — 1)-dimensional subspace N. If there exist piece-

wise analytic curves ~y; : [0, 1] — M connecting the points ;(0) = P; to the points
vi(1) = Q; in such a way that the signed distances e’;d(’y,-(t), 7(t)) weakly
decrease as t increase, then for any choice of the radii, we have the following
inequality between the volumes of the (m — 1)-dimensional flowers built from the
balls BY = B(P;,r;) NN and Efv = B(Q;,r:) NN:

Vi a (F5(BY, . BY)) < Viur (F(BY ..., BY)).
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