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Abstract. In [2], it was shown that if @ and b are multiplicatively independent integers and € > 0,
then the inequality ged(a" — 1,b" — 1) < exp(en) holds for all but finitely many positive integers n.
Here, we generalize the above result. In particular, we show that if f(x), fi(x), g(x), g1 (x) are non-zero
polynomials with integer coefficients, then for every € > 0, the inequality

ged (f(n)a" +g(n), fi(n)b" +g1(n)) < exp(ne)
holds for all but finitely many positive integers n.
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1. Introduction

In [2], it was shown that if @ and b are multiplicatively independent positive
integers, then for every fixed ¢ > 0 there exists a positive integer n., depending on
€,a and b, such that the inequality gcd(a" — 1,0" — 1) < exp(en) holds for n > n..
The method of [2] was extended to the instance when the integers a and b are
replaced by .#-units. Namely, let 2 = {py,...,p,} be a finite set of prime num-
bers, and write ¥ = {£p]" - - p;"|a; = 0} for the set of all integers whose prime
factors belong to 2. The members of .% are usually referred to as % -units. It was
then shown in Remark 1 in [4] and in [7], that for every fixed € > 0 the inequality
ged(u — 1,v — 1) < (max{|u|, |v|})° holds for all pairs of multiplicatively indepen-
dent integers u and v from . with finitely many exceptions. This result was in
turn sufficient to confirm a conjecture of Gy6ry, Sarkozy and Stewart [6],
which asserted that the largest prime factor of expressions of the form
(ab + 1)(ac + 1)(bc 4 1), with distinct positive integers a, b and ¢, tends to infin-
ity with max{a,b,c} (in fact, in [4], it was noted that this is true even for the
expressions (ab + 1)(ac + 1), with a>b>c). Some quantitative aspects of the
above inequality appear in [3].

The results from [2] and [7] were extended to the setting of algebraic numbers
in [5] and were used to give a non-trivial lower bound for the height of A(u,v),
where h € Q[x,y] is non-constant, and u and v are .%-units.
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In this paper, we extend the results from [2] but in a different direction. In
particular, we prove that the same inequality as the one in [2] holds for the greatest
common divisor of expressions of the type f(n)a" + g(n) and f;(n)b" + g1(n),
where a and b are multiplicatively independent non-zero integers and f, fi, g and
g1 are non-zero polynomials with integer coefficients. In order to prove such an
inequality, we extend the results from [2] to study ged(u — 1,v — 1), where u and v
are near S -units, in a sense which will be made more precise in the next section.

The rest of this paper is organized as follows. In Section 2, we present the
main result of the paper, which is Theorem 2.1. In Section 3, we give a few
applications of our main result. Section 4 is devoted to the proof of Theorem
2.1. We limit our analysis to the case of rational numbers.

2. The Main Result

Throughout this paper, # and v are non-zero rational numbers. We
write. Z = {py,...,p;} for a fixed finite set of prime numbers, and we let
S ={xp" - -pi*la; = 0} be the set of all S -units; i.e., those integers whose
prime factors are in . Every non-zero rational number u can be written uniquely
in the form u = ug - uz;, where uy is a rational number in reduced form having
both its numerator and denominator in ., and u; is a rational number in reduced
form having both its numerator and denominator free of primes from .%. For a
non-zero rational number u we use H(u) for its logarithmic height; i.e., if u = x/y
with x and y coprime integers, then H(u) = max{1, log |x|, log|y|}. Here, log
stands for the natural logarithm. We also use the notation HR(u) for the number
max{%,ggg }. Notice that HR(u) > 1 unless u = =£1. Finally, we use Hy (1)
and Hz;(u) for H(uy) and H(uz), respectively. For two rational numbers « and v,
we write ged(u, v) for the greatest common divisor of the numerators of u and v.
We use the Vinogradov symbols <, > and <, as well as the Landau symbols O
and o with their usual meaning.

The main result of this paper is the following.

Theorem 2.1. Let € € (0, 1) be fixed. Let L. be the set of all pairs of rational
numbers u and v such that

ged(u — 1,0 —1) > exp(e max{H(u),H(v)}).

There exist three positive constants Ky, K, and K3 (which are ineffective) depend-
ing on 2 and ¢, such that whenever (u,v) € % ., then with H = max{H (u),H(v)}
one of the following three conditions holds:

1) max{HR(u),HR(v)} <Ki;

2) There exist two integers i and j, not both zero and with max{|il, |j|} < Kz,
such that u' = v/;

3) max{Hg(u), H7(v)} > K3 1505

Remark 2.2. The above Theorem shows that the inequality ged(u — 1,v — 1) <
max{u, v} holds for all sufficiently large multiplicatively independent positive
integers u and v such that max{ug, v5} is small with respect to max{u, v}, which
explains the title of this paper.
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3. Some Applications

Before proving the above, somewhat technical statement of Theorem 2.1, we
look at a few applications of it.

Corollary 3.1. For every fixed € > 0 there exists a positive constant C. (which
is ineffective) depending only on € and 2, such that if u and v are multiplicatively
independent integers in & and max{|ul, |v|} > C., then

ged(u — 1,0 — 1) < (max{[u], [v]})".
The above Corollary 3.1 follows immediately from Theorem 2.1.

Remark 3.2. The above Corollary 3.1 is the main result in [7], and appears also
as Remark 1 in [4].

Corollary 3.3. Let a and b be non-zero integers which are multiplicatively
independent, and let f, g, fi and g, be non-zero polynomials with integer coeffi-
cients. For every positive integer n set

uy = f(n)a" + g(n),
and
v =fi(m)b" + g1 (n).

Then, for every fixed € > 0 there exists a positive constant C. > 0 depending on €
and on the given data a, b, f, fi, g and g\ (which is ineffective), such that

ged(uy, vy) < exp(e max{m,n}) (1)
holds for all pairs of positive integers (m,n) with max{m,n} > C..

Remark 3.4. Note first that by taking f =g¢g=1,ff =g =—1,and n =m in
the above Corollary 3.3, we get a statement which is the main result in [2].

Proof. Assume that € >0 is fixed, and that m and »n are positive integers such
that inequality (1) does not hold. We set 2 to be the set of all prime divisors of ab.
We obviously have that both inequalities

cin<H(u,) <cpn and  czm < H(vy) < cqam

hold for all m and n sufficiently large, with c;, ¢;, ¢3 and ¢4 some computable
constants depending only on the given data a, b, f, f;, g and g;, but not on €. Since
inequality (1) fails, we get that the inequality

m
;< — <Cq
n

must hold when max{m,n} is sufficiently large, with ¢s and c¢ some comput-
able constants depending on ¢; in fact, one can take c¢s to be of the form
O(g) and cg to be of the form O(e~!), where the constants implied by O above
depend only on the data. The above inequality tells us that max{m,n} =<
min{m,n}.
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We now set d, = ged(f(n)a",g(n)), dn = ged(fi(m)b™, g (m)), u = —'2,
and v = — 18" and notice that

g1(m) >
ged(uy, vy) < dydpged(u — 1,0 —1).
Set also H = max{H (u),H(v)}. Since obviously
max{H(d,),H(d,)} < max{logm, logn} < logm,

while H > max{m,n} > m, it follows that the failure of inequality (1) for large
values of max{m,n} implies that the inequality

ged(u — 1,0 — 1) > exp(e1H)

must hold, say with &; = /2. So, the pair (u, v) belongs to Z,,, and therefore, by
Theorem 2.1, we conclude that one of the conditions 1, 2, or 3 must hold.
However, notice that since both u and v are rational numbers of the form x,/y,
and x,/y,, respectively, with min{ log |x,|, log|x,|} > m and with max{log|y,|,
log [ys|} < logm, it follows that
m
in{ HR HR P

min{HR(u), HR(v)} > Togm’
and therefore condition 1 cannot hold for large values of m. Since u; and v are
rational numbers whose denominators and numerators divide f(n) and g(n), or
fi(m) and g;(m), respectively, it follows that

max{Hz(u), H5 (1)} < logm = 0(10:m> = o<101:H>,

as m tends to infinity, therefore condition 3 cannot hold for large values of m either.
It remains to check condition 2. The relation u' = v/, with fixed i and j such that at
least one of them is non-zero and with large values of m and n, forces first of all
that i and j have the same sign (in particular, none of them is zero), so we may
assume that they are both positive. Secondly, the same relation above implies

ni

T h(m,n), (2)

bmi
% is some rational function in m and »n. Here, we assume
31
that m and n are larger than any of the real roots of the polynomial (ff;gg1)(x). For
every prime number p € # we set a, and (3, to be the exponents at which p appears
in the prime factorization of a and b, respectively. Relation (2), size arguments,

and the fact that h(m, n) #0, imply that the estimate

where h(m,n) = +

|apin — Byjm| < logm
must hold for all p € 2, therefore the estimate

logm

<

(3)

n i
ap%_}ﬂp

must hold for all p € 2. Since ij # 0 and n/m > 1, we get that either oy, = 8, =0,
or none of them is zero. Clearly, the relation oy, = 3, = 0 is impossible (recall that
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2 was precisely the set of all prime divisors of ab), therefore none of the numbers

oy, and 3, is zero. The above relation (3) now implies that the estimate
n iy, logm

mjB,

(4)

m

holds for all p € 2. In particular, since i, j, ;, and 3, are fixed and the right hand
side of (4) tends to zero when m tends to infinity, we get that if m is large then the
above relation (4) cannot hold for all primes p € 2 unless the rational number
By/y, is independent of the prime number p. Writing 3,/c, = /¢ for all p€ 2,
we get a” = +b!, therefore a®* = b?’, which contradicts the fact that ¢ and b are
multiplicatively independent and completes the proof of Corollary 3.3. ]

Finally, we look again at the problem of Gydry, Sarkozy and Stewart concern-
ing the largest prime factor of an expression of the form (ab + 1)(ac + 1)(bc + 1),
with a, b and ¢ distinct positive integers. For any non-zero integer k let P(k) be the
largest prime factor of k with the convention that P(+1) = 1. As we mentioned in
the Introduction, it was conjectured in [6] that P((ab + 1)(ac 4+ 1)(bc + 1)) tends
to infinity when a > b > ¢ > 0 and a tends to infinity. The fact that this is indeed so
has been confirmed in both [4] and [7]. In fact, in [4], it was shown that even
P((ab + 1)(ac + 1)) tends to infinity when a > b > ¢ > 0 and a tends to infinity. In
particular, for every fixed finite set of prime numbers & there exists an ineffective
constant C» depending on 2, such that (ab + 1)(ac + 1) is not in % whenever
a>b>c>0 are integers and a > Cx.

Here, we give a somewhat more effective version of this statement. Let 2 be
again any fixed finite set of prime numbers. The result is the following:

Corollary 3.5. For every fixed finite set of prime numbers P there exist two
ineffective constants C» and C', such that the inequality

loga
b+1 1))= p—
e e r)

holds for all positive integers a>b>c >0 with a> C,,.

Remark 3.6. The above Corollary 3.5 is still ineffective but it is a stronger
statement than the fact that P((ab+ 1)(ac+ 1)) tends to infinity when
a>b>c>0 and a tends to infinity. Indeed, the conjecture from [6] is merely
the statement that for every fixed finite set of prime numbers Z2 the inequality
((ab+1)(ac + 1)(bc+ 1))z >1 holds whenever a>b>c>0 and a is large
enough, while Corollary 3.5 above provides a specific lower bound for the largest
divisor of (ab + 1)(ac + 1) which is free of prime factors from 2, and which
holds uniformly for all triples of distinct positive integers a > b > ¢ with a suffi-
ciently large.

Proof. Let a>b>c >0 be arbitrary and set u = ab + 1, v = ac + 1. Notice
that a|ged(u — 1,v — 1), and that a > u'/? = (max{u, v})"/>. With Theorem 2.1 for
e =1/2, we get that there must exist three ineffective constants K, K, and K3
depending only on £ such that one of the conditions 1, 2, or 3 holds. Notice that
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condition 1 simply tells us that a < K4 = exp(K;). We assume that K; > e, there-
fore K4 > e¢. To see that condition 2 is impossible, assume that u' = v/ holds with
some positive integers i and j. Clearly, j >1i, and, in particular, j > 2. We may
assume that i and j are coprime, and we deduce the existence of a positive integer p
such that u = p/, v = p'. But in this case,

gcd(u—l,v—l)zgcd(pi—l,pj—l):p—1<p<pj/2:ul/2.

Thus, a < u'/? = (ab + 1)1/2, which is impossible because a>b. And so, we
conclude that if a > K4, then condition 3 must hold and, in particular, we must
have

log ((ab + 1)(ac + 1)) = Hz(u) + He(v)

H
> max{Hz(u), H;(v)} > K3 Tog 7l
log (ab + 1) loga

~ P loglog (ab+1) " " logloga’

The last inequality follows because the function x — logx/ loglogx is increasing
for x > e¢°. We conclude that Corollary 3.5 holds with the choices C» = K3 and
C/, = Ka. O

4. The Proof of Theorem 2.1

We may as well assume that 0 <e <1 and that ¢ is below any bound of
our choice. We put K; = Ae 3, with A >4, and K3 = B, with B < 1/4. The
constants A and B will be specified more precisely later; they depend only on €
and 2.

Throughout this proof, we shall use the usual symbols <, >, O and o with the
meaning that they are either absolute or depend only on £ but not on ¢, and <,
>, O, and o. with the meaning that the inequalities implied by them depend
on both € and 2. We use ¢y, ¢z, . . . for positive constants which depend on both ¢
and 2.

For simplicity, we assume that both u# and v are positive (if not, we
may replace u, v, € by u? v /2, respectively, in light of the fact that
ged(u — 1,0 — 1)|ged(u? — 1,0v* — 1)). Replacing one or both of u, v by u™!
and v, if needed, we may assume that u > 1 and v> 1.

We assume that a pair (u,v) in £, has H large enough (depending on ¢), and
that it does not fulfill either condition 1 or condition 3 from the statement of
Theorem 2.1. Up to interchanging u with v, we may assume that H = H(u). We
write

Xu Ty Pu
U=—, Xy =PpPuluy, Yu= quSu, ng(xuayu) =1, uy=—, 7 =
Yu Su qu
and
Xy Iy Pv
V=" X =pore, Yo = quse, ged(xp,y) =1, vy ==, vy =="

bl K4 .
Yo Sy qv
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We clearly have H(u)= logx,, H(v) = logx,. But we also know that
logy, < (logx,)/4 and logy, < (logx,)/4, and therefore both estimates

» 1
log (xy — yu) = logx, + log (1 —y—> = (1 + 0(?)) log x,,
Xu X,/ logx,

and

v 1
log (x, — y,) = logx, + log( z ) = (1 + O(T)) log x,
v X, logx,

hold. We may assume that H(v) is large, since if H(v) remains bounded, then v
remains bounded, while u becomes large as H gets large. In particular, with the
fact that condition 1 fails, the numerator of u — 1 increases while the numerator of
v — 1 stays bounded, and since (u,v) € Z., it follows that u can take only finitely
many values. Hence, for large values of H we have that H(u — 1) = H(x,, — y,) =
(1 —0-(1))H and H(v —1) = H(x, — y,) = (1 — 0-(1))H(v), where the depen-
dence in o. above is only on H for fixed e. Since (u,v) € ¥, we get

H(v) > ciH (5)
holds for large H, where one can take ¢; = ¢/2. Clearly,
e’ H
max{logy,, logy,} < K;'H < L (6)

which shows that g,, gy, s,,, 5, are small with respect to x,,. We now use the fact that
condition 3 does not hold with K3 = Be’ < &’ to conclude that

1 ulu 71 vPv > .
max{log (¢.p). log (g:p1)} < 3o Q
Since H = log (p,r,), it follows, by (5) and (7), that
log r,
8
Togr, [c2, 3] (8)

holds for sufficiently large H, where we can take ¢; = 1/2 and ¢; = 4¢~!. Itis also
plain that

min{ logr,, logr,} > eH, 9)

and the constant implied by > above can be taken to be 1/4 if H is sufficiently
large, where the above estimate follows easily from (5) and (7).

We now have everything we need to apply the machinery from [2].

We fix an integer & and start with the approximation

vil_ (1—v! Zvl sz <0h+1> (10)

where the constant in O above can be taken to be absolute once H is large enough
(since K; >2). We shall take it to be 2, and then (10) holds whenever v > 2.
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Multiplying the above approximation by u/ — 1, we get

L:;j—_ll _sz Zvl <uh+1> (11)

where the constant implied in O above can again be taken to be absolute, say equal
to 4, for example, once K; >2, and H is large enough.
We now set

uj 1 ;Czjt' }1{4' Yv Cj(uv U) Yo .
zj(u,v) o1 ] .y / ] (J seeesk) (12)

Here, we write (x, —y,)/(x, —y,) = e/d, where e and d are integers with
ged(e,d) =1 and cj(u,v) = e(x) —y/)/(xy — y»). Thus, c;(u,v) is an integer,
and d is independent of j. We recall that we are assuming that x, —y, and

— ¥, have the greatest common divisor at least as large as x, > x;, and therefore
we will assume that d < x! <.

We let j run from 1 to some positive integer k to be fixed later, and we shall
apply W. Schmidt’s Subspace Theorem, viewing the left sides of (17) as small
linear forms in the variables z;(u,v), u/ /v, 1/v. We recall the following particular
case of the Subspace Theorem (see [8], [9]).

Theorem 4.1. (The Subspace Theorem) Let 2’ = 2 U {oo} be a finite set of
absolute values of Q) containing the infinite one (and normalized so that |p| p!
holds for all p € 2), and let N € N. For eachpe %', let Ly p, . ..,Ly, be N lmearly
independent linear forms in N variables with rational coeﬁ‘icients. Given 6> 0,
there are only finitely many proper subspaces T\, ..., T, of Q", such that every
non-zero integer point x = (xi, ..., xy) € Z¥\{0} satisfying

1T H|L,p ), < (max{|x| |i=1,....N})™ (13)

pe? i=l
belongs to one of the subspaces T; with j€{1,... ,w}.

We shall apply the above Subspace Theorem with N = hk + h + k. For con-
venience, we shall denote an integer point x € 7V by writing

X= (xlv"'axN) = (Zla"-7Zk7y017'"7y0h7‘”7yk17~~~7ykh)' (14)

With this notation, we choose the linear forms with rational coefficients as follows.
Fori=1,...,k we let

Lioo(X) =2z +Yo1 + -+ Yo — Yit — - — Yin,
while for (i,p) ¢{(1,00),..., (k,00)} we set
Li,(x) = x;.
It is easy to see that for each p €2’ the linear forms Li,,...,Ly, are indeed

linearly independent. We now set

x = &y’ (21 (u,0), ..z (uyv), 07 ol e,
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We observe that x € ZV. Indeed, the fact that for j < k the number dy*x"z;(u, v) is
an integer follows immediately from (12), while the fact that the other components
of x are integral follows from the fact that for i < & and j < k we have
J Jyi
Ay (15)
vy,

and the denominator of (15) obviously divides y*x"

We shall now estimate the double product appearing in the left hand side of
inequality (13) for our linear forms L;, and our non-zero integer point X.

For i > k, we have that L; ,(x) = x;, which is of the form

dyk llxh llleyll _qu llplilq pil ll( k—, “r"s"rh l1>

indices i; < | <k, u wi = sk phgiph—in g
for some indices h and j; <k, and the number w;, ; = sk 71piisiiy =i is a

member of . From the product formula [] Wiy .|, = 1, we conclude that

pe?
h
H |L1P(X (Qupu) (QUpv) . (16)
pe?
On the other hand, for j < k, we have that x; = z;(u, v) = ¢;(u, v)y* 7y, x", whence
again by the product formula
1
I bl < (17)
pPEP v
and from (11) we have that
k—i l h+1
k Yu Xy
|Li,oo(x)|oo < dxﬁyu oh+1 TL : (18)
Thus, from inequalities (16)—(18), we find that
11 Hlep(X <d"*(qup)™ (ap)™ - ] HIL,p
pe? i=1 pef’ i=1
kN hN
=d" k(‘fupu) (QDPL H |Lz oo H H |xz |p
i=1 p €2 i=
N—k gk kN Ny TT Ve et
AV d (qupa Do : Yu Xudo
< (qupa)™ (qupe) ™ o] H .
< dN(Qupu) (QDPU) (yupu) y ’k r? . (19>

From what we have said before, the constant implied by the last < from (19) can
be taken as 4¥. We now use the fact that d < (x, — y,)' ° < x17¢ =rpl=¢, and
introducing this in (19), we get

IT IT iz,

pe? i=l
_ 2 2 _
< (qup)™ (qupo)™ TN (y,p)E YN R (1=K (20)
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and we can take the constant implied by < in (20) above as 4**!. Notice now that

. v ub—1
max{|x;| i = 1,...,N} < dy*x"max{ ufv S
< (xp — yo )yt
<X xuyb
< Ak
= P )

The constant implied in (21) above can be taken to be 2 because uf — 1 <u*,
—y,<xyand v — 1 >v/2.

We now show that if H is sufficiently large, we can then choose k and h
depending on e such that inequality (13) holds for our double product appearing
in the left hand side of (20) with 6 = 1/2.

To see this, it suffices to show, via (20) and (21), that we can find k and % such
that

e 2 2 _ _
4k+1(¢1upu)kN(QL*pv)hN+(l V)N(yupu)k )’yr}; rl(;l EIN—hk
1
< 4( hHVuPﬁH ky=1/2. (22)

Lt

We now separate in (22) the contribution of r, in the right hand side, put every-
thing else on the left, and take logarithms, to infer that (22) is implied by

Togr ((k +2)log4 +kNlog (q.p.) +2hNlog (q.p,) +k*1og (yuq.) + Nlogy,
U

k k h+1 h+1
+ (k2—|—§> logru—}—zlogpu +Tlogpv> < (hk (1 _5)N_T>' (23)

The right hand side of (23) is

h h
hk—hk+d%—(1—sﬂh+k)——§—> (2ek —3) —k—1,

and we choose k such that |2ek| = 5. Here, we assume that ¢ < 1/2. With this
choice of k, the right hand side of (23) is larger than 7 — k — 1, and in order to
show that there exists /& such that inequality (23) holds for large H, it suffices to
show first that for some absolute constant ¢4 < 1 depending on ¢, and for large H,
the left hand side of inequality (23) is bounded above by c4# when £ is fixed, and
then to choose 4 such that h — k — 1 > c4h.
But obviously,
(k+2)logd ke

|
el 24
ogrn,  CHSH (24)

(by inequality (9) and the fact that k < 1),

kN log (qup.)  k*hlog (qup. he?
Og(qp)<< 0g (qupu) £

2
logr, logr, logH (25)
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(by inequalities (7), (9) and the facts that k < ! and N < hk),
2hN log (q.p») < kh? log (qupv) ne?

26

logr, logr, logH (26)
(by inequalities (7), (9) and the facts that k < ¢! and N < hk),
K1 wGu k*(logy, + log g, 2

log r, h log r, logH

(by inequalities (6), (7), (9), the definitions of K; and K, and the fact that
ke,

Nlogy,

log r,

(by the choice of K, inequalities (6), (9) and the facts that k < ¢~! and N < hk),

< AT'EIN < A7 Ehk < A e, (28)

k\ logr, 3!
<k2+§> 1Z§: < <(3€1)2+ET)C3<(9+2)~483:4483 (29)
)

(by the fact that 2k < 6 together with inequality (8)),

k logp, ket 3
T (30)
2 logr, logH — logH
(by inequalities (7), (9), and the fact that k < ¢~!), and finally
h+1 logp, “h
+1 logp « € (31)

2 logr, logH’

(by inequalities (7) and (9)). All the constants implied by < in (24) through (31)
are absolute. We shall see that we may choose h = O(¢73) if H is sufficiently
large, where the constant implied by O above is absolute. Thus, we see that if H is
sufficiently large with respect to ¢, then the left hand side of (24) is bounded above
by 1, the left hand side of (25) by &/5, the left hand side of (26) by h/53, the left
hand sides of (27) and (28) by 1 and h/5, respectively, if A > cs, where ¢s >0 is
some absolute constant, the left hand side of (30) by 1, and the left hand side of
(31) by h/5. We thus get that for large H and small A, the left hand side of
inequality (23) is bounded above by

1+h+h+1+h+44+1+h—3+4h+44
55 5 &3 5 5 &3’
Thus, if
4h 44
34+ —+—<h—k—1,
5 &

then inequality (23) holds. The above inequality simply tells us to choose & such

that
44
h:{5<k+4+§>J+l. (32)



250 F. Luca

With this choice, we notice that the condition & = O(¢7?) is satisfied. The con-
clusion is then that if A is sufficiently large, and if we first choose / as shown at
(32), and we then let H be sufficiently large, then the inequality (22) does indeed
hold.

We now simply apply the Subspace Theorem to conclude that there exist some
rational coefficients C;, not all zero, such that if there are infinitely many pairs
(u, v) failing both conditions 1 and conditions 3, then infinitely many of those pairs
must satisfy

N
Z Cixi = 0,
i=1

with X = (x1,...,xy) given by (14). Thus, we get a non-trivial relation of the form
X ‘
u—1 u’
D iyt 2 Bug =0
= v-1 1<i<h v
<Jj<

in which not all coefficients «;, 3; ; are zero. This gives us a non-trivial relation of
the form

Z 'y,»ij"uj = 0, (33)

0<i<h
0<j<k

in which not all coefficients +y; ; are zero. Indeed, the coefficients +y; ; come from
formally looking at the rational function

' . .
X —1 X

YT+ D B (34)

j=1 Y-1 l<i<h Y

in Q[X, Y], multiplying it by (¥ — 1)Y" and expressing the resulting polynomial
(notice that the result is really a polynomial) as a sum of monomials. If all the
coefficients +; ; arising in this way were zero, then the rational function shown at
(34) must have been zero, but it is easy to see that this can be so only when all the
coefficients o; and [3; ; were zero, which is not the case (for this argument, see [2]).
Let D be the subset of all pairs (i,j) with 0 <i<h and 0 <j < k for which
7:,; 7 0. Since (33) has infinitely many solutions (u,v), there must exist a non-
empty subset D' of D for which the relation

> A’ =0 (35)
(i,j)eD

holds for infinitely many pairs (u, v) satisfying (33), such that relation (35) is non-
degenerate for each one of these pairs (u,v), in the sense that there is no proper
subset D" of D' for which the relation

Z %'’ =0
(i,j) e D"

holds.
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We shall now assume that the pairs (u,v) fail also condition 2 with
K> = max{h,k} in the sense that u'#v/ for any pair (i,j)#(0,0) with
max{|il, |j|} < K.

We shall then show that if A is sufficiently large and B is sufficiently small (in
computable ways which depend on ¢, 2 and the coefficients ; ; for (i,j) € D), and
when H is sufficiently large, then (u, v) cannot belong to #., which will give us
the final contradiction.

To proceed, we may assume that D’ has cardinality 7 > 2. We shall show that:

Claim. If equation (35) admits infinitely many solutions (u,v) in L failing all
three conditions from Theorem 2.1 with some appropriate constants A and B, then
the Newton polygon of the polynomial

> XY
(i,j)eD
is a line.

Proof of the Claim. We use induction on the parameter £/ > 2 with £ =2,... ¢,
to show that (iy,j,) must be collinear with (i, j,) for all w < ¢ — 1.

Of course the Newton polygon is a line when t = 2.

From now on, we assume that ¢ > 3. We fix one of the ¢! total orderings of IV,
and assume that we have labeled the pairs of D' as D' = {(i¢,jo) | =1,...,t},
such that v''u/t >uv/2 > ... >u'v/i. Clearly, any solution of (35) leads to a
total ordering of D' (because u'# v/ for any non-negative integers i,j not
both zero with max{i,j} < K,), and since we have infinitely many such
solutions, we may assume that infinitely many of them lead to the same fixed total
ordering.

For ¢/ =1,... t, we set

Ay =iglogv +jelogu,

and notice that we have Ay > A, > --- > A, = 0, where the last inequality here
holds because u > 1, v> 1, and min{i,, j,} > 0. We label v, = ~;, ;,. We write (35)
as

13
> wexp A, =0. (36)
=1
In particular,

t
yilexp(Ar — A2) < D byl exp(Ar — A2) = 0-(1),
=2

therefore
0< A1 — Az <. 1
hence,

0<(iy —i2)logv+ (j1 —j2) logu <. 1,
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or, equivalently,
ip—ip logu

1ol —o. (L) (37)
Ji—Jj2 logv H

Here, we assume that j, # jj, for if not, we may interchange u with v and the is
with the js and get a relation of the same type (notice that it is not possible that
i1 =iy and j; = j, at the same time because the pairs (i1,j;) and (i,j,) must be
different). A refined argument of the same type is now to rewrite (36) as

0< _—w-exp(Al —NA)—1

72
D Y S R e .
\_ x —_— p— E .

o] & TSPV T exp(A; — Ay)

The inequality on the right is clear, and the one on the left follows from the fact
that (35) is non-degenerate.

The only instance in which the left hand side of (38) might have any chance of
being small is when —v; /7 = |v1/72| and |y1/72| exp(A; — Az) is close to 1. If
this is so, then the left hand side of (38) is

-

—;wmm—wwﬁzmmmwww+m—mwl

> |log |v1/72| + A1 — As. (39)

To get a lower bound on the right hand side of (39), we write

(ir — i2)log (ru/sv) + (j1 — j2) log (ru/su)

AReES
qv qu Y2

and use a lower bound for linear forms in logarithms (see [1]) to find a lower
bound on (40). Clearly, (40) is non-zero. The key observation is that r,/s, and
ry/s, are numbers composed solely from primes from £ and the maximal expo-
nent at which the prime numbers from £ can appear in either r,,s,,r, or s, is
certainly < H. Finally, the height of the last rational number appearing inside the
logarithm in (40) is, by the failure of condition 3 from the statement of Theorem
2.1,

[log [v1/72| + A1 — Ao =

+ log ) (40)

H
h,k}Be’ B
< max{h, k}Be log H <= log H
by the fact that k and & depend only on . With the classical lower bound for the
linear form in logarithms of algebraic numbers from [1], we get therefore that (40)
is bounded from below by

H
exp <—C6Blog (max{h’k}H)logH> > exp(—c7BH),
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where ¢7 depends only on ¢, 2, and the coefficients v; and ~,. With (38), we get
that the estimate

0< Ay, — A3 <c7BH + 05(1)

holds.
We thus get
0< (iy —i3)logv+ (j» —j3) logu < c7BH + O(1). (41)
If j» — j3 = 0, we get that i, — i3 >0 and
BH
logy <~ (42)
(i2 — i3)

Since logv = logx, — logy, = ¢H/3 for H sufficiently large (see inequalities (5)
and (6)), we get that (42) implies that

€ 1
§<C7B+OE<E>7 (43)
but we can prevent (43) from happening by first choosing H to be large enough so
that the contribution from the term O.(1/H) is smaller than £/6, and then by
choosing B <¢e/(6¢7). So, when B is small enough, then j, — j3 #0, and now
(41) implies that the inequality
iz — i3 IOg u

C‘7BH 1 3C7B 1
< O.| — I < O | = 44
j2—Jjs logv logv+ €<logv>  9%\m) (44)
holds for sufficiently large values of H. We now choose B such that 3¢;B/¢ is
smaller than (2|(j; —j2)(j» —j3)|)”'. But then, if H is large enough, the right
hand side of (37) is smaller than the number (4|(j, —j2)(j» —j3)|) ', while the
contribution of the O.(1/H) from the right hand side of (44) is also smaller than

(4](j1 — j2)(j2 —j3)|)"", and thus, with (37), (44), and the absolute value inequal-
ity, we get

iL—iy Ir—1i3
Ji—J2 Jo—Js
which forces

< 1 <l+l+l> _ 1
i —j2) G2 =) \2 4 4)  [(i —j2) 02 —J3)I

h—bh bh—i3
=2 s
i.e., (i1,/1), (i2,j2) and (i3,J3) are collinear.

The remainder of the proof of the claim is now obvious. Assume, by induction,
that for some 3 < ¢ < ¢ all points (i, j,) are collinear for 1 < w < /. In this case,
the points (i,, — i, j,, — j¢) are collinear, and if we set 7| /s; to be the slope of the
line passing through these points (if the line is vertical, we simply interchange
again u with v and the is with the js), then there exist integers c,, such that
iy —ip = a1y and j, — jy = ay,sy hold for all w =1, ..., ¢ (here, ay = 0). Since
Ay — Ay = oy, (r1 log v + 51 log u) is always positive for w < £, we may assume (up
to replacing (ry,s1) by (—ry, —s;1)) that r;logv + sy logu >0, and now the fact
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that Ay — Ay> -+ > Ay, — Ay = 0 implies that a; > - -+ > ay = 0. Thus, with the
polynomial of one variable

4
8(2) =) wz" (45)
i=1

we get that the relation

L L
Z ,waiw*ie Yiwie — Z A (46)
w=1 i=1

holds with Z = X" Y*'. Let ¢;,...,d¢ be all the distinct roots of the polynomial
shown at (45) of multiplicities 7, . .., ng, respectively. Relation (35) now implies
that

v __ 14,51

[/
Pl T 1w = 6., g (v

w=1

{
3w exp(h, — Ay)
w=1

1

< Y hwlexp(Ay — A

w=/(+1
oot )
“\exp(Ar — Agyr) )

We now apply the same argument as before. The only chance that the left hand
side of (47) can be small is when u"'v*! is very close to one of the roots é,, of g(Z).
Since a number can’t be simultaneously close to two distinct fixed numbers, we
may assume that v"'u*" is very close to ¢;. But then

[0’ — 6y > 1 forw#1, (48)

while for the presumably small non-zero factor |u"'v*' — ;| we use, as before, a
lower bound for the corresponding linear form in logarithms to conclude that

v — 81| >>. exp(—c7BH), (49)

with some maybe larger c¢; than at the case t = 3 which incorporates the maximal
height of all the roots 6, of g(Z). As before, (47), (48) and (49) lead to the
conclusion that

0< (ir — ips1)logv+ (jo — jes1) logu < c7BCH + O-(1), (50)

where the factor ¢ > 7, accounts for the multiplicity of §;. As before, we can argue
once again that when B is sufficiently small and H is sufficiently large, then (50)
implies that j, — jy,1 cannot be zero, and therefore, from (50), we infer that

3¢7Bt 1
O = ). 51
X0 (4) 51)

l:z - l:é+1 n logu
Je—Jjes1  logo
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But obviously, the fact that v"'u was close to 6;; i.e., |[v"ut — 61| = O(1),

implies that
€ H )

But now (51) and (52) show that if B is chosen in such a way that it is smaller than
some constant (computable in terms of the numbers 7; and ¢), and if H is large,
then

ri  logu

logv

i — e _ 1

je—Jjest st
therefore the point (igy1,j,+1) belongs to the line passing through all the points
(iw,jw) With 1 < w < £. This concludes the proof of the claim. O

We now point out how the conclusion of Theorem 2.1 follows from the above
Claim.

Assume that (35) has infinitely many solutions. Then there must exist a pair of
indices (i,/) (which gives the slope of the Newton polygon), and some root K of
g(Z), where now g is the one variable polynomial associated to the polynomial

> XY

(rs)eD

in the same way as indicated at (45)—(46), such that infinitely many of the pairs
(u,v) satisfying (35) satisfy also

u'v! =K, (53)

with a fixed value of the non-zero rational number K. Suppose that there are pairs
(u,v) with H = H(u) arbitrarily large, satisfying (53) and not satisfying any of the
conditions of Theorem 2.1. Since H can be arbitrarily large, we conclude that one
of the numbers i and j is positive and the other is negative. Assume that i >0 and
Jj <0, replace j by —j, and rewrite the above relation as

" _k. (54)

Since condition 2 does not hold, it follows that K 1. We may assume that
ged(i,j) = 1 for if d = ged(i,j), then any pair (u,v) satisfying (54) satisfies also

u'ld jpild = K’ where K" = K'/4. Assuming gcd(i,j) = 1, fix some pair of positive
rational numbers (uy,v1) with u} /o] = K. Then, for each pair (u, v) satisfying (54)
we have (u/u1)' = (v/v1)’. So, since ged(i,j) = 1 for each pair of rationals (u, v)
with (54), there is a non-zero rational number p such that u = p/u;, v = p'v|. Write

p=x/y,u; =X,/Y1,v; =X,/Y,, where in each quotient the numerator and
denominator are coprime positive integers. Assume that (u,v) satisfies (54) and
that it does not satisfy conditions 1, 2, or 3 of Theorem 2.1. Let ¥ =
ged(u — 1,0 — 1), i.e., the greatest common divisor of the numerators of u — 1
and v — 1. Then @ d1v1des ged(x/X) — y/Y1,x' X, — y'Y,). This implies that &
divides xV (X Y’ XJ Y!). The greatest common divisor of x/ and & must divide
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Y, since x and y are coprime. So, in fact, & divides Y!(X}Y, — X3Y}). This last
number is non-zero, since otherwise u| = v{, contradicting that K # 1. Hence,
2 = ged(u — 1,v — 1) has an upper bound independent of u and v. But this contra-
dicts our assumption that condition 1 of Theorem 2.1 is not satisfied for pairs (u, v)
with H arbitrarily large.

Clearly, the contradiction must have come from the fact that we have assumed
infinitely many solutions (u, v) for equation (35).

To recapitulate, we have shown that we can choose K|, K, and K3 such that all
but finitely many pairs (u,v) € £, satisfy at least one of the conditions 1, 2 or 3
from Theorem 2.1 with these constants. We may now clearly increase K; in such a
way that all these finitely many exceptional pairs (u,v) in %. satisfy 1 with this
new Kj, and Theorem 2.1 is now proved.
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