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Abstract. In [2], it was shown that if a and b are multiplicatively independent integers and "> 0,
then the inequality gcdðan � 1; bn � 1Þ< expð"nÞ holds for all but finitely many positive integers n.
Here, we generalize the above result. In particular, we show that if f ðxÞ; f1ðxÞ; gðxÞ; g1ðxÞ are non-zero
polynomials with integer coefficients, then for every "> 0, the inequality

gcd ðf ðnÞan þ gðnÞ; f1ðnÞbn þ g1ðnÞÞ< expðn"Þ
holds for all but finitely many positive integers n.
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1. Introduction

In [2], it was shown that if a and b are multiplicatively independent positive
integers, then for every fixed "> 0 there exists a positive integer n", depending on
"; a and b, such that the inequality gcdðan � 1; bn � 1Þ< expð"nÞ holds for n> n".
The method of [2] was extended to the instance when the integers a and b are
replaced by S-units. Namely, let P ¼ fp1; . . . ; ptg be a finite set of prime num-
bers, and write S ¼ f�p�1

1 � � � p�t
t j�i5 0g for the set of all integers whose prime

factors belong to P. The members of S are usually referred to as S-units. It was
then shown in Remark 1 in [4] and in [7], that for every fixed "> 0 the inequality
gcdðu� 1; v� 1Þ< ðmaxfjuj; jvjgÞ" holds for all pairs of multiplicatively indepen-
dent integers u and v from S with finitely many exceptions. This result was in
turn sufficient to confirm a conjecture of Gy}ory, Sárk€oozy and Stewart [6],
which asserted that the largest prime factor of expressions of the form
ðabþ 1Þðacþ 1Þðbcþ 1Þ, with distinct positive integers a, b and c, tends to infin-
ity with maxfa; b; cg (in fact, in [4], it was noted that this is true even for the
expressions ðabþ 1Þðacþ 1Þ, with a> b> c). Some quantitative aspects of the
above inequality appear in [3].

The results from [2] and [7] were extended to the setting of algebraic numbers
in [5] and were used to give a non-trivial lower bound for the height of hðu; vÞ,
where h2Q½x; y� is non-constant, and u and v are S-units.



In this paper, we extend the results from [2] but in a different direction. In
particular, we prove that the same inequality as the one in [2] holds for the greatest
common divisor of expressions of the type f ðnÞan þ gðnÞ and f1ðnÞbn þ g1ðnÞ,
where a and b are multiplicatively independent non-zero integers and f ; f1; g and
g1 are non-zero polynomials with integer coefficients. In order to prove such an
inequality, we extend the results from [2] to study gcdðu� 1; v� 1Þ, where u and v
are near S-units, in a sense which will be made more precise in the next section.

The rest of this paper is organized as follows. In Section 2, we present the
main result of the paper, which is Theorem 2.1. In Section 3, we give a few
applications of our main result. Section 4 is devoted to the proof of Theorem
2.1. We limit our analysis to the case of rational numbers.

2. The Main Result

Throughout this paper, u and v are non-zero rational numbers. We
write P ¼ fp1; . . . ; ptg for a fixed finite set of prime numbers, and we let
S ¼ f�p�1

1 � � � p�t
t j�i 5 0g be the set of all S-units; i.e., those integers whose

prime factors are in P. Every non-zero rational number u can be written uniquely
in the form u ¼ uS � uS, where uS is a rational number in reduced form having
both its numerator and denominator in S, and uS is a rational number in reduced
form having both its numerator and denominator free of primes from S. For a
non-zero rational number u we use HðuÞ for its logarithmic height; i.e., if u ¼ x=y
with x and y coprime integers, then HðuÞ ¼ maxf1; log jxj; log jyjg. Here, log
stands for the natural logarithm. We also use the notation HRðuÞ for the number
max

� HðxÞ
HðyÞ ;

HðyÞ
HðxÞ

�
. Notice that HRðuÞ> 1 unless u ¼ �1. Finally, we use HSðuÞ

and HSðuÞ for HðuSÞ and HðuSÞ, respectively. For two rational numbers u and v,
we write gcdðu; vÞ for the greatest common divisor of the numerators of u and v.
We use the Vinogradov symbols �, � and �, as well as the Landau symbols O
and o with their usual meaning.

The main result of this paper is the following.

Theorem 2.1. Let "2ð0; 1Þ be fixed. Let L" be the set of all pairs of rational
numbers u and v such that

gcdðu� 1; v� 1Þ5 expð"maxfHðuÞ;HðvÞgÞ:
There exist three positive constants K1, K2 and K3 (which are ineffective) depend-
ing on P and ", such that whenever ðu; vÞ2L", then with H ¼ maxfHðuÞ;HðvÞg
one of the following three conditions holds:

1) maxfHRðuÞ;HRðvÞg<K1;
2) There exist two integers i and j, not both zero and with maxfjij; jjjg<K2,

such that ui ¼ v j;
3) maxfHSðuÞ;HSðvÞg>K3

H
logH

.

Remark 2.2. The above Theorem shows that the inequality gcdðu� 1; v� 1Þ<
maxfu; vg" holds for all sufficiently large multiplicatively independent positive
integers u and v such that maxfuS; vSg is small with respect to maxfu; vg, which
explains the title of this paper.
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3. Some Applications

Before proving the above, somewhat technical statement of Theorem 2.1, we
look at a few applications of it.

Corollary 3.1. For every fixed "> 0 there exists a positive constant C" (which
is ineffective) depending only on " and P, such that if u and v are multiplicatively
independent integers in S and maxfjuj; jvjg>C", then

gcdðu� 1; v� 1Þ< ðmaxfjuj; jvjgÞ":

The above Corollary 3.1 follows immediately from Theorem 2.1.

Remark 3.2. The above Corollary 3.1 is the main result in [7], and appears also
as Remark 1 in [4].

Corollary 3.3. Let a and b be non-zero integers which are multiplicatively
independent, and let f , g, f1 and g1 be non-zero polynomials with integer coeffi-
cients. For every positive integer n set

un ¼ f ðnÞan þ gðnÞ;

and

vn ¼ f1ðnÞbn þ g1ðnÞ:

Then, for every fixed "> 0 there exists a positive constant C" > 0 depending on "
and on the given data a; b; f ; f1; g and g1 (which is ineffective), such that

gcdðun; vmÞ< expð"maxfm; ngÞ ð1Þ

holds for all pairs of positive integers ðm; nÞ with maxfm; ng>C".

Remark 3.4. Note first that by taking f ¼ g ¼ 1, f1 ¼ g1 ¼ �1, and n ¼ m in
the above Corollary 3.3, we get a statement which is the main result in [2].

Proof. Assume that "> 0 is fixed, and that m and n are positive integers such
that inequality (1) does not hold. We set P to be the set of all prime divisors of ab.
We obviously have that both inequalities

c1n<HðunÞ< c2n and c3m<HðvmÞ< c4m

hold for all m and n sufficiently large, with c1, c2, c3 and c4 some computable
constants depending only on the given data a, b, f, f1, g and g1, but not on ". Since
inequality (1) fails, we get that the inequality

c5 <
m

n
< c6

must hold when maxfm; ng is sufficiently large, with c5 and c6 some comput-
able constants depending on "; in fact, one can take c5 to be of the form
Oð"Þ and c6 to be of the form Oð"�1Þ, where the constants implied by O above
depend only on the data. The above inequality tells us that maxfm; ng �
minfm; ng.
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We now set dn ¼ gcdðf ðnÞan; gðnÞÞ, dm ¼ gcdðf1ðmÞbm; g1ðmÞÞ, u ¼ � f ðnÞan
gðnÞ ,

and v ¼ � f1ðmÞbm
g1ðmÞ , and notice that

gcdðun; vmÞ4 dndmgcdðu� 1; v� 1Þ:
Set also H ¼ maxfHðuÞ;HðvÞg. Since obviously

maxfHðdnÞ;HðdmÞg � maxf logm; log ng � logm;

while H � maxfm; ng � m, it follows that the failure of inequality (1) for large
values of maxfm; ng implies that the inequality

gcdðu� 1; v� 1Þ> expð"1HÞ
must hold, say with "1 ¼ "=2. So, the pair ðu; vÞ belongs to L"1

, and therefore, by
Theorem 2.1, we conclude that one of the conditions 1, 2, or 3 must hold.
However, notice that since both u and v are rational numbers of the form xu=yu
and xv=yv, respectively, with minf log jxuj; log jxvjg � m and with maxf log jyuj;
log jyvjg � logm, it follows that

minfHRðuÞ;HRðvÞg � m

logm
;

and therefore condition 1 cannot hold for large values of m. Since uS and vS are
rational numbers whose denominators and numerators divide f ðnÞ and gðnÞ, or
f1ðmÞ and g1ðmÞ, respectively, it follows that

maxfHSðuÞ;HSðvÞg � logm ¼ o

�
m

logm

�
¼ o

�
H

logH

�
;

as m tends to infinity, therefore condition 3 cannot hold for large values of m either.
It remains to check condition 2. The relation ui ¼ v j, with fixed i and j such that at
least one of them is non-zero and with large values of m and n, forces first of all
that i and j have the same sign (in particular, none of them is zero), so we may
assume that they are both positive. Secondly, the same relation above implies

ani

bm j
¼ hðm; nÞ; ð2Þ

where hðm; nÞ ¼ � gðnÞif1ðmÞ j

g1ðmÞ jf ðnÞi
is some rational function in m and n. Here, we assume

that m and n are larger than any of the real roots of the polynomial ðff1gg1ÞðxÞ. For
every prime number p2P we set �p and �p to be the exponents at which p appears
in the prime factorization of a and b, respectively. Relation (2), size arguments,
and the fact that hðm; nÞ 6¼ 0, imply that the estimate

j�pin� �pjmj � logm

must hold for all p2P, therefore the estimate�����p

n

m
� i

j
�p

���� � logm

m
ð3Þ

must hold for all p2P. Since ij 6¼ 0 and n=m � 1, we get that either �p ¼ �p ¼ 0,
or none of them is zero. Clearly, the relation �p ¼ �p ¼ 0 is impossible (recall that
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P was precisely the set of all prime divisors of ab), therefore none of the numbers
�p and �p is zero. The above relation (3) now implies that the estimate���� nm� i�p

j�p

���� � logm

m
ð4Þ

holds for all p2P. In particular, since i, j, �p and �p are fixed and the right hand
side of (4) tends to zero when m tends to infinity, we get that if m is large then the
above relation (4) cannot hold for all primes p2P unless the rational number
�p=�p is independent of the prime number p. Writing �p=�p ¼ �=‘ for all p2P,
we get a� ¼ �b‘, therefore a2� ¼ b2‘, which contradicts the fact that a and b are
multiplicatively independent and completes the proof of Corollary 3.3. &

Finally, we look again at the problem of Gy}ory, Sárk€oozy and Stewart concern-
ing the largest prime factor of an expression of the form ðabþ 1Þðacþ 1Þðbcþ 1Þ,
with a, b and c distinct positive integers. For any non-zero integer k let PðkÞ be the
largest prime factor of k with the convention that Pð�1Þ ¼ 1. As we mentioned in
the Introduction, it was conjectured in [6] that Pððabþ 1Þðacþ 1Þðbcþ 1ÞÞ tends
to infinity when a> b> c> 0 and a tends to infinity. The fact that this is indeed so
has been confirmed in both [4] and [7]. In fact, in [4], it was shown that even
Pððabþ 1Þðacþ 1ÞÞ tends to infinity when a> b> c> 0 and a tends to infinity. In
particular, for every fixed finite set of prime numbers P there exists an ineffective
constant CP depending on P, such that ðabþ 1Þðacþ 1Þ is not in S whenever
a> b> c> 0 are integers and a>CP.

Here, we give a somewhat more effective version of this statement. Let P be
again any fixed finite set of prime numbers. The result is the following:

Corollary 3.5. For every fixed finite set of prime numbers P there exist two
ineffective constants CP and C0

P such that the inequality

ððabþ 1Þðacþ 1ÞÞS> exp

�
CP

log a

log log a

�

holds for all positive integers a> b> c> 0 with a>C0
P.

Remark 3.6. The above Corollary 3.5 is still ineffective but it is a stronger
statement than the fact that Pððabþ 1Þðacþ 1ÞÞ tends to infinity when
a> b> c> 0 and a tends to infinity. Indeed, the conjecture from [6] is merely
the statement that for every fixed finite set of prime numbers P the inequality
ððabþ 1Þðacþ 1Þðbcþ 1ÞÞS > 1 holds whenever a> b> c> 0 and a is large
enough, while Corollary 3.5 above provides a specific lower bound for the largest
divisor of ðabþ 1Þðacþ 1Þ which is free of prime factors from P, and which
holds uniformly for all triples of distinct positive integers a> b> c with a suffi-
ciently large.

Proof. Let a> b> c> 0 be arbitrary and set u ¼ abþ 1, v ¼ acþ 1. Notice

that ajgcdðu� 1; v� 1Þ, and that a> u1=2 ¼ ðmaxfu; vgÞ1=2
. With Theorem 2.1 for

" ¼ 1=2, we get that there must exist three ineffective constants K1;K2 and K3

depending only on P such that one of the conditions 1, 2, or 3 holds. Notice that
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condition 1 simply tells us that a<K4 ¼ expðK1Þ. We assume that K1 > e, there-
fore K4 > ee. To see that condition 2 is impossible, assume that ui ¼ v j holds with
some positive integers i and j. Clearly, j> i, and, in particular, j5 2. We may
assume that i and j are coprime, and we deduce the existence of a positive integer �
such that u ¼ � j, v ¼ �i. But in this case,

gcdðu� 1; v� 1Þ ¼ gcdð�i � 1; � j � 1Þ ¼ �� 1<�4 � j=2 ¼ u1=2:

Thus, a< u1=2 ¼ ðabþ 1Þ1=2
, which is impossible because a> b. And so, we

conclude that if a>K4, then condition 3 must hold and, in particular, we must
have

log ððabþ 1Þðacþ 1ÞÞS ¼ HSðuÞ þ HSðvÞ

> maxfHSðuÞ;HSðvÞg>K3

H

logH

¼ K3

log ðabþ 1Þ
log log ðabþ 1Þ >K3

log a

log log a
:

The last inequality follows because the function x 7�! log x= log log x is increasing
for x> ee. We conclude that Corollary 3.5 holds with the choices CP ¼ K3 and
C0
P ¼ K4. &

4. The Proof of Theorem 2.1

We may as well assume that 0<"< 1 and that " is below any bound of
our choice. We put K1 ¼ A"�3, with A5 4, and K3 ¼ B"5, with B4 1=4. The
constants A and B will be specified more precisely later; they depend only on "
and P.

Throughout this proof, we shall use the usual symbols �, �;O and o with the
meaning that they are either absolute or depend only on P but not on ", and �",
�", O" and o" with the meaning that the inequalities implied by them depend
on both " and P. We use c1; c2; . . . for positive constants which depend on both "
and P.

For simplicity, we assume that both u and v are positive (if not, we
may replace u, v, " by u2; v2; "=2, respectively, in light of the fact that
gcdðu� 1; v� 1Þjgcdðu2 � 1; v2 � 1Þ). Replacing one or both of u, v by u�1

and v�1, if needed, we may assume that u> 1 and v> 1.
We assume that a pair ðu; vÞ in L" has H large enough (depending on "), and

that it does not fulfill either condition 1 or condition 3 from the statement of
Theorem 2.1. Up to interchanging u with v, we may assume that H ¼ HðuÞ. We
write

u ¼ xu

yu
; xu ¼ puru; yu ¼ qusu; gcdðxu; yuÞ ¼ 1; uS ¼ ru

su
; uS ¼ pu

qu
;

and

v ¼ xv

yv
; xv ¼ pvrv; yv ¼ qvsv; gcdðxv; yvÞ ¼ 1; vS ¼ rv

sv
; vS ¼ pv

qv
:
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We clearly have HðuÞ ¼ log xu, HðvÞ ¼ log xv. But we also know that
log yu 4 ð log xuÞ=4 and log yv 4 ð log xvÞ=4, and therefore both estimates

log ðxu � yuÞ ¼ log xu þ log

�
1 � yu

xu

�
¼

�
1 þ O

�
1

x
3=4
u log xu

��
log xu;

and

log ðxv � yvÞ ¼ log xv þ log

�
1 � yv

xv

�
¼

�
1 þ O

�
1

x
3=4
v log xv

��
log xv

hold. We may assume that HðvÞ is large, since if HðvÞ remains bounded, then v
remains bounded, while u becomes large as H gets large. In particular, with the
fact that condition 1 fails, the numerator of u� 1 increases while the numerator of
v� 1 stays bounded, and since ðu; vÞ2L", it follows that u can take only finitely
many values. Hence, for large values of H we have that Hðu� 1Þ ¼ Hðxu � yuÞ ¼
ð1 � o"ð1ÞÞH and Hðv� 1Þ ¼ Hðxv � yvÞ ¼ ð1 � o"ð1ÞÞHðvÞ, where the depen-
dence in o" above is only on H for fixed ". Since ðu; vÞ2L", we get

HðvÞ5 c1H ð5Þ

holds for large H, where one can take c1 ¼ "=2. Clearly,

maxf log yu; log yvg4K�1
1 H4

"3H

4
; ð6Þ

which shows that qu; qv; su; sv are small with respect to xu. We now use the fact that
condition 3 does not hold with K3 ¼ B"5 <"5 to conclude that

maxf log ðqupuÞ; log ðqvpvÞg<"5 H

logH
: ð7Þ

Since H ¼ log ðpuruÞ, it follows, by (5) and (7), that

log ru

log rv
2 ½c2; c3� ð8Þ

holds for sufficiently large H, where we can take c2 ¼ 1=2 and c3 ¼ 4"�1. It is also
plain that

minf log ru; log rvg � "H; ð9Þ
and the constant implied by � above can be taken to be 1=4 if H is sufficiently
large, where the above estimate follows easily from (5) and (7).

We now have everything we need to apply the machinery from [2].
We fix an integer h and start with the approximation

1

v� 1
¼ 1

vð1 � v�1Þ ¼
1

v

X
i5 0

1

vi
¼

Xh
i¼1

1

vi
þ O

�
1

vhþ1

�
; ð10Þ

where the constant in O above can be taken to be absolute once H is large enough
(since K1 > 2). We shall take it to be 2, and then (10) holds whenever v> 2.
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Multiplying the above approximation by uj � 1, we get���� u
j � 1

v� 1
�
Xh
i¼1

uj

vi
þ
Xh
i¼1

1

vi

���� ¼ O

�
uj

vhþ1

�
; ð11Þ

where the constant implied in O above can again be taken to be absolute, say equal
to 4, for example, once K1 > 2, and H is large enough.

We now set

zjðu; vÞ ¼
u j � 1

v� 1
¼ x j

u � y j
u

xv � yv
� yv
y
j
u

¼ cjðu; vÞ
d

� yv
y
j
u

ð j ¼ 1; . . . ; kÞ: ð12Þ

Here, we write ðxu � yuÞ=ðxv � yvÞ ¼ e=d, where e and d are integers with
gcdðe; dÞ ¼ 1 and cjðu; vÞ ¼ eðx j

u � y j
uÞ=ðxv � yvÞ. Thus, cjðu; vÞ is an integer,

and d is independent of j. We recall that we are assuming that xu � yu and
xv � yv have the greatest common divisor at least as large as x"u 5 x"v, and therefore
we will assume that d4 x1�"

v .
We let j run from 1 to some positive integer k to be fixed later, and we shall

apply W. Schmidt’s Subspace Theorem, viewing the left sides of (17) as small
linear forms in the variables zjðu; vÞ, u j=vi, 1=vi. We recall the following particular
case of the Subspace Theorem (see [8], [9]).

Theorem 4.1. (The Subspace Theorem) Let P0 ¼ P [ f1g be a finite set of
absolute values ofQ containing the infinite one (and normalized so that jpjp ¼ p�1

holds for all p2P), and let N 2N. For each p2P0, let L1;p; . . . ; LN;p be N linearly
independent linear forms in N variables with rational coefficients. Given � > 0,
there are only finitely many proper subspaces T1; . . . ;Tw of QN , such that every
non-zero integer point x ¼ ðx1; . . . ; xNÞ2ZNnf0g satisfying

Y
p 2P0

YN
i¼1

jLi;pðxÞjp < ðmaxfjxij j i ¼ 1; . . . ;NgÞ�� ð13Þ

belongs to one of the subspaces Tj with j2f1; . . . ;wg.

We shall apply the above Subspace Theorem with N ¼ hk þ hþ k. For con-
venience, we shall denote an integer point x2ZN by writing

x ¼ ðx1; . . . ; xNÞ ¼ ðz1; . . . ; zk; y01; . . . ; y0h; . . . ; yk1; . . . ; ykhÞ: ð14Þ
With this notation, we choose the linear forms with rational coefficients as follows.
For i ¼ 1; . . . ; k we let

Li;1ðxÞ ¼ zi þ y01 þ � � � þ y0h � yi1 � � � � � yih;

while for ði; pÞ 2= fð1;1Þ; . . . ; ðk;1Þg we set

Li;pðxÞ ¼ xi:

It is easy to see that for each p2P0 the linear forms L1;p; . . . ;LN;p are indeed
linearly independent. We now set

x ¼ dykux
h
vðz1ðu; vÞ; . . . ; zkðu; vÞ; v�1; . . . ; v�h; . . . ; ukv�1; . . . ; ukv�hÞ:
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We observe that x2ZN . Indeed, the fact that for j4 k the number dykux
h
vzjðu; vÞ is

an integer follows immediately from (12), while the fact that the other components
of x are integral follows from the fact that for i4 h and j4 k we have

u j

vi
¼ x j

uy
i
v

y
j
uxiv

; ð15Þ

and the denominator of (15) obviously divides ykux
h
v .

We shall now estimate the double product appearing in the left hand side of
inequality (13) for our linear forms Li;p and our non-zero integer point x.

For i> k, we have that Li;pðxÞ ¼ xi, which is of the form

dyk�j1
u xh�i1

v x j1
u y

i1
v ¼ dqk�j1

u p j1
u q

i1
v p

h�i1
v ðsk�j1

u r j1
u si1v r

h�i1
v Þ

for some indices i1 4 h and j1 4 k, and the number wi1; j1 ¼ sk�j1
u r j1u s

i1
v r

h�i1
v is a

member of S. From the product formula
Q

p 2P0 jwi1; j1 jp ¼ 1, we conclude thatY
p 2P0

jLi;pðxÞjp 4 dðqupuÞkðqvpvÞh: ð16Þ

On the other hand, for j4 k, we have that xj ¼ zjðu; vÞ ¼ cjðu; vÞyk�j
u yvx

h
v , whence

again by the product formula Y
p 2P

jxijp 4
1

rhv
; ð17Þ

and from (11) we have that

jLi;1ðxÞj1 � dxhvy
k
u �

ui

vhþ1
� d � y

k�i
u xiuy

hþ1
v

xv
: ð18Þ

Thus, from inequalities (16)–(18), we find that

Y
p 2P0

YN
i¼1

jLi;pðxÞjp 4 dN�kðqupuÞkNðqvpvÞhN �
Y
p 2P0

Yk
i¼1

jLi;pðxÞjp

¼ dN�kðqupuÞkNðqvpvÞhN
Yk
i¼1

jLi;1ðxÞj1
Y
p 2P

Yk
i¼1

jxijp

� dN�k � dk � ðqupuÞkNðqvpvÞhN jrvj�kh
Yk
i¼1

yk�i
u xiuy

hþ1
v

xv

� dNðqupuÞkNðqvpvÞhNðyupuÞk
2

yNv r
k2

u r
�hk
v : ð19Þ

From what we have said before, the constant implied by the last � from (19) can
be taken as 4k. We now use the fact that d4 ðxv � yvÞ1�" � x1�"

v ¼ rvp
1�"
v , and

introducing this in (19), we get

Y
p 2P0

YN
i¼1

jLi;pðxÞjp

� ðqupuÞkNðqvpvÞhNþð1�"ÞNðyupuÞk
2

yNv r
k2

u r
ð1�"ÞN�hK
v ; ð20Þ
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and we can take the constant implied by � in (20) above as 4kþ1. Notice now that

maxfjxij ji ¼ 1; . . . ;Ng4 dykux
h
vmax

�
ukv�1;

uk � 1

v� 1

�

� ðxv � yvÞykuxhvukv�1

� xhvx
k
uyv

� xhþ1
v xku

¼ rhþ1
v rkup

hþ1
v pku: ð21Þ

The constant implied in (21) above can be taken to be 2 because uk � 1< uk,
xv � yv < xv and v� 1> v=2.

We now show that if H is sufficiently large, we can then choose k and h
depending on " such that inequality (13) holds for our double product appearing
in the left hand side of (20) with � ¼ 1=2.

To see this, it suffices to show, via (20) and (21), that we can find k and h such
that

4kþ1ðqupuÞkNðqvpvÞhNþð1�"ÞNðyupuÞk
2

yNv r
k2

u r
ð1�"ÞN�hk
v

4
1

4
ðrhþ1

v rkup
hþ1
v pkuÞ

�1=2: ð22Þ

We now separate in (22) the contribution of rv in the right hand side, put every-
thing else on the left, and take logarithms, to infer that (22) is implied by

1

logrv

�
ðkþ2Þ log4þ kN logðqupuÞþ2hN logðqvpvÞþ k2 logðyuquÞþN logyv

þ
�
k2 þ k

2

�
logruþ

k

2
logpuþ

hþ1

2
logpv

�
<

�
hk�ð1�"ÞN�hþ1

2

�
: ð23Þ

The right hand side of (23) is

hk � hk þ "hk � ð1 � "Þðhþ kÞ � hþ 1

2
>

h

2
ð2"k � 3Þ � k � 1;

and we choose k such that b2"kc ¼ 5. Here, we assume that "< 1=2. With this
choice of k, the right hand side of (23) is larger than h� k � 1, and in order to
show that there exists h such that inequality (23) holds for large H, it suffices to
show first that for some absolute constant c4 < 1 depending on ", and for large H,
the left hand side of inequality (23) is bounded above by c4h when k is fixed, and
then to choose h such that h� k � 1> c4h.

But obviously,

ðk þ 2Þ log 4

log rv
� k"

H
� 1

H
ð24Þ

(by inequality (9) and the fact that k � "�1),

kN log ðqupuÞ
log rv

� k2h log ðqupuÞ
log rv

� h"2

logH
ð25Þ
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(by inequalities (7), (9) and the facts that k � "�1 and N � hk),

2hN log ðqvpvÞ
log rv

� kh2 log ðqvpvÞ
log rv

� h2"3

logH
ð26Þ

(by inequalities (7), (9) and the facts that k � "�1 and N � hk),

k2 log ðyuquÞ
log rv

4
k2ð log yu þ log quÞ

log rv
� A�1 þ "2

logH
ð27Þ

(by inequalities (6), (7), (9), the definitions of K1 and K2, and the fact that
k � "�1),

N log yv

log rv
� A�1"2N � A�1"2hk � A�1"h; ð28Þ

(by the choice of K1, inequalities (6), (9) and the facts that k � "�1 and N � hk),�
k2 þ k

2

�
log ru

log rv
4

�
ð3"�1Þ2 þ 3"�1

2

�
c3 < ð9 þ 2Þ � 4"�3 ¼ 44"�3 ð29Þ

(by the fact that 2"k< 6 together with inequality (8)),

k

2
� log pu

log rv
� k"4

logH
� "3

logH
; ð30Þ

(by inequalities (7), (9), and the fact that k � "�1), and finally

hþ 1

2
� log pv

log rv
� "4h

logH
: ð31Þ

(by inequalities (7) and (9)). All the constants implied by � in (24) through (31)
are absolute. We shall see that we may choose h ¼ Oð"�3Þ if H is sufficiently
large, where the constant implied by O above is absolute. Thus, we see that if H is
sufficiently large with respect to ", then the left hand side of (24) is bounded above
by 1, the left hand side of (25) by h=5, the left hand side of (26) by h=5, the left
hand sides of (27) and (28) by 1 and h=5, respectively, if A> c5, where c5 > 0 is
some absolute constant, the left hand side of (30) by 1, and the left hand side of
(31) by h=5. We thus get that for large H and small A, the left hand side of
inequality (23) is bounded above by

1 þ h

5
þ h

5
þ 1 þ h

5
þ 44

"3
þ 1 þ h

5
¼ 3 þ 4h

5
þ 44

"3
:

Thus, if

3 þ 4h

5
þ 44

"3
< h� k � 1;

then inequality (23) holds. The above inequality simply tells us to choose h such
that

h ¼
�

5

�
k þ 4 þ 44

"3

�	
þ 1: ð32Þ
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With this choice, we notice that the condition h ¼ Oð"�3Þ is satisfied. The con-
clusion is then that if A is sufficiently large, and if we first choose h as shown at
(32), and we then let H be sufficiently large, then the inequality (22) does indeed
hold.

We now simply apply the Subspace Theorem to conclude that there exist some
rational coefficients Ci, not all zero, such that if there are infinitely many pairs
ðu; vÞ failing both conditions 1 and conditions 3, then infinitely many of those pairs
must satisfy

XN
i¼1

Cixi ¼ 0;

with x ¼ ðx1; . . . ; xNÞ given by (14). Thus, we get a non-trivial relation of the form

Xk
j¼1

�j

u� 1

v� 1
þ

X
14 i4 h

04 j4 k

�i; j
u j

vi
¼ 0;

in which not all coefficients �i; �i; j are zero. This gives us a non-trivial relation of
the form X

04 i4 h
04 j4 k

�i; jv
iu j ¼ 0; ð33Þ

in which not all coefficients �i; j are zero. Indeed, the coefficients �i; j come from
formally looking at the rational function

Xk
j¼1

�j

Xj � 1

Y � 1
þ

X
14 i4 h

04 j4 k

�i; j
Xj

Yi
ð34Þ

in Q½X;Y �, multiplying it by ðY � 1ÞYh and expressing the resulting polynomial
(notice that the result is really a polynomial) as a sum of monomials. If all the
coefficients �i; j arising in this way were zero, then the rational function shown at
(34) must have been zero, but it is easy to see that this can be so only when all the
coefficients �j and �i; j were zero, which is not the case (for this argument, see [2]).
Let D be the subset of all pairs ði; jÞ with 04 i4 h and 04 j4 k for which
�i; j 6¼ 0. Since (33) has infinitely many solutions ðu; vÞ, there must exist a non-
empty subset D0 of D for which the relationX

ði; jÞ 2D0

�i; jv
iu j ¼ 0 ð35Þ

holds for infinitely many pairs ðu; vÞ satisfying (33), such that relation (35) is non-
degenerate for each one of these pairs ðu; vÞ, in the sense that there is no proper
subset D00 of D0 for which the relationX

ði; jÞ 2D00

�i; jv
iu j ¼ 0

holds.
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We shall now assume that the pairs ðu; vÞ fail also condition 2 with
K2 ¼ maxfh; kg in the sense that ui 6¼ v j for any pair ði; jÞ 6¼ ð0; 0Þ with
maxfjij; j jjg4K2.

We shall then show that if A is sufficiently large and B is sufficiently small (in
computable ways which depend on ", P and the coefficients �i; j for ði; jÞ2D0), and
when H is sufficiently large, then ðu; vÞ cannot belong to L", which will give us
the final contradiction.

To proceed, we may assume that D0 has cardinality t5 2. We shall show that:

Claim. If equation (35) admits infinitely many solutions ðu; vÞ in L" failing all
three conditions from Theorem 2.1 with some appropriate constants A and B, then
the Newton polygon of the polynomialX

ði; jÞ 2D0

�i; jX
iYj

is a line.

Proof of the Claim. We use induction on the parameter ‘5 2 with ‘ ¼ 2; . . . ; t,
to show that ði‘; j‘Þ must be collinear with ðiw; jwÞ for all w4 ‘� 1.

Of course the Newton polygon is a line when t ¼ 2.
From now on, we assume that t5 3. We fix one of the t! total orderings of D0,

and assume that we have labeled the pairs of D0 as D0 ¼ fði‘; j‘Þ j ‘ ¼ 1; . . . ; tg,
such that vi1u j1 > ui2v j2 > � � � > uitv jt . Clearly, any solution of (35) leads to a
total ordering of D0 (because ui 6¼ v j for any non-negative integers i; j not
both zero with maxfi; jg4K2), and since we have infinitely many such
solutions, we may assume that infinitely many of them lead to the same fixed total
ordering.

For ‘ ¼ 1; . . . ; t, we set

�‘ ¼ i‘ log vþ j‘ log u;

and notice that we have �1 >�2 > � � � >�t 5 0, where the last inequality here
holds because u> 1, v> 1, and minfit; jtg5 0. We label �‘ ¼ �i‘; j‘ . We write (35)
as

Xt

‘¼1

�‘ exp�‘ ¼ 0: ð36Þ

In particular,

j�1j expð�1 � �2Þ4
Xt

‘¼2

j�‘j expð�‘ � �2Þ ¼ O"ð1Þ;

therefore

0<�1 � �2 �" 1;

hence,

0< ði1 � i2Þ log vþ ðj1 � j2Þ log u �" 1;
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or, equivalently, ���� i1 � i2

j1 � j2
þ log u

log v

���� ¼ O"

�
1

H

�
: ð37Þ

Here, we assume that j2 6¼ j1, for if not, we may interchange u with v and the is
with the js and get a relation of the same type (notice that it is not possible that
i1 ¼ i2 and j1 ¼ j2 at the same time because the pairs ði1; j1Þ and ði2; j2Þ must be
different). A refined argument of the same type is now to rewrite (36) as

0<

������1

�2

� expð�1 � �2Þ � 1

����
4

1

j�2j
Xt

‘¼3

j�‘j expð�‘ � �2Þ ¼ O"

�
1

expð�2 � �3Þ

�
: ð38Þ

The inequality on the right is clear, and the one on the left follows from the fact
that (35) is non-degenerate.

The only instance in which the left hand side of (38) might have any chance of
being small is when ��1=�2 ¼ j�1=�2j and j�1=�2j expð�1 � �2Þ is close to 1. If
this is so, then the left hand side of (38) is������1

�2

� expð�1 � �2Þ � 1

���� ¼ j expð log j�1=�2j þ �1 � �2Þ � 1j

� j log j�1=�2j þ �1 � �2j: ð39Þ

To get a lower bound on the right hand side of (39), we write

j log j�1=�2j þ �1 � �2j ¼
����ði1 � i2Þ log ðrv=svÞ þ ðj1 � j2Þ log ðru=suÞ

þ log

����
�
pv

qv

�i1�i2
�
pu

qu

�j1�j2
�
�1

�2

�����
����; ð40Þ

and use a lower bound for linear forms in logarithms (see [1]) to find a lower
bound on (40). Clearly, (40) is non-zero. The key observation is that ru=su and
rv=sv are numbers composed solely from primes from P and the maximal expo-
nent at which the prime numbers from P can appear in either ru; su; rv or sv is
certainly � H. Finally, the height of the last rational number appearing inside the
logarithm in (40) is, by the failure of condition 3 from the statement of Theorem
2.1,

�" maxfh; kgB"5 H

logH
�" B

H

logH

by the fact that k and h depend only on ". With the classical lower bound for the
linear form in logarithms of algebraic numbers from [1], we get therefore that (40)
is bounded from below by

exp

�
�c6B log ðmaxfh; kgHÞ H

logH

�
5 expð�c7BHÞ;
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where c7 depends only on ", P, and the coefficients �1 and �2. With (38), we get
that the estimate

0<�2 � �3 < c7BH þ O"ð1Þ
holds.

We thus get

0< ði2 � i3Þ log vþ ðj2 � j3Þ log u< c7BH þ O"ð1Þ: ð41Þ
If j2 � j3 ¼ 0, we get that i2 � i3 > 0 and

log v4
c7BH

ði2 � i3Þ
: ð42Þ

Since log v ¼ log xv � log yv 5 "H=3 for H sufficiently large (see inequalities (5)
and (6)), we get that (42) implies that

"

3
< c7Bþ O"

�
1

H

�
; ð43Þ

but we can prevent (43) from happening by first choosing H to be large enough so
that the contribution from the term O"ð1=HÞ is smaller than "=6, and then by
choosing B<"=ð6c7Þ. So, when B is small enough, then j2 � j3 6¼ 0, and now
(41) implies that the inequality���� i2 � i3

j2 � j3
þ log u

log v

����< c7BH

log v
þ O"

�
1

log v

�
<

3c7B

"
þ O"

�
1

H

�
; ð44Þ

holds for sufficiently large values of H. We now choose B such that 3c7B=" is
smaller than ð2jðj1 � j2Þðj2 � j3ÞjÞ�1

. But then, if H is large enough, the right
hand side of (37) is smaller than the number ð4jðj1 � j2Þðj2 � j3ÞjÞ�1

, while the
contribution of the O"ð1=HÞ from the right hand side of (44) is also smaller than

ð4jðj1 � j2Þðj2 � j3ÞjÞ�1
, and thus, with (37), (44), and the absolute value inequal-

ity, we get���� i1 � i2

j1 � j2
� i2 � i3

j2 � j3

����< 1

jðj1 � j2Þðj2 � j3Þj

�
1

2
þ 1

4
þ 1

4

�
¼ 1

jðj1 � j2Þðj2 � j3Þj
;

which forces

i1 � i2

j1 � j2
¼ i2 � i3

j2 � j3
;

i.e., ði1; j1Þ; ði2; j2Þ and ði3; j3Þ are collinear.
The remainder of the proof of the claim is now obvious. Assume, by induction,

that for some 34 ‘< t all points ðiw; jwÞ are collinear for 14w4 ‘. In this case,
the points ðiw � i‘; jw � j‘Þ are collinear, and if we set r1=s1 to be the slope of the
line passing through these points (if the line is vertical, we simply interchange
again u with v and the is with the js), then there exist integers �w such that
iw � i‘ ¼ �wr1 and jw � j‘ ¼ �ws1 hold for all w ¼ 1; . . . ; ‘ (here, �‘ ¼ 0). Since
�w � �‘ ¼ �wðr1 log vþ s1 log uÞ is always positive for w<‘, we may assume (up
to replacing ðr1; s1Þ by ð�r1;�s1Þ) that r1 log vþ s1 log u> 0, and now the fact
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that �1 � �‘ > � � � >�‘ � �‘ ¼ 0 implies that �1 > � � � >�‘ ¼ 0. Thus, with the
polynomial of one variable

gðZÞ ¼
X‘

i¼1

�iZ
�i ð45Þ

we get that the relation

X‘

w¼1

�wX
iw�i‘Yjw�j‘ ¼

X‘

i¼1

�iZ
�i ð46Þ

holds with Z ¼ Xr1Ys1 . Let �1; . . . ; �‘0 be all the distinct roots of the polynomial
shown at (45) of multiplicities �1; . . . ; �‘0 , respectively. Relation (35) now implies
that

j�1j
Y‘0
w¼1

jvr1us1 � �wj�w ¼ jgðvr1us1Þj

¼
����
X‘

w¼1

�w expð�w � �‘Þ
����

4
Xt

w¼‘þ1

j�wj expð�w � �‘Þ

¼ O"

�
1

expð�‘ � �‘þ1Þ

�
: ð47Þ

We now apply the same argument as before. The only chance that the left hand
side of (47) can be small is when ur1vs1 is very close to one of the roots �w of gðZÞ.
Since a number can’t be simultaneously close to two distinct fixed numbers, we
may assume that vr1us1 is very close to �1. But then

jvr1us1 � �wj �" 1 for w 6¼ 1; ð48Þ
while for the presumably small non-zero factor jur1vs1 � �1j we use, as before, a
lower bound for the corresponding linear form in logarithms to conclude that

jur1vs1 � �1j �" expð�c7BHÞ; ð49Þ
with some maybe larger c7 than at the case t ¼ 3 which incorporates the maximal
height of all the roots �w of gðZÞ. As before, (47), (48) and (49) lead to the
conclusion that

0< ði‘ � i‘þ1Þ log vþ ðj‘ � j‘þ1Þ log u< c7B‘H þ O"ð1Þ; ð50Þ
where the factor ‘5 �1 accounts for the multiplicity of �1. As before, we can argue
once again that when B is sufficiently small and H is sufficiently large, then (50)
implies that j‘ � j‘þ1 cannot be zero, and therefore, from (50), we infer that���� i‘ � i‘þ1

j‘ � j‘þ1

þ log u

log v

����< 3c7Bt

"
þ O"

�
1

H

�
: ð51Þ
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But obviously, the fact that vr1us1 was close to �1; i.e., jvr1us1 � �1j ¼ O"ð1Þ,
implies that ���� r1

s1

þ log u

log v

���� ¼ O"

�
1

H

�
: ð52Þ

But now (51) and (52) show that if B is chosen in such a way that it is smaller than
some constant (computable in terms of the numbers �i and "), and if H is large,
then

i‘ � i‘þ1

j‘ � j‘þ1

¼ r1

s1

;

therefore the point ði‘þ1; j‘þ1Þ belongs to the line passing through all the points
ðiw; jwÞ with 14w4 ‘. This concludes the proof of the claim. &

We now point out how the conclusion of Theorem 2.1 follows from the above
Claim.

Assume that (35) has infinitely many solutions. Then there must exist a pair of
indices ði; jÞ (which gives the slope of the Newton polygon), and some root K of
gðZÞ, where now g is the one variable polynomial associated to the polynomialX

ðr;sÞ 2D0

�r;sX
rYs

in the same way as indicated at (45)–(46), such that infinitely many of the pairs
ðu; vÞ satisfying (35) satisfy also

uiv j ¼ K; ð53Þ
with a fixed value of the non-zero rational number K. Suppose that there are pairs
ðu; vÞ with H ¼ HðuÞ arbitrarily large, satisfying (53) and not satisfying any of the
conditions of Theorem 2.1. Since H can be arbitrarily large, we conclude that one
of the numbers i and j is positive and the other is negative. Assume that i> 0 and
j< 0, replace j by �j, and rewrite the above relation as

ui

v j
¼ K: ð54Þ

Since condition 2 does not hold, it follows that K 6¼ 1. We may assume that
gcdði; jÞ ¼ 1 for if d ¼ gcdði; jÞ, then any pair ðu; vÞ satisfying (54) satisfies also
ui=d=v j=d ¼ K 0, where K 0 ¼ K1=d. Assuming gcdði; jÞ ¼ 1, fix some pair of positive
rational numbers ðu1; v1Þ with ui1=v

j
1 ¼ K. Then, for each pair ðu; vÞ satisfying (54)

we have ðu=u1Þi ¼ ðv=v1Þ j. So, since gcdði; jÞ ¼ 1 for each pair of rationals ðu; vÞ
with (54), there is a non-zero rational number � such that u ¼ � ju1; v ¼ �iv1. Write
� ¼ x=y; u1 ¼ X1=Y1; v1 ¼ X2=Y2, where in each quotient the numerator and
denominator are coprime positive integers. Assume that ðu; vÞ satisfies (54) and
that it does not satisfy conditions 1, 2, or 3 of Theorem 2.1. Let D ¼
gcdðu� 1; v� 1Þ, i.e., the greatest common divisor of the numerators of u� 1
and v� 1. Then D divides gcdðx jX1 � y jY1; x

iX2 � y iY2Þ. This implies that D
divides xijðXi

1Y
j
2 � X

j
2Y

i
1Þ. The greatest common divisor of x j and D must divide
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Y1 since x and y are coprime. So, in fact, D divides Yi
1ðXi

1Y
j
2 � X

j
2Y

i
1Þ. This last

number is non-zero, since otherwise ui1 ¼ v
j
1, contradicting that K 6¼ 1. Hence,

D ¼ gcdðu� 1; v� 1Þ has an upper bound independent of u and v. But this contra-
dicts our assumption that condition 1 of Theorem 2.1 is not satisfied for pairs ðu; vÞ
with H arbitrarily large.

Clearly, the contradiction must have come from the fact that we have assumed
infinitely many solutions ðu; vÞ for equation (35).

To recapitulate, we have shown that we can choose K1;K2 and K3 such that all
but finitely many pairs ðu; vÞ2L" satisfy at least one of the conditions 1, 2 or 3
from Theorem 2.1 with these constants. We may now clearly increase K1 in such a
way that all these finitely many exceptional pairs ðu; vÞ in L" satisfy 1 with this
new K1, and Theorem 2.1 is now proved.
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