
Monatsh. Math. 145, 333–350 (2005)

DOI 10.1007/s00605-005-0299-y

Generalized Greatest Common Divisors, Divisibility
Sequences, and Vojta’s Conjecture for Blowups

By

Joseph H. Silverman

Brown University, Providence, RI, USA

Communicated by W. M. Schmidt

Received February 2, 2004; accepted in revised form November 17, 2004
Published online April 6, 2005 # Springer-Verlag 2005

Abstract. We apply Vojta’s conjecture to blowups and deduce a number of deep statements
regarding (generalized) greatest common divisors on varieties, in particular on projective space and
on abelian varieties. Special cases of these statements generalize earlier results and conjectures. We also
discuss the relationship between generalized greatest common divisors and the divisibility sequences
attached to algebraic groups, and we apply Vojta’s conjecture to obtain a strong bound on the divisibility
sequences attached to abelian varieties of dimension at least two.
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Introduction

Bugeaud, Corvaja, and Zannier [3] recently proved that if a and b are multi-
plicatively independent integers, then for every �> 0 there is a constant
N ¼ Nða; b; �Þ so that

gcdðan � 1; bn � 1Þ4 2�n for all n5N: ð1Þ
The proof of this beautiful, but innocuous looking, inequality requires an inge-
nious application of Schmidt’s Subspace Theorem [15]. Corvaja and Zannier [5,
Proposition 4] generalize (1) by replacing an and bn with arbitrary elements from a
fixed finitely generated subgroup of �QQ�. For ease of exposition, we state their
result over Q.

Theorem 1 (Corvaja and Zannier [5]). Let S be a finite set of rational primes
and let �> 0. There is a finite set Z ¼ ZðS; �Þ � Z2 so that all �; �2Z�S \ Z satisfy
one of the following three conditions:

(1) ð�; �Þ2Z.
(2) �m ¼ �n for some ðm; nÞ satisfying 14maxfm; ng4 ��1.
(3) gcdð�� 1; � � 1Þ4maxðj�j; j�jÞ�.
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In other words, if �; �2Z are S-units, then

gcdð�� 1; � � 1Þ4maxðj�j; j�jÞ�

except for some obvious families of exceptions together with a finite number of
additional exceptions. Analogous statements for elliptic curves and=or over func-
tion fields have been studied by a number of authors [1, 14, 20, 21].

The purpose of this note is to explain how Vojta’s Conjecture [25, Conjecture
3.4.3] applied to varieties blown up along smooth subvarieties leads to a very
general statement about greatest common divisors that encompasses many
known results and previous conjectures. Thus although we do not prove uncon-
ditional results in this paper, we hope that the application of Vojta’s conjecture
will help to put the problem of gcd bounds into a general context, while at the
same time suggesting precise statements whose proofs may be possible using
current techniques from Diophantine approximation and arithmetic geometry.
(See also McKinnon’s paper [14] for a discussion of Vojta’s conjecture applied
to certain blowups.)

We begin in the Section 1 by describing three special cases of our main
theorem. These serve to motivate our general result and to justify the notation
that is needed later. We next in Section 2 set notation and explain how a general-
ized concept of greatest common divisor is naturally formulated in terms of the
height of points on blowup varieties with respect to the exceptional divisor of the
blowup. Section 3 states Vojta’s conjecture, followed in Section 4 by our main
result (Theorem 6) in which we apply Vojta’s conjecture to a blowup variety,
making use of the well-known relation between the canonical bundle on a variety
and on its blowup. In Section 5 we apply our main theorem to prove the three
special cases from Section 1, including some additional arguments to pin down the
exceptional sets more precisely. Section 6 takes up the question of divisibility
sequences, which are sequences ðanÞn5 1 satisfying mjn ) amjan. We are espe-
cially interested in divisibility sequences associated to algebraic groups, or more
precisely, to group schemes over Z. We show that these geometric divisibility
sequences are closely related to generalized greatest common divisors and apply
Vojta’s conjecture to the divisibility sequences attached to abelian varieties of
dimension at least 2. Finally, in Section 7, we make a few final remarks and pose
some questions.

1. Three Special Cases Over Q

In this section we describe three special cases of our main theorem. These
generalize earlier results and conjectures appearing in the literature. In order to
avoid excessive notation, we restrict ourselves to working over Q. All results are
conditional on the validity of Vojta’s conjecture. We refer the reader to Section 3
(Conjecture 5) or to Vojta’s original monograph [25, Conjecture 3.4.3] for the
statement of Vojta’s conjecture. In order to state our first result, we need one piece
of notation.

Definition 1. Let S be a finite set of rational primes. For any nonzero integer
x2Z, we write jxj0S for the largest divisor of x that is not divisible by any of the
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primes in S, i.e.

jxj0S ¼ jxj
Y
p2 S

jxjp:

Informally, we call jxj0S the ‘‘prime-to-S’’ part of x. In particular, x is an S-unit if
and only if jxj0S ¼ 1.

Our first result deals with Pn blown up along a smooth subvariety.

Theorem 2. Fix a finite set of rational primes S. Let f1; f2; . . . ; ft 2
Z½X0; . . . ;Xn� be homogeneous polynomials so that the set of zeros

V ¼ f f1 ¼ f2 ¼ � � � ¼ ft ¼ 0g � Pn

is a smooth variety, and assume further that V has transversal intersection with the
union of the coordinate hyperplanes

Sn
i¼0fXi ¼ 0g. Let r ¼ n� dimðVÞ denote the

codimension of V in Pn.
Assume that r5 2 and that Vojta’s conjecture is true ( for Pn blown up along

V). Fix �> 0. Then there is a homogeneous polynomial 0 6¼ g2Z½X0; . . . ;Xn�,
depending on f1; . . . ; ft and �, and a constant � > 0, depending on f1; . . . ; ft, so
that every

x ¼ ðx0; x1; . . . ; xnÞ2Znþ1 with gcdðx0; . . . ; xnÞ ¼ 1

satisfies either

(1) gðxÞ ¼ 0, or
(2) gcdð f1ðxÞ; . . . ; ftðxÞÞ4maxfjx0j; . . . ; jxnjg� � jx0x1 � � � xnj0S

� �1=ðr�1þ��Þ
.

Example 1. We apply Theorem 2 to P2 with f1 ¼ X1 � X0 and f2 ¼ X2 � X0.
Then V is a single point and r ¼ 2, so the theorem says that off of a one dimen-
sional exceptional set we have

gcdðx1 � x0; x2 � x0Þ4maxfjx0j; jx1j; jx2jg� � jx0x1x2j0S
� �1=ð1þ��Þ

: ð2Þ
In particular, suppose that we take x0 ¼ 1 and restrict x1 and x2 to be S-units, as in
Theorem 1. Then jx0x1x2j0S ¼ 1, so (2) becomes

gcdðx1 � 1; x2 � 1Þ4maxfjx1j; jx2jg�

and we recover Theorem 1, albeit conditional on Vojta’s conjecture.1 Thus Vojta’s
conjecture implies a natural generalization of Theorem 1 in which we remove the
restriction that � and � be S-units and replace condition (3) of Theorem 1 with the
inequality

gcdð�� 1; � � 1Þ4maxfj�j; j�jg� � j��j0S
� �1=ð1þ��Þ

: ð3Þ
It would be quite interesting to give an unconditional proof of this generalization.
We also remark that a closer analysis of this special case of Theorem 2 shows that
(3) should be valid for any � < 1.

1 Theorem 1 also includes a description of the exceptional set, but once one knows that the
exceptional set is a union of curves, it is not hard to recover the full result.
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Our second example deals with elliptic curves and has applications to the
theory of elliptic divisibility sequences.

Theorem 3. Let E=Q be an elliptic curve given by a Weierstrass equation, and
for any nonzero point P ¼ ðxP; yPÞ2EðQÞ, write xP ¼ AP=D

2
P as a fraction in

lowest terms with DP > 0. Also let HðPÞ ¼ HðxPÞ ¼ maxfjAPj; jD2
Pjg be the usual

Weil height on E.
Assume that Vojta’s conjecture is true ( for E2 blown up at ðO;OÞ). Then for

every �> 0 there is a proper closed subvariety Z ¼ Z�ðEÞ � E2 so that

gcdðDP;DQÞ4 ðHðPÞ � HðQÞÞ� for all ðP;QÞ2E2ðQÞnZ:
The exceptional set Z consists of a finite number of translates of proper alge-

braic subgroups of E2. If E does not have CM, then we can say more precisely
that Z is a finite union of translates of the subgroups

fðmT; nTÞ2E2 : T 2Eg with ðm; nÞ2Z2 satisfying m2 þ n2 4
1

2�
:

(A similar statement holds if E has CM, with m and n replaced by more general
isogenies.)

Example 2. Let E=Q be an elliptic curve and P2EðQÞ a point of infinite order.
With notation as in Theorem 3, the elliptic divisibility sequence (EDS) associated
to P is the sequence of integers ðDnPÞn5 1. (For further information about elliptic
divisibility sequences, including a not-quite-equivalent alternative definition, see
[6–8, 14, 17, 21–24, 26, 27].) These sequences have the property that if mjn, then
DmPjDnP, whence their name. Now let P and Q be independent points in EðQÞ.
Then Theorem 3 implies that there is a constant C ¼ C�ðE;P;QÞ so that

gcdðDmP;DnQÞ4C maxfDmP;DnQg� for all m; n5 1:

Note that since P and Q are independent, there are only finitely many multiples
ðmP; nQÞ that lie on any fixed curve in E2. We are also using Siegel’s theorem
[18, IX.3.3], which says that 2 logDnP � hðnPÞ as n ! 1.

Our final example is the amusing observation that Vojta’s conjecture allows us
to mix greatest common divisors on a multiplicative group with those on an elliptic
curve. The following result, although far from the most general, gives a flavor of
what can be proven. Again, an unconditional proof would be quite interesting.

Theorem 4. Let E=Q be an elliptic curve and let S be a finite set of rational
primes. Assume that Vojta’s conjecture is true for E�P1 blown up at ðO; 1Þ. Then
for every �> 0 there is a constant C ¼ CðE; S; �Þ so that

gcdðDQ; b� 1Þ4C � maxfDQ;HðbÞg� for all Q2EðQÞ and b2Z�S :
(By convention, we define the greatest common divisor of two rational numbers to
be the greatest common divisor of their numerators.) In particular, if P2EðQÞ is a
point of infinite order and if a5 2 is an integer, then

gcdðDnP; a
m � 1Þ4maxfDnP; a

mg�

provided that maxfm; ng is sufficiently large.
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2. Generalized GCD’s and Blowups

We set the following notation, which will remain fixed throughout this paper.
For definitions and normalizations related to absolute values and heights, see [12,
Part B] or [13, Chapters 2, 3].

Let a; b2Z. The greatest common divisor of a and b is given by the formula

log gcdða; bÞ ¼
X

p prime

minfordpðaÞ; ordpðbÞg log p

¼
X
v 2M0

Q

minfvð�Þ; vð�Þg:

If a and b are rational numbers, rather than integers, then we can compute the gcd
of their numerators by using vþ in place of v, and having done this, there is no
reason to restrict ourselves to the nonarchimedean places. Moving from Q to the
number field k, we follow [5] and define the generalized (logarithmic) greatest
common divisor of �; �2 k to be the quantity

hgcdð�; �Þ ¼
X
v 2Mk

minfvþð�Þ; vþð�Þg:

In particular, if �; �2Z, then hgcdð�; �Þ ¼ log gcdð�; �Þ.
A fancier way to view the function

vþ : k�!½0;1�
is as the local height function on P1ðkÞ with respect to the divisor ð0Þ, where we
identify k [ f1g with P1ðkÞ and set vþð1Þ ¼ 0. We would like to find a similar
height theoretic interpretation for the function

G : P1ðkÞ�P1ðkÞ�! ½0;1�; ð�; �Þ 7�!minfvþð�Þ; vþð�Þg;
that appears in the definition of the generalized greatest common divisor. Intui-
tively, Gð�; �Þ is large if and only if the point ð�; �Þ is v-adically close to the point
ð0; 0Þ. This resembles the intuitive characterization of a local height function,

�X;DðP; vÞ ¼ �log ðv� adic distance from P to DÞ;
except that ð0; 0Þ is not a divisor on ðP1Þ2

. However, there is a general theory that
associates a local height function �X;YðP; vÞ to any subvariety Y of X, or more

k a number field.
Mk a complete set of absolute values on k. For v2Mk, we define

vþð�Þ ¼ maxfvð�Þ; 0g, and we assume that the absolute values are
normalized so that hð�Þ ¼

P
v 2Mk

vþð�Þ is the absolute logarithmic
Weil height of �. We denote by M0

k, respectively by M1
k , the set of

nonarchimedean, respectively archimedean, places in Mk.
S a finite set of places of k, including all of the archimedean places.

X=k a smooth projective variety defined over k.
hX;D an absolute logarithmic Weil height on X with respect to the divisor D.
�X;D an absolute logarithmic local height on X with respect to the divisor D.
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generally to any closed subscheme Y , see [19] or [25, x5]. For our purposes, it is
convenient to use an equivalent formulation in terms of blowups.

Continuing with our example, let X ¼ ðP1Þ2
, let � : ~XX ! X be the blowup

of X at the point ð0; 0Þ, and let E ¼ ��1ð0; 0Þ be the exceptional divisor of the
blowup. Then it is an easy exercise using explicit equations (or see [25, Lemma
2.5.2]) to verify that a local height function on ~XX for the divisor E is given by the
formula

�~XX;Eð��1ð�; �Þ; vÞ ¼ minfvþð�Þ; vþð�Þg for all ð�; �Þ2XðkÞnð0; 0Þ:

Adding these local heights gives the global formula

hgcdð�; �Þ ¼
X
v 2Mk

�~XX;Eð��1ð�; �Þ; vÞ ¼ h~XX;Eð��1ð�; �ÞÞ:

In other words, the (generalized) logarithmic gcd of � and � is equal to the Weil

height of ð�; �Þ on a blowup of ðP1Þ2
with respect to the exceptional divisor of the

blowup. This identification allows us to bring the machinery of heights to bear on
problems concerning greatest common divisors, and in particular allows us to
apply Vojta’s conjecture to such problems.

Having identified hgcdð�; �Þ with the Weil height on a particular blowup, it is
natural to generalize the notion of greatest common divisor to arbitrary varieties
blown up along arbitrary subvarieties.

Definition 2. Let X=k be a smooth variety and let Y=k � X=k be a subvariety
of codimension r5 2. Let � : ~XX ! X be the blowup of X along Y , and let
~YY ¼ ��1ðYÞ be the exceptional divisor of the blowup. For P2XnY, we let
~PP ¼ ��1ðPÞ2 ~XX.

The generalized (logarithmic) greatest common divisor of the point P2
ðXnYÞðkÞ with respect to Y is the quantity

hgcdðP;YÞ ¼ h~XX;~YYð~PPÞ:

Example 3. Let X ¼ Pn and let Y ¼ ½1; 0; 0; . . . ; 0�. For x2PnðQÞ, choose
homogeneous coordinates x ¼ ½x0; x1; . . . ; xn� with xi2Z and gcdðx0; . . . ; xnÞ ¼ 1.
Then

hgcdðx;YÞ ¼ log gcdðx1; x2; . . . ; xnÞ þ Oð1Þ:

Example 4. Again let X ¼ Pn and let Y be a subvariety of codimension r5 2
defined by the vanishing of a collection of homogeneous polynomials f1; f2; . . . ;
ft 2Z½X0; . . . ;Xn�. Then for all points x ¼ ½x0; x1; . . . ; xn� 2PnðQÞ written with
normalized homogeneous coordinates as in Example 3, we have

hgcdðx; YÞ ¼ log gcdðf1ðxÞ; . . . ; ftðxÞÞ þ Oð1Þ:

Compare the righthand side of this formula with the lefthand side of condition (2)
in Theorem 2. This identification allows us to reformulate Theorem 2 in terms of
heights on blown up varieties and thence to apply Vojta’s conjecture.
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Example 5. Let E=Q be an elliptic curve given by a (minimal) Weierstrass
equation, let X ¼ E2, let Y ¼ fðO;OÞg, and let �1; �2 : X ! E denote the two
projections. The square of the ideal sheaf IY of Y is generated locally by the
two functions ��1 ðx�1Þ and ��2 ðx�1Þ,

I2
Y ¼ ��1 ðx�1ÞOX;Y þ ��2 ðx�1ÞOX;Y :

Hence the greatest common divisor of a point ðP;QÞ2XðQÞ with respect to
Y ¼ fðO;OÞg is given by

hgcdððP;QÞ;YÞ ¼
X
v 2MQ

1

2
minfvþðx�1

P Þ; vþðx�1
Q Þg

¼ log gcdðDP;DQÞ; ð4Þ
where recall (cf. Theorem 3) that for P2EðQÞ, we write xP ¼ AP=D

2
P.

3. Vojta’s Conjecture

We recall the statement of Vojta’s conjecture [25, Conjecture 3.4.3].

Conjecture 5 (Vojta [25]). Set the following notation:

k a number field.
S a finite set of places of k.

X=k a smooth projective variety.
A an ample divisor on X.
D a normal crossings divisor on X.
KX a canonical divisor on X.

Then for every �> 0 there exists a proper Zariski-closed subset Z ¼
Zð�;X;A;D; k; SÞ of X and a constant C� ¼ C�ðX;A;D; k; SÞ so thatX

v 2 S

�X;DðP; vÞ þ hX;KX
ðPÞ4 �hX;AðPÞ þ C� for all P2XðkÞnZ: ð5Þ

Remark 1. We remind the reader that D is a normal crossings divisor if at every
point in the support of D there are local coordinates ðz1; . . . ; znÞ so that D is given
locally by an equation of the form z1z2 � � � zi ¼ 0.

Remark 2. Vojta’s conjecture contains the additional statement that aside from
a set of dimension zero, the set Z may be chosen independently of the field k and
the set of places S. In other words, there is a set Z0 ¼ Z0ð�;X;A;DÞ so that for any
finite extension k0=k and any finite set of places S0 of k0, there is a finite set
of points Z1 ¼ Z1ð�;X;A;D; k0; S0Þ so that (5) holds for all P2Xðk0Þ with
P 2= Z ¼ Z0 [ Z1. We will be working over a single number field, so we will not
need this stronger version.

Remark 3. In Vojta’s conjecture and throughout this paper, when we say that a
constant depends on a divisor D on a variety X, we assume that both global and
local heights hX;D and �X;D have been chosen and that the constant in question may
depend on this choice.
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Definition 3. With notation as in the statement of Conjecture 5, we let

hX;D;SðPÞ ¼
X
v 2 S

�X;DðP; vÞ and h0X;D;SðPÞ ¼
X
v 62 S

�X;DðP; vÞ:

This corresponds to Vojta’s notation [25] via mSðD;PÞ ¼ hX;D;SðPÞ and
NSðD;PÞ ¼ h0X;D;SðPÞ. Making an analogy with Nevanlinna theory, Vojta calls
mSðD;PÞ the ‘‘proximity function’’ and NSðD;PÞ the ‘‘counting function.’’ Then
Vojta’s fundamental inequality (5) becomes the succinct statement

hX;D;SðPÞ þ hX;KX
ðPÞ4 �hX;AðPÞ þ C� for all P2XðkÞnZ: ð6Þ

4. Applying Vojta’s Conjecture to Blowups

Let X=k be a smooth variety and let Y=k � X=k be a smooth subvariety of
codimension r5 2. Let � : ~XX ! X be the blowup of X along Y , and let
~YY ¼ ��1ðYÞ be the exceptional divisor of the blowup. For P2XnY, we let
~PP ¼ ��1ðPÞ2 ~XX. A nice property of blowups of smooth varieties along smooth
subvarieties is that it is easy to describe a canonical divisor on the blowup [11,
Exercise II.8.5],

K~XX � ��KX þ ðr � 1Þ~YY :
(Here � denotes linear equivalence.) We also observe that if A is an ample divisor
on X, then there exists an integer N so that �~YY þ N��A is ample on ~XX. This
follows from the Nakai-Moishezon Criterion [11, Theorem A.5.1]. We choose such
an N and let

~AA ¼ � 1

N
~YY þ ��A2Divð~XXÞ �Q;

so ~AA is in the ample cone of ~XX.
We make the following assumptions:2

	 The anticanonical divisor � KX is a normal

crossings divisor:
	 Y intersects the support of KX transversally:

2
4

3
5 ð7Þ

We recall that two closed algebraic subsets W1 and W2 of a nonsingular variety V
are transversal at a point P2W1 \W2 if the intersection of their tangent spaces at
P has codimension equal to the sum of the codimensions of W1 and W2. In
particular, W1 and W2 are nonsingular at P. (See [16, II x2.1] for details.) The
transversality assumption (7) implies that the pullback ��ð�KXÞ is isomorphic to
�KX , so in particular ��ð�KXÞ is again a normal crossings divisor, but now on the
blownup variety ~XX. This allows us to apply Vojta’s conjecture to the variety ~XX and
the divisor D ¼ ���KX to obtain the inequality

h~XX;���KX ;S
ð~PPÞ þ h~XX;K~XXð~PPÞ4 �h~XX;~AAð~PPÞ þ C� for all ~PP2 ~XXðkÞn~ZZ:

2 It actually suffices to assume that some multiple of �KX is a normal crossings divisor. The case
KX ¼ 0 is also permitted.
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Substituting

K~XX ¼ ��KX þ ðr � 1Þ~YY and ~AA ¼ � 1

N
~YY þ ��A

and using functorial properties of height functions, we obtain

� hX;KX ;SðPÞ þ hX;KX
ðPÞ þ ðr � 1Þh~XX;~YYð~PPÞ

4 �hX;AðPÞ �
�

N
h~XX;~YYð~PPÞ þ C� for all P2XðkÞnZ;

where we have written Z ¼ �ð~ZZÞ. The two leftmost terms may be combined using
hX;D;S þ h0X;D;S ¼ hX;D, which yields

h0X;KX ;S
ðPÞ þ r � 1 þ �

N

� �
h~XX;~YYð~PPÞ4 �hX;AðPÞ þ C� for all P2XðkÞnZ:

Finally, a small amount of algebra, the definition hgcdðP; YÞ ¼ h~XX;~YYð~PPÞ, and setting
� ¼ �=N gives the following result, where for the convenience of the reader we
restate all of our assumptions.

Theorem 6. Let X=k be a smooth variety, let A be an ample divisor on X, let KX

be a canonical divisor on X, and let Y=k � X=k be a smooth subvariety of codi-
mension r5 2. Assume that the following conditions are valid:

(a) �KX is a normal crossings divisor.
(b) Y intersects the support of �KX transversally.
(c) Vojta’s conjecture is true.3

Then for every finite set of places S and every 0<�< r � 1 there is a proper closed
subvariety Z ¼ Zð�;X;Y ;A; k; SÞ( X, a constant C� ¼ C�ðX; Y ;A; k; SÞ, and a con-
stant � ¼ �ðX;Y ;AÞ> 0 so that

hgcdðP;YÞ4 �hX;AðPÞ þ
1

r � 1 þ ��
h0X;�KX ;S

ðPÞ þ C� for all P2XðkÞnZ: ð8Þ

5. Proofs of Theorems 2, 3, and 4

In this section we show how our main result (Theorem 6) can be used to prove
the three special cases stated in Section 1.

Proof of Theorem 2. We apply Theorem 6 to the following data:

X ¼ Pn;

Y ¼ ff1 ¼ f2 ¼ � � � ¼ ft ¼ 0g � Pn;

KX ¼ �
Xn
i¼0

Hi; where Hi ¼ fXi ¼ 0g2DivðPnÞ;

A ¼ H0:

3 More precisely, it suffices to assume that Vojta’s conjecture is true for the blowup � : ~XX ! X of X
along Y and for the divisor D ¼ ���KX.

Generalized GCD’s and Vojta’s Conjecture for Blowups 341



Notice that �KX is a normal crossings divisor and that Y intersects the support of
�KX transversally by assumption. For P2PnðQÞ, let x ¼ ðx0; . . . ; xnÞ2Znþ1 with
gcdðxiÞ ¼ 1 be normalized homogeneous coordinates for P. Then by definition of
the Weil height we have

hX;A ¼ log maxfjx0j; . . . ; jxnjg; ð9Þ
and Example 4 says that

hgcdðP;YÞ ¼ log gcdð f1ðxÞ; . . . ; ftðxÞÞ: ð10Þ
(All height equalities up to Oð1Þ.) Further, by definition of the S-part of the height,
we have

h0X;Hi;S
ðPÞ ¼

X
v 62 S

vþðxiÞ ¼ log jxij0S;

so

h0X;�KX ;S
ðPÞ ¼

Xn
i¼0

h0X;Hi;S
ðPÞ ¼ log jx0x1 � � � xnj0S: ð11Þ

We now substitute (9), (10) and (11) into the inequality (8) of Theorem 6 to obtain

log gcdð f1ðxÞ; . . . ; ftðxÞÞ

4 � log maxfjx0j; . . . ; jxnjg þ
1

r � 1 þ ��
log jx0x1 � � � xnj0S þ C�

for all P ¼ ½x� 2PnðQÞnZ:
Exponentiating this inequality completes the proof of Theorem 2, once we observe
that the exceptional set Z is contained in some hypersurface, so may be replaced
by the zero set of a single nonzero polynomial. &

Proof of Theorem 3. Let �1; �2 : E�E ! E be the two projections. We apply
Theorem 6 to the following data:

X ¼ E�E; Y ¼ fðO;OÞg; KX ¼ 0; A ¼ ��1 ðOÞ þ ��2 ðOÞ:
We compute

hX;AðP;QÞ ¼ h
E�E;��

1
ðOÞþ��

2
ðOÞðP;QÞ definition of X and A;

¼ hE;OðPÞ þ hE;OðQÞ þ Oð1Þ functoriality of heights: ð12Þ
Next we recall from (4) in Example 5 that the generalized greatest common divisor
of ðP;QÞ with respect to ðO;OÞ is given by

hgcdððP;QÞ; ðO;OÞÞ ¼ log gcdðDP;DQÞ: ð13Þ
Substituting (12) and (13) into inequality (8) of Theorem 6 yields (note KX ¼ 0, so
the h0X;�KX ;S

term disappears)

log gcdðDP;DQÞ4 �ðhE;OðPÞ þ hE;OðQÞÞ þ C� for all ðP;QÞ2E2ðQÞnZ:
Exponentiating gives the first part of Theorem 3.
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It remains to describe the exceptional set Z. Let � � Z be an irreducible
component of Z such that

log gcdðDP;DQÞ5 �ðhðPÞ þ hðQÞÞ þ C� for infinitely many ðP;QÞ2�ðQÞ;
ð14Þ

where to ease notation we let hðPÞ ¼ hE;OðPÞ. Faltings’ theorem [10] tells us that �
is a translate of an abelian subvariety of E2, i.e. � is a translate of an elliptic curve. If
E does not have CM, then the abelian subvarieties of E2 are precisely the curves

�n1;n2
¼ fðn1T ; n2TÞ : T 2Eg for n1; n2 5 0 with gcdðn1; n2Þ ¼ 1:

Thus the assumption that � contains infinitely many points satisfying (14) implies
that there is a fixed pair of integers ðn1; n2Þ as above and a fixed pair of points
ðR1;R2Þ2E2ðQÞ so that

� ¼ �n1;n2
þ ðR1;R2Þ ¼ fðn1T þ R1; n2T þ R2Þ : T 2Eg:

Hence

log gcdðDn1TþR1
;Dn2TþR2

Þ5 �ðhðn1T þ R1Þ þ hðn2T þ R2ÞÞ þ Oð1Þ

¼ �ðn2
1 þ n2

2ÞhðTÞ þ O
ffiffiffiffiffiffiffiffiffiffi
hðTÞ

p� �

for infinitely many T 2EðQÞ: ð15Þ
Here the big-O constant may depend on ðR1;R2Þ and on ðn1; n2Þ, as long as it is
independent of T . We have also used the positivity and quadratic nature of the
height ([18, VIII x9]) in the form

hðnT þ RÞ ¼ n2hðTÞ þ OE;R

ffiffiffiffiffiffiffiffiffiffi
hðTÞ

p� �
:

It remains to bound gcdðDn1TþR1
;Dn2TþR2

Þ. Since gcdðn1; n2Þ ¼ 1 by assump-
tion, we can choose integers ðu1; u2Þ with u1n1 þ u2n2 ¼ 1 and set
R3 ¼ u1R1 þ u2R2. Note that R3 is independent of T . Let p be a prime. Working
in EðQpÞ, we have

pejgcdðDn1TþR1
;Dn2TþR2

Þ
() n1T þ R1 
O ðmod peÞ and n2T þ R2 
O ðmod peÞ
¼)T þ R3 ¼ u1ðn1T þ R1Þ þ u2ðn2T þ R2Þ
O ðmod peÞ
¼) pejDTþR3

:

Thus gcdðDn1TþR1
;Dn2TþR2

Þ divides DTþR3
, so

log gcdðDn1TþR1
;Dn2TþR2

Þ4 logDTþR3

4 hðT þ R3Þ

4 hðTÞ þ O
ffiffiffiffiffiffiffiffiffiffi
hðTÞ

p� �
: ð16Þ

Combining (15) and (16) yields

hðTÞ5 �ðn2
1 þ n2

2ÞhðTÞ þ O
� ffiffiffiffiffiffiffiffiffiffi

hðTÞ
p �

for infinitely many T 2EðQÞ:
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Letting hðTÞ ! 1, we conclude that

15 �ðn2
1 þ n2

2Þ: ð17Þ
This completes the proof of Theorem 3 once we observe that the height function
HðPÞ used in the statement of Theorem 3 satisfies logHðPÞ ¼ 2hE;OðPÞ. &

Proof of Theorem 4. This time we apply Theorem 6 with

X ¼ E�P1;

A ¼ ��1 ðOÞ þ ��2 ð1Þ;
KX ¼ ���2 ð0Þ � ��2 ð1Þ;
Y ¼ fðO; 1Þg;

where �1 : X ! E and �2 : X ! P1 are the projections. Then for any ðQ; bÞ2
EðQÞ�Q we have

hX;AðQ; bÞ ¼ hE;OðQÞ þ hðbÞ
hgcdððQ; bÞ; ð0; 1ÞÞ ¼ log gcdðDQ; b� 1Þ:

Further, if b2Z�S , then

h0X;�KX ;S
ðQ; bÞ ¼ h0

P1;ð0Þ;SðbÞ þ h0
P1;ð1Þ;SðbÞ ¼ 0:

Thus Theorem 6 yields

log gcdðDQ; b� 1Þ4 �ðhE;OðQÞ þ hðbÞÞ þ Oð1Þ
for ðQ; bÞ2EðQÞ�Z�S with ðQ; bÞ2= Z:

Siegel’s theorem [18, IX.3.3] says that hE;OðQÞ � logDQ as hE;OðQÞ ! 1, so
exponentiating and adjusting � gives

gcdðDQ; b� 1Þ4C � maxðDQ;HðbÞÞ�

for ðQ; bÞ2EðQÞ�Z�S with ðQ; bÞ2= Z:
It remains to deal with the exceptional set Z. It suffices to consider an irreducible
component � � Z of dimension 1 with

log gcdðDQ; b� 1Þ5 �ðhE;OðQÞ þ hðbÞÞ þ Oð1Þ
for infinitely many ðQ; bÞ2 ðEðQÞ�Z�S Þ \ �: ð18Þ

In particular, #�ðQÞ ¼ 1, so Faltings’ theorem [9] reduces us to the case that �
has genus 0 or 1. If either �1ð�Þ or �2ð�Þ consists of a single point, it suffices to
adjust the constant, so we assume that �1ð�Þ ¼ E and �2ð�Þ ¼ P1. In particular,
the fact that �1ð�Þ ¼ E implies that � cannot have genus 0, so we are reduced to
the case that � has genus 1.

The fact that � satisfies (18) implies that �2ð�Þ \ Z�S is infinite. In other words,
the map

�2 : �ðQÞ�!Q [ f1g
takes on infinitely many S-unit values. But �ðQÞ is the Mordell-Weil group of an
elliptic curve, so Siegel’s theorem [18, IX.3.2.2] says that this is not possible
(indeed, it is not even possible to take on infinitely many S-integral values). This
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completes the proof that the exceptional set may be taken to be a finite set of
points, and hence may be eliminated entirely by adjusting the constants. &

6. Divisibility Sequences and Algebraic Groups

A divisibility sequence is a sequence of integers ðanÞn5 1 with the property that

mjn¼) amjan:
We have already briefly discussed the divisibility sequences ðDnPÞ associated to a
point of infinite order P on an elliptic curve EðQÞ. Other familiar divisibility
sequences include sequences of the form ðan� bnÞ and the Fibonacci sequence
ðFnÞ. There are many natural ways to generalize the notion of divisibility se-
quence, for example by replacing divisibility of positive integers with divisibility
of ideals in a ring. In the most abstract formulation, one might define a divisibility
sequence as simply an order-preserving map between two partially ordered sets
(posets). In this section we restrict our attention to classical divisibility sequences
of rational integers, but the reader should be aware that virtually everything that
we say can be easily generalized (albeit at the cost of some notational inconve-
nience) to the partially ordered set of integral ideals in number fields, and in some
cases to other Dedekind domains or even more general rings.

The divisibility sequence ðan� bnÞn5 1 is naturally associated to the rank one
subgroup of GmðQÞ generated by a=b, just as the divisibility sequence ðDnPÞn5 1

comes from the rank one subgroup of EðQÞ generated by P. This suggests creating
divisibility sequences from other algebraic groups G defined over Q. In order to
make this precise, we need to choose a model over Z, although a different choice
of model only changes the sequence at finitely many primes.

Definition 4. Let G=Z be a group scheme over Z, let O � GðZÞ be the identity
element of G, and let P2GðZÞ be a nonzero section. We associate to P a positive
integer DP by the condition

ordpðDPÞ ¼ ðP � OÞp for all primes p;

where in general ðP1 �P2Þp denotes the arithmetic intersection index of the sec-
tions P1 and P2 on the fiber over p.

Equivalently, let IO be the ideal sheaf of O � G, where we identify the section
O with its image OðZÞ, taken with the induced reduced subscheme structure. Then
P�ðIOÞ is an ideal sheaf on SpecðZÞ, i.e. it is an ideal of Z. Then DP is deter-
mined by the condition that it generates this ideal,

DP � Z ¼ ðPÞ�ðIOÞ:
These DP values are closely associated to certain generalized greatest common

divisors.

Proposition 7. Let G=Z be a group scheme, let G ¼ G� ZQ be the associated
algebraic group over Q, let � : GðZÞ ! GðQÞ denote restriction to the generic
fiber, and let O ¼ �ðOÞ2GðQÞ be the identity element of G. Then

logDP4 hgcdð�ðPÞ;OÞ þ Oð1Þ for all P2GðZÞ:
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(In principle, the height function might depend on the choice of a completion
and projective embedding of G. However, these only affect hgcdð � ;OÞ up to
O(1).)

Proof. This is just a matter of unsorting the definitions and decomposing hgcd

into a sum of local heights. With the obvious notation, we find that

�gcdð�ðPÞ;O; vÞ ¼ �~GG;~OOð�ðPÞ; vÞ ¼ vðDPÞ for all nonarchimedean places v:

This gives the stated result, with the contributions from the (nonnegative) archi-
medean local heights giving an inequality, rather than an equality. &

We next show that a sequence of the form ðDnPÞn5 1 is a divisibility sequence.

Proposition 8. Let G=Z be a group scheme and let P2GðZÞ be a point
(section) of infinite order. Then the sequence ðDnPÞn5 1 is a divisibility sequence.
We call it the divisibility sequence associated to P (and G).

Proof. For each integer n5 1, let �n : G ! G be the nth-power morphism. The
section nP2GðZÞ is the composition

SpecðZÞ�!P G�!�n
G:

Now let mjn, say n ¼ mr. Then

DnP � Z ¼ ðnPÞ�ðIOÞ by definition of DnP;

¼ ð�n �PÞ�ðIOÞ since nP ¼ �n �P as maps;

¼ ð�r � �m �PÞ�ðIOÞ since �n ¼ �rm ¼ �r � �m;

¼ ð�m �PÞ� � ��r ðIOÞ
� ð�m �PÞ�ðIOÞ since ��r ðIOÞ � IO;

¼ ðmPÞ�ðIOÞ ¼ DmP � Z by definition of DmP:

The one point that possibly requires further explanation is the inclusion ��r ðIOÞ �
IO of ideal sheaves on G. The validity of this inclusion follows from the following
two facts:

	 The sheaf IO is the ideal sheaf of the image OðZÞ of the identity section
with its induced-reduced subscheme structure.

	 The zero section satisfies rO ¼ O, so �rðOðZÞÞ ¼ ðrOÞðZÞ ¼ OðZÞ as sub-
sets of G.

This proves that DnP � Z � DmP � Z, which is equivalent to DmPjDnP. &

Definition 5. A geometric divisibility sequence is the divisibility sequence
ðDnPÞn5 1 associated to a point (section) P of infinite order in a group scheme
G=Z as in Proposition 8.

Some algebraic groups have particularly nice models over Z. In particular, if
A=Q is an abelian variety, then the N�eeron model of A=Q is a group scheme A=Z
characterized, up to canonical isomorphism, by a certain universal mapping property
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and by the fact that its generic fiber is A=Q [2]. Note that the fiber of A ! SpecðZÞ
over a closed point ðpÞ is a smooth group variety over Fp, but it need not be
complete, i.e. finitely many fibers may be extensions of abelian varieties by tori
and unipotent groups. The existence of the N�eeron model prompts the following
definition.

Definition 6. Let A=Q be an abelian variety and let P2AðQÞ be a point of
infinite order. The abelian divisibility sequence associated to P is the divisibility
sequence associated to the lift P of P to a section of the N�eeron model A=Z of
A=Q. By abuse of notation, we denote this sequence by ðDnPÞn5 1.

We next show that Vojta’s conjecture implies a strong upper bound for abelian
divisibility sequences on abelian varieties of dimension at least 2. This result
generalizes Theorem 3 (take A ¼ E�E).

Proposition 9. Let A=Q be an abelian variety of dimension at least 2,
and assume that Vojta’s conjecture is true for A blown up at O. Fix a Weil
height

h : AðQÞ ! R ð19Þ

on A with respect to an ample symmetric divisor.

(a) For every �> 0 there is a constant C ¼ CðA; �Þ and a proper algebraic
subvariety Z ( A so that

hgcdðP;OÞ4 �hðPÞ þ C for all P2AðQÞnZ:

The exceptional set Z consists of a finite union of translates of nontrivial abelian
subvarieties of A, so in particular, if A is simple, then we may take Z ¼ ;.

(b) Let ðDnPÞn5 1 be the abelian divisibility sequence associated to a point
of infinite order P2AðQÞ, and assume further that the group ZP generated by P
is Zariski dense in A. Then for every �> 0 there is a constant C ¼ CðA;P; �Þ
so that

logDnP 4 �n2 þ C for all n5 1:

Remark 4. We observe that Proposition 9 is false if A is an elliptic curve, since
then we have hgcdðP;OÞ ¼ hE;OðPÞ and logDnP � n2ĥhðPÞ. The reason that our
proof of Proposition 9 fails when dimðAÞ ¼ 1 is the requirement in Theorem 6
that the subvariety Y have codimension at least 2 in X.

Proof of Proposition 9. (a) We apply Theorem 6 to the variety A, the subvariety
consisting of the single point O, and the ample divisor used to define the height
(19). The canonical divisor on A is trivial, so Theorem 6 says that there is a
subvariety Z ( A such that

hgcdðP;OÞ4 �hðPÞ þ Oð1Þ for all P2AðQÞnZ:

This proves (a), other than the characterization of Z. Let Z 0 � Z be any irreducible
subvariety of Z. If Z 0ðQÞ is finite, then we may discard it and adjust the Oð1Þ
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accordingly. And if Z 0ðQÞ is infinite, then Faltings’ theorem [10] says that Z 0 is a
translate of an abelian subvariety of A.

(b) We compute

logDnP4 hgcdðnP;OÞ þ Oð1Þ from Proposition 7;

4 �hðnPÞ þ Oð1Þ from ðaÞ; assuming nP2=Z;
4 �n2ĥhðPÞ þ Oð1Þ canonical height property ½12;B:5:1�

The fact that P has infinite order implies that ĥhðPÞ> 0, so after replacing � with
�=ĥhðPÞ, this completes the proof of (b) provided nP2= Z.

Suppose that Z 6¼ ;, and let Z1 be an irreducible component of Z that contains
infinitely many multiples of P. From (a), we know that Z1 ¼ A1 þ R1 for an abelian
subvariety A1 ( A and a point R12AðQÞ. Choose n2 > n1 with n1P2Z1 and
n2P2Z1. Then ðn2 � n1ÞP2A1. Letting N ¼ n2 � n1, it follows that P2A1þ
A½N�, and hence that nP2A1 þ A½N� for all n5 1. This contradicts the assumption
that ZP is Zariski dense in A, and hence there is no exceptional set. &

7. Final Remarks and Questions

We have proven a number of strong bounds for generalized greatest common
divisors and divisibility sequences, all conditional on the validity of Vojta’s beau-
tiful, but deep, conjecture applied to an appropriate blowup variety. It would be of
great interest to find unconditional proofs of some of these results.

In addition to height bounds, there are many other natural questions that one
might ask about abelian, or more generally geometric, divisibility sequences. For
example, which such sequences contain infinitely many prime numbers (cf. [8]).
This is, of course, a notoriously difficult question, even for the simplest divisi-
bility sequence 2n � 1. There is some evidence [6] that elliptic divisibility
sequences ðDnPÞn5 1 do not contain infinitely many primes, although more gen-
eral elliptic divisibility ‘‘sequences’’ ðDnPþmQÞm;n5 1 may well contain infinitely
many primes.

One might ask if a geometric divisibility sequence necessarily grows, or if it
often returns to small values. For example, Ailon and Rudnick [1] conjecture that
if a; b2Z are multiplicatively independent, then

gcdðan � 1; bn � 1Þ ¼ gcdða� 1; b� 1Þ for infinitely many n5 1:

They prove a strong version of this with Z replaced by the polynomial ring C½T �.
(See also [20] and [21] for analogs over Fq½T � and for elliptic curves.) We certainly
suspect that the same is true for semiabelian varieties.

Conjecture 10. Let G=Z be a group scheme, let P2GðZÞ be a Z-valued point,
and assume that the following are true:

(1) The generic fiber G ¼ G� ZQ is an irreducible commutative algebraic
group of dimension at least 2 with no unipotent part.

(2) The restriction P2GðQÞ of P to the generic fiber has the property that the
subgroup ZP generated by P is Zariski dense in G.
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Then the geometric divisibility sequence ðDnPÞn5 1 corresponding to P satisfies

DnP ¼ DP for infinitely many n5 1:

It is tempting to guess that something similar is true for geometric divisibility
sequences associated to any irreducible algebraic group of dimension at least 2,
regardless of whether or not it is commutative. (Note that the Zariski density
condition is vital.) But with no significant evidence for even Conjecture 10, we
will be content to leave the general case as a question.
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