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Introduction

Bugeaud, Corvaja, and Zannier [3] recently proved that if a and b are multi-
plicatively independent integers, then for every e>0 there is a constant
N = N(a, b, ¢) so that

ged(@" —1,0" — 1) <2 foralln > N. (1)
The proof of this beautiful, but innocuous looking, inequality requires an inge-
nious application of Schmidt’s Subspace Theorem [15]. Corvaja and Zannier [5,
Proposition 4] generalize (1) by replacmg a" and b" with arbitrary elements from a

fixed finitely generated subgroup of @*. For ease of exposition, we state their
result over Q.

Theorem 1 (Corvaja and Zannier [5]). Let S be a finite set of rational primes
and let ¢ > 0. There is a finite set Z = Z(S,¢) C Z* so that all o, B€ Z§ N Z satisfy
one of the following three conditions:

(D (04 Bez.
(2) o = B" for some (m,n) satisfying 1 < max{m,n} <
(3) ged(a —1,5—1) < max(|al, |5])".

—1
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In other words, if «, 8 € Z are S-units, then
ng(a - 176 - 1) < max(\a|, |ﬁ‘)€

except for some obvious families of exceptions together with a finite number of
additional exceptions. Analogous statements for elliptic curves and/or over func-
tion fields have been studied by a number of authors [1, 14, 20, 21].

The purpose of this note is to explain how Vojta’s Conjecture [25, Conjecture
3.4.3] applied to varieties blown up along smooth subvarieties leads to a very
general statement about greatest common divisors that encompasses many
known results and previous conjectures. Thus although we do not prove uncon-
ditional results in this paper, we hope that the application of Vojta’s conjecture
will help to put the problem of gcd bounds into a general context, while at the
same time suggesting precise statements whose proofs may be possible using
current techniques from Diophantine approximation and arithmetic geometry.
(See also McKinnon’s paper [14] for a discussion of Vojta’s conjecture applied
to certain blowups.)

We begin in the Section 1 by describing three special cases of our main
theorem. These serve to motivate our general result and to justify the notation
that is needed later. We next in Section 2 set notation and explain how a general-
ized concept of greatest common divisor is naturally formulated in terms of the
height of points on blowup varieties with respect to the exceptional divisor of the
blowup. Section 3 states Vojta’s conjecture, followed in Section 4 by our main
result (Theorem 6) in which we apply Vojta’s conjecture to a blowup variety,
making use of the well-known relation between the canonical bundle on a variety
and on its blowup. In Section 5 we apply our main theorem to prove the three
special cases from Section 1, including some additional arguments to pin down the
exceptional sets more precisely. Section 6 takes up the question of divisibility
sequences, which are sequences (a,), | satistying m|n = a,,|a,. We are espe-
cially interested in divisibility sequences associated to algebraic groups, or more
precisely, to group schemes over Z. We show that these geometric divisibility
sequences are closely related to generalized greatest common divisors and apply
Vojta’s conjecture to the divisibility sequences attached to abelian varieties of
dimension at least 2. Finally, in Section 7, we make a few final remarks and pose
some questions.

1. Three Special Cases Over Q

In this section we describe three special cases of our main theorem. These
generalize earlier results and conjectures appearing in the literature. In order to
avoid excessive notation, we restrict ourselves to working over (0. All results are
conditional on the validity of Vojta’s conjecture. We refer the reader to Section 3
(Conjecture 5) or to Vojta’s original monograph [25, Conjecture 3.4.3] for the
statement of Vojta’s conjecture. In order to state our first result, we need one piece
of notation.

Definition 1. Let S be a finite set of rational primes. For any nonzero integer
x€Z, we write |x|/s for the largest divisor of x that is not divisible by any of the
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primes in S, i.e.

Il = xl TT 1,
peS

Informally, we call |x] ¢ the “prime-to-S” part of x. In particular, x is an S-unit if
and only if |x|5 = 1.

Our first result deals with P" blown up along a smooth subvariety.

Theorem 2. Fix a finite set of rational primes S. Let fi,fa,....f; €
Z[Xo, ..., X,] be homogeneous polynomials so that the set of zeros

V={fi=Hh==f=0CP"

is a smooth variety, and assume further that V has transversal intersection with the
union of the coordinate hyperplanes | J;_j{X; = 0}. Let r = n — dim(V') denote the
codimension of 'V in P".

Assume that r = 2 and that Vojta’s conjecture is true (for P" blown up along
V). Fix €>0. Then there is a homogeneous polynomial 0# g€ Z[X,...,X,),
depending on fi,....f; and €, and a constant 6 >0, depending on fi,...,f;, so
that every

X = (X0, X1, ..., X%,) €Z" with ged(xo, ..., x,) = 1
satisfies either

(1) g(x) =0, or (1469
r— €
(2) ged(Ai(x), -, fi(x)) < max{fxol,.., el } - (ox - xl) :
Example 1. We apply Theorem 2 to P2 with fi = X; — Xp and f, = X, — Xp.
Then V is a single point and r = 2, so the theorem says that off of a one dimen-
sional exceptional set we have

€ 1/(146¢
ged(xy — x0, %2 — x0) < max{|xo|, x1, w2} - (worizaly) /T (2)

In particular, suppose that we take xo = 1 and restrict x; and x; to be S-units, as in
Theorem 1. Then |x0x1x2|/s =1, so (2) becomes

ged(x) — 1,x — 1) < max{|xy], |x2|}

and we recover Theorem 1, albeit conditional on Vojta’s conjecture.1 Thus Vojta’s
conjecture implies a natural generalization of Theorem 1 in which we remove the
restriction that « and (3 be S-units and replace condition (3) of Theorem 1 with the
inequality

god(a — 1,8 — 1) < max{|al, 8]} - (laBls) """, (3)

It would be quite interesting to give an unconditional proof of this generalization.
We also remark that a closer analysis of this special case of Theorem 2 shows that
(3) should be valid for any 6 < 1.

! Theorem 1 also includes a description of the exceptional set, but once one knows that the
exceptional set is a union of curves, it is not hard to recover the full result.
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Our second example deals with elliptic curves and has applications to the
theory of elliptic divisibility sequences.

Theorem 3. Let E/Q be an elliptic curve given by a Weierstrass equation, and
for any nonzero point P = (xp,yp) € E(Q), write xp = Ap/D?% as a fraction in
lowest terms with Dp > 0. Also let H(P) = H(xp) = max{|Ap|, D3|} be the usual
Weil height on E.

Assume that Vojta’s conjecture is true (for E* blown up at (O, 0)). Then for
every € >0 there is a proper closed subvariety Z = Z.(E) C E?* so that

ged(Dp,Dg) < (H(P) - H(Q))" for all (P,Q) <€ E*(Q)\Z.

The exceptional set Z consists of a finite number of translates of proper alge-
braic subgroups of E*. If E does not have CM, then we can say more precisely
that Z is a finite union of translates of the subgroups

1
{(mT,nT)€E* : TEE} with (m,n) € Z* satisfying m* + n* < %
€
(A similar statement holds if E has CM, with m and n replaced by more general
isogenies.)

Example 2. Let E/Q be an elliptic curve and P € E(Q) a point of infinite order.
With notation as in Theorem 3, the elliptic divisibility sequence (EDS) associated
to P is the sequence of integers (D,p), - ;. (For further information about elliptic
divisibility sequences, including a not-quite-equivalent alternative definition, see
[6-8, 14, 17, 21-24, 26, 27].) These sequences have the property that if m|n, then
D,,p|D,p, whence their name. Now let P and Q be independent points in E(Q).
Then Theorem 3 implies that there is a constant C = C.(E, P, Q) so that

ged(Dyp, Dyg) < Cmax{Dyp,Dno}® for all m,n > 1.
Note that since P and Q are independent, there are only finitely many multiples

(mP,nQ) that lie on any fixed curve in E>. We are also using Siegel’s theorem
[18, IX.3.3], which says that 2log D,p ~ h(nP) as n — oc.

Our final example is the amusing observation that Vojta’s conjecture allows us
to mix greatest common divisors on a multiplicative group with those on an elliptic
curve. The following result, although far from the most general, gives a flavor of
what can be proven. Again, an unconditional proof would be quite interesting.

Theorem 4. Let E/Q be an elliptic curve and let S be a finite set of rational
primes. Assume that Vojta’s conjecture is true for E x P! blown up at (0,1). Then
for every € >0 there is a constant C = C(E, S, €) so that

ged(Dg, b — 1) < C-max{Dg,H(b)}* for all Q€ E(Q) and be Z§.

(By convention, we define the greatest common divisor of two rational numbers to
be the greatest common divisor of their numerators.) In particular, if P€ E(Q) is a
point of infinite order and if a = 2 is an integer, then

ged(Dyp,a" — 1) < max{Dyp,a" }

provided that max{m,n} is sufficiently large.
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2. Generalized GCD’s and Blowups

We set the following notation, which will remain fixed throughout this paper.
For definitions and normalizations related to absolute values and heights, see [12,
Part B] or [13, Chapters 2, 3].

k a number field.

M, a complete set of absolute values on k. For veM;, we define
v (a) = max{v(«),0}, and we assume that the absolute values are
normalized so that h(a) =} ), v (a) is the absolute logarithmic
Weil height of a. We denote by M?, respectively by Me, the set of
nonarchimedean, respectively archimedean, places in M.

S a finite set of places of k, including all of the archimedean places.

X/k a smooth projective variety defined over k.

hxp an absolute logarithmic Weil height on X with respect to the divisor D.
Ax,p an absolute logarithmic local height on X with respect to the divisor D.

Let a,b € Z. The greatest common divisor of a and b is given by the formula

log ged(a, b) = Z min{ord,(a), ord,(b)} log p

p prime

= Z min{v(a),v(B)}.

s 0
L€M©

If a and b are rational numbers, rather than integers, then we can compute the gcd
of their numerators by using v™ in place of v, and having done this, there is no
reason to restrict ourselves to the nonarchimedean places. Moving from (D to the
number field k, we follow [5] and define the generalized (logarithmic) greatest
common divisor of o, 3 €k to be the quantity

sa(8) = 3 min{o (@), (5)).

In particular, if o, € Z, then hgeq(cv, §) = log ged(a, 3).
A fancier way to view the function

vtk — [0, ]
is as the local height function on P!(k) with respect to the divisor (0), where we
identify k U {co} with P! (k) and set v (00) = 0. We would like to find a similar
height theoretic interpretation for the function
G:P'(k)x P'(k) —[0,00], (e, f)+— min{v"(a),v"(8)},

that appears in the definition of the generalized greatest common divisor. Intui-
tively, G(«, ) is large if and only if the point («, () is v-adically close to the point
(0,0). This resembles the intuitive characterization of a local height function,

Ax.p(P,v) = —log (v — adic distance from P to D),

except that (0, 0) is not a divisor on (P')>. However, there is a general theory that
associates a local height function Ay y(P,v) to any subvariety ¥ of X, or more
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generally to any closed subscheme Y, see [19] or [25, §5]. For our purposes, it is
convenient to use an equivalent formulation in terms of blowups.

Continuing with our example, let X = (P')%, let 7 : X — X be the blowup
of X at the point (0,0), and let E = 7~!(0,0) be the exceptional divisor of the
blowup. Then it is an easy exercise using explicit equations (or see [25, Lemma
2.5.2]) to verify that a local height function on X for the divisor E is given by the
formula

Mp(m ! (@, ), v) = min{v"(a), 0" (8)} for all (a, §) €X(k)\(0,0).
Adding these local heights gives the global formula

hgca(or Z)‘XE 71 Q, ),U):hX,E(ﬂ'il(O‘aﬁ)»

veE M

In other words, the (generalized) logarithmic gcd of o and (5 is equal to the Weil
height of (c, 3) on a blowup of (P!)* with respect to the exceptional divisor of the
blowup. This identification allows us to bring the machinery of heights to bear on
problems concerning greatest common divisors, and in particular allows us to
apply Vojta’s conjecture to such problems.

Having identified hgcq(cv, 3) with the Weil height on a particular blowup, it is
natural to generalize the notion of greatest common divisor to arbitrary varieties
blown up along arbitrary subvarieties.

Definition 2. Let X /k be a smooth variety and let Y /k C X/k be a subvariety
of codlmensmn r>2. Let 7:X — X be the blowup of X along Y, and let
Y =7 '(Y) be the exceptional divisor of the blowup. For PcX\Y, we let
P=71"'(P)eX.

The generalized (logarithmic) greatest common divisor of the point P&
(X\Y)(k) with respect to Y is the quantity

heea(P;Y) = hg 3(P).

Example 3. Let X = P" and let Y = [1,0,0,...,0]. For x€P"(Q), choose
homogeneous coordinates X = [xq,x1, ... ,x,] with x; € Z and ged(xo, ..., x,) = 1.
Then

heea(X;Y) = log ged(x1,x2,...,x,) + O(1).

Example 4. Again let X = P" and let Y be a subvariety of codimension » > 2
defined by the vanishing of a collection of homogeneous polynomials fi,f, ...,
fi€Z|Xo,...,X,). Then for all points x = [xp,x,...,x,] € P"(Q) written with
normalized homogeneous coordinates as in Example 3, we have

hgcd(x; Y) = 10g ng(fl (X)v ce ,ﬁ(X)) + 0(1)

Compare the righthand side of this formula with the lefthand side of condition (2)
in Theorem 2. This identification allows us to reformulate Theorem 2 in terms of
heights on blown up varieties and thence to apply Vojta’s conjecture.
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Example 5. Let E/Q be an elliptic curve given by a (minimal) Weierstrass
equation, let X = E?, let Y = {(0,0)}, and let 7, m : X — E denote the two
projections. The square of the ideal sheaf .#y of Y is generated locally by the
two functions 7 (x~1) and 73 (x~1),

f% = WT()C_I)(QX,Y + W;k(x_l)(ﬁxy.

Hence the greatest common divisor of a point (P,Q) € X(Q) with respect to
Y ={(0,0)} is given by

heea(P, Q) Y) = 3 %min{v+(x;1),v+(xél)}

veMg
= logged(Dp, Dy), (4)
where recall (cf. Theorem 3) that for P € E(Q), we write xp = Ap/D3.

3. Vojta’s Conjecture
We recall the statement of Vojta’s conjecture [25, Conjecture 3.4.3].
Conjecture 5 (Vojta [25]). Set the following notation:

k a number field.
S a finite set of places of k.
X/k a smooth projective variety.
A an ample divisor on X.
D a normal crossings divisor on X.
Kx a canonical divisor on X.

Then for every €>0 there exists a proper Zariski-closed subset Z =
Z(e,X,A,D,k,S) of X and a constant C. = C(X,A, D, k,S) so that

> Mo (P,v) + hx g, (P) < ehya(P) + Cc for all PEX(\Z.  (5)

veS

Remark 1. We remind the reader that D is a normal crossings divisor if at every
point in the support of D there are local coordinates (zy, ..., z,) so that D is given
locally by an equation of the form z;z,---z; = 0.

Remark 2. Vojta’s conjecture contains the additional statement that aside from
a set of dimension zero, the set Z may be chosen independently of the field k and
the set of places S. In other words, there is a set Zy = Zy(€, X, A, D) so that for any
finite extension k’/k and any finite set of places S’ of k/, there is a finite set
of points Z, = Z,(e,X,A,D,k',S') so that (5) holds for all P€X(k') with
P¢7Z=17yUZ,. We will be working over a single number field, so we will not
need this stronger version.

Remark 3. In Vojta’s conjecture and throughout this paper, when we say that a
constant depends on a divisor D on a variety X, we assume that both global and
local heights hy p and Ax p have been chosen and that the constant in question may
depend on this choice.
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Definition 3. With notation as in the statement of Conjecture 5, we let

hxps(P) = Axp(P,v) and Hypo(P)=> Axn(P,v).

ves vES

This corresponds to Vojta’s notation [25] via mg(D,P) = hxps(P) and
Ns(D,P) = hy , s(P). Making an analogy with Nevanlinna theory, Vojta calls
mg(D, P) the “‘proximity function” and Ng(D, P) the “counting function.” Then
Vojta’s fundamental inequality (5) becomes the succinct statement

hX,D,S(P) + hX,Kx (P) < €hX.A (P) + Ce for all PGX(k)\Z (6)

4. Applying Vojta’s Conjecture to Blowups

Let X/k be a smooth variety and let Y/k C X/k be a smooth subvariety of
codimension r>2. Let 7:X — X be the blowup of X along Y, and let
Y =7 !(Y) be the exceptional divisor of the blowup. For P€X\Y, we let
P =7"'(P)€X. A nice property of blowups of smooth varieties along smooth
subvarieties is that it is easy to describe a canonical divisor on the blowup [11,
Exercise I1.8.5],

Ky ~ Ky + (r— 1)Y.

(Here ~ denotes linear equivalence.) We also observe that if A is an ample divisor
on X, then there exists an integer N so that —Y + N7*A is ample on X. This
follows from the Nakai-Moishezon Criterion [11, Theorem A.5.1]. We choose such
an N and let

~ 1 -~ ~
A= —NY—i—W*AeDiv(X)@@,

s0 A is in the ample cone of X.
We make the following assumptions:2

e The anticanonical divisor — Ky is a normal
crossings divisor. (7)
e Y intersects the support of Kx transversally.

We recall that two closed algebraic subsets W; and W, of a nonsingular variety V
are transversal at a point P € W; N W, if the intersection of their tangent spaces at
P has codimension equal to the sum of the codimensions of W; and W,. In
particular, W; and W, are nonsingular at P. (See [16, II §2.1] for details.) The
transversality assumption (7) implies that the pullback 7*(—Ky) is isomorphic to
—Ky, so in particular 7* (—Ky) is again a normal crossings divisor, but now on the
blownup variety X. This allows us to apply Vojta’s conjecture to the variety X and
the divisor D = —7*Ky to obtain the inequality

hg v, s(P) + hyg, Kz (P) < ehg 5(P) + C.  for all PEX(k)\Z.

2 1t actually suffices to assume that some multiple of —Ky is a normal crossings divisor. The case
Kx = 0 is also permitted.
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Substituting
~ ~ 1 -
Ky =m"Kx+(r—1)Y and A= —NY—I-W*A

and using functorial properties of height functions, we obtain
— hx k.s(P) + hx k, (P) + (r — 1)hg 3(P)
< ehya(P) — %hﬁ(i’) +C. forall PEX(K)\Z,

where we have written Z = n(Z). The two leftmost terms may be combined using
hxps + by ¢ = hx p, which yields

By o s(P) + (r 1+ %) hy (P) < ehy 4(P) + C. for all PEX(k)\Z.

Finally, a small amount of algebra, the definition Ag.q(P;Y) = hxy(ﬁ), and setting
6 =¢/N gives the following result, where for the convenience of the reader we
restate all of our assumptions.

Theorem 6. Let X /k be a smooth variety, let A be an ample divisor on X, let Kx
be a canonical divisor on X, and let Y /k C X /k be a smooth subvariety of codi-
mension r = 2. Assume that the following conditions are valid:

(a) —Kx is a normal crossings divisor.
(b) Y intersects the support of —Kx transversally.
(c) Vojta’s conjecture is true.

Then for every finite set of places S and every 0 < e <r — 1 there is a proper closed
subvariety Z = Z(e,X, Y, Ak, S) C X, a constant C. = C.(X, Y, Ak, S), and a con-
stant § = 6(X,Y,A) >0 so that

1

hoea(P;Y) < ehxa(P) + ————1,
gd( ) € X,A( )+r—1+(56 X,—Kx,

s(P)+C. forallPeX(k)\Z. (8)
5. Proofs of Theorems 2, 3, and 4

In this section we show how our main result (Theorem 6) can be used to prove
the three special cases stated in Section 1.

Proof of Theorem 2. We apply Theorem 6 to the following data:

X =P,

KX = — H,', where Hi = {Xl = 0} GDiV(lpn),
i=0

A = Hy.

3 More precisely, it suffices to assume that Vojta’s conjecture is true for the blowup 7 : X — X of X
along Y and for the divisor D = —7*Kj.
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Notice that —Ky is a normal crossings divisor and that Y intersects the support of
—Ky transversally by assumption. For P € P"(Q), let x = (xo, ..., x,) € Z""! with
gcd(x;) = 1 be normalized homogeneous coordinates for P. Then by definition of
the Weil height we have

hx 4 = logmax{|xo|, ..., x|}, 9)
and Example 4 says that
hgea(P;Y) = logged(fi(x), ... .fi(x)). (10)

(All height equalities up to O(1).) Further, by definition of the S-part of the height,
we have

h;(,H,,S(P) = Zv*(x,') = log |xi|/57
vgS

o)
n
!
h;(,—Kx,S(P) = Zhch;,S(P) = log |xox1 -+ X s- (11)
i=0

We now substitute (9), (10) and (11) into the inequality (8) of Theorem 6 to obtain
log ged(fi(x), ..., fi(x))

< elog max{|xo|, ..., |x.|} + log |xox; - - x,,|/S + C.

r—1+46e
for all P = [x] € P"(Q)\Z.

Exponentiating this inequality completes the proof of Theorem 2, once we observe
that the exceptional set Z is contained in some hypersurface, so may be replaced
by the zero set of a single nonzero polynomial. O

Proof of Theorem 3. Let m,m, : E X E — E be the two projections. We apply
Theorem 6 to the following data:

X=ExE, Y={0,0)}, Kx=0, A=m(0)+m(0).
We compute
hxA(P,Q) = hy, Ex¥*(0)+7%(0) (P,0) definition of X and A,
= hgo(P) + hgo(Q) + O(1) functoriality of heights.  (12)

Next we recall from (4) in Example 5 that the generalized greatest common divisor
of (P, Q) with respect to (0, O) is given by

heca((P, Q); (0,0)) = logged(Dp, Dy). (13)

Substituting (12) and (13) into inequality (8) of Theorem 6 yields (note Kx = 0, so
the Ay g, s term disappears)

log ged(Dp, Do) < €(hg.0(P) + heo(Q)) + Ce - for all (P, Q) € E*(Q)\Z.
Exponentiating gives the first part of Theorem 3.
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It remains to describe the exceptional set Z. Let I' C Z be an irreducible
component of Z such that

log ged(Dp, Do) = €(h(P) + h(Q)) + C. for infinitely many (P, Q) e T'(Q),
(14)
where to ease notation we let 4#(P) = hg o(P). Faltings’ theorem [10] tells us that I"

is a translate of an abelian subvariety of E? ie. T isa translate of an elliptic curve. If
E does not have CM, then the abelian subvarieties of E* are precisely the curves

Loy, ={(miT,nyT) : T€E} for ny,ny =0 with ged(ny,ny) = 1.

Thus the assumption that I' contains infinitely many points satisfying (14) implies
that there is a fixed pair of integers (n;,n;) as above and a fixed pair of points
(R1,Ry) € E*(Q) so that

I =T, m+ (Ri,R) = {(mT +Ry,myT +Ry) : TEE}.
Hence
log gcd(Dy,74R, s Dnr+8,) = €(h(miT + Ry) + h(naT + Ry)) + O(1)
= e(mt + m)A(T) + O(+/A(T) )
for infinitely many 7 € E(Q). (15)

Here the big-O constant may depend on (R, R;) and on (n,n;), as long as it is
independent of 7. We have also used the positivity and quadratic nature of the
height ([18, VIII §9]) in the form

h(nT + R) = n®h(T) + oE.R< h(T) ) .

It remains to bound ged(Dy, 14r,, Dn,7+r,)- Since ged(ny, ny) = 1 by assump-
tion, we can choose integers (uj,up) with wn;+un, =1 and set
R; = u1Ry + u»R;. Note that Rz is independent of T. Let p be a prime. Working
in E(Q,), we have

P°lged(Du, 1R, » Duy71R,)
<~ mT+R =0 (mod p°) and nT + R, =0 (mod p°)
=T+ R; = ul(an—i—R]) + uz(n2T+R2) =0 (modpe)
= p°|Dryg;-
Thus ged(Dy, 74r,  Dnyr+r,) divides Drig,, so

log Dr g,
(T + R3)

(T) + 0( h(T)). (16)

10g ng(Dnl T+Ry» Dn2T+R2) <
<

h
h

N

Combining (15) and (16) yields
h(T) = e(n} + m3)h(T) + 0( h(T)) for infinitely many 7 € E(Q).
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Letting 2(T) — oo, we conclude that
1> e(n? +nd). (17)

This completes the proof of Theorem 3 once we observe that the height function
H(P) used in the statement of Theorem 3 satisfies log H(P) = 2hg o(P). O

Proof of Theorem 4. This time we apply Theorem 6 with
X =E x P!,
A =}(0) + 75 (o),
Kx = % (0) - 7§(c0),
Y ={(0,1)},

where 7 : X — E and m : X — P! are the projections. Then for any (0,b) €
E(Q) x @ we have

hxa(Q,b) = heo(Q) + h(b)
hgea((Q,b); (0, 1)) = log ged(Dg, b — 1).
Further, if b € Z*, then
h;(,fKX,S(Qv b) = hﬁj,lv(())’s(b) + h{}]}],(m)?S(b) =0.
Thus Theorem 6 yields
logged(Dg,b — 1) < e(hgo(Q) + h(b)) + O(1)
for (Q,b) €E(Q) x Z& with (Q,b)¢Z.
Siegel’s theorem [18, IX.3.3] says that hgo(Q) ~ logDg as hgo(Q) — oo, so
exponentiating and adjusting e gives
gcd(Dg, b — 1) < C-max(Dg,H (D))"
for (Q,b) € E(Q) x Z§ with (Q,b) ¢Z.

It remains to deal with the exceptional set Z. It suffices to consider an irreducible
component I' C Z of dimension 1 with

log ged(Dg, b — 1) = €(hg,0(Q) + k(b)) + O(1)
for infinitely many (Q,b) € (E(Q) x Zs)NT.  (18)

In particular, #I'(Q) = oo, so Faltings’ theorem [9] reduces us to the case that I"
has genus 0 or 1. If either 7 (T") or m,(I") consists of a single point, it suffices to
adjust the constant, so we assume that 7 (I') = E and m,(I") = P'. In particular,
the fact that 7 (I") = E implies that T" cannot have genus 0, so we are reduced to
the case that I' has genus 1.

The fact that I satisfies (18) implies that 7, (I") N Z§ is infinite. In other words,
the map

m: T(Q) — QU {c}
takes on infinitely many S-unit values. But I'(Q) is the Mordell-Weil group of an

elliptic curve, so Siegel’s theorem [18, IX.3.2.2] says that this is not possible
(indeed, it is not even possible to take on infinitely many S-integral values). This
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completes the proof that the exceptional set may be taken to be a finite set of
points, and hence may be eliminated entirely by adjusting the constants. ]

6. Divisibility Sequences and Algebraic Groups

A divisibility sequence is a sequence of integers (a,), > ; with the property that
min = a,|a,.

We have already briefly discussed the divisibility sequences (D,p) associated to a
point of infinite order P on an elliptic curve E(Q). Other familiar divisibility
sequences include sequences of the form (a" — b") and the Fibonacci sequence
(F,). There are many natural ways to generalize the notion of divisibility se-
quence, for example by replacing divisibility of positive integers with divisibility
of ideals in a ring. In the most abstract formulation, one might define a divisibility
sequence as simply an order-preserving map between two partially ordered sets
(posets). In this section we restrict our attention to classical divisibility sequences
of rational integers, but the reader should be aware that virtually everything that
we say can be easily generalized (albeit at the cost of some notational inconve-
nience) to the partially ordered set of integral ideals in number fields, and in some
cases to other Dedekind domains or even more general rings.

The divisibility sequence (a" — b"), - | is naturally associated to the rank one
subgroup of G,,(Q) generated by a/b, just as the divisibility sequence (D,p), >
comes from the rank one subgroup of E(Q) generated by P. This suggests creating
divisibility sequences from other algebraic groups G defined over Q. In order to
make this precise, we need to choose a model over Z, although a different choice
of model only changes the sequence at finitely many primes.

Definition 4. Let 9 /Z be a group scheme over Z, let ¢ C %(Z) be the identity
element of ¢, and let 2 € 9(Z) be a nonzero section. We associate to 2 a positive
integer D» by the condition

ord,(Dy) = (# - 0), for all primes p,

where in general (% %;) , denotes the arithmetic intersection index of the sec-
tions #; and #; on the fiber over p.

Equivalently, let .# ¢ be the ideal sheaf of ¢ C ¥, where we identify the section
O with its image (/(Z), taken with the induced reduced subscheme structure. Then
P*(F ) is an ideal sheaf on Spec(Z), i.e. it is an ideal of Z. Then Dy is deter-
mined by the condition that it generates this ideal,

Dy 7= (2)"(S0).

These D values are closely associated to certain generalized greatest common
divisors.

Proposition 7. Let 4 /7 be a group scheme, let G = G x ;Q be the associated
algebraic group over Q, let p: 9(Z) — G(Q) denote restriction to the generic
fiber, and let O = p(0) € G(Q) be the identity element of G. Then

log Dy < heca(p(2);0) + O(1)  for all P € 9(Z).
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(In principle, the height function might depend on the choice of a completion
and projective embedding of G. However, these only affect hecq(-;0) up to
o(1).)

Proof. This is just a matter of unsorting the definitions and decomposing /Agcq
into a sum of local heights. With the obvious notation, we find that

Aeed(P(2); 050) = A 5(p(2),v) = v(Dyp) for all nonarchimedean places v.

This gives the stated result, with the contributions from the (nonnegative) archi-
medean local heights giving an inequality, rather than an equality. O

We next show that a sequence of the form (D,»), -, | is a divisibility sequence.

Proposition 8. Let 4 /7 be a group scheme and let ? € 4(Z) be a point
(section) of infinite order. Then the sequence (Dy»), - | is a divisibility sequence.
We call it the divisibility sequence associated to 2 (and 9).

Proof. For each integer n > 1, let 1, : 9 — % be the n'"-power morphism. The
section n? € 4(Z) is the composition

Spec(Z) Zglg
Now let m|n, say n = mr. Then
- L= (nP)*(S) by definition of D,»,
tin 0 PV (S ¢) since n? = p, o 2 as maps,

pn 0 P) 0 k(S o)
pm © )" (S 0) since 1¥(F¢) C S,
= (m?)*(F¢) = Dup - Z by definition of D,z

(n?
= (
= (o pmo P) (Fo)  sinCe iy = flrm = fir © fim,
= (
< (

The one point that possibly requires further explanation is the inclusion ¥ (.#¢) C
J o of ideal sheaves on 4. The validity of this inclusion follows from the following
two facts:

e The sheaf .# is the ideal sheaf of the image ()(Z) of the identity section
with its induced-reduced subscheme structure.

e The zero section satisfies ¥ = @, so u,(0(Z)) = (rO)(Z) = O(Z) as sub-
sets of 4.

This proves that D,» - Z C D,y - Z, which is equivalent to D,,»|Dy». O

Definition 5. A geometric divisibility sequence is the divisibility sequence
(Dy2), > | associated to a point (section) # of infinite order in a group scheme
%/Z as in Proposition 8.

Some algebraic groups have particularly nice models over Z. In particular, if
A/Q is an abelian variety, then the Néron model of A/Q is a group scheme <7 /7
characterized, up to canonical isomorphism, by a certain universal mapping property
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and by the fact that its generic fiber is A/Q [2]. Note that the fiber of ./ — Spec(Z)
over a closed point (p) is a smooth group variety over [,, but it need not be
complete, i.e. finitely many fibers may be extensions of abelian varieties by tori
and unipotent groups. The existence of the Néron model prompts the following
definition.

Definition 6. Let A/Q be an abelian variety and let P€A(Q) be a point of
infinite order. The abelian divisibility sequence associated to P is the divisibility
sequence associated to the lift 2 of P to a section of the Néron model .o/ /Z of
A/Q. By abuse of notation, we denote this sequence by (D,p)

nx=1

We next show that Vojta’s conjecture implies a strong upper bound for abelian
divisibility sequences on abelian varieties of dimension at least 2. This result
generalizes Theorem 3 (take A = E X E).

Proposition 9. Let A/Q be an abelian variety of dimension at least 2,
and assume that Vojta’s conjecture is true for A blown up at O. Fix a Weil
height

h:AQ) — R (19)
on A with respect to an ample symmetric divisor.

(a) For every >0 there is a constant C = C(A,€) and a proper algebraic
subvariety Z CA so that

heca(P; O) < €h(P) + C  for all P€A(Q)\Z.

The exceptional set Z consists of a finite union of translates of nontrivial abelian
subvarieties of A, so in particular, if A is simple, then we may take Z = ).

(b) Let (an)n>1 be the abelian divisibility sequence associated to a point
of infinite order P € A(Q), and assume further that the group ZP generated by P
is Zariski dense in A. Then for every € >0 there is a constant C = C(A, P, ¢)
so that

logD,p < en*+C foralln=>1.

Remark 4. We observe that Proposition 9 is false if A is an elliptic curve, since
then we have hgeq(P; O) = hgo(P) and log D,p ~ n*h(P). The reason that our
proof of Proposition 9 fails when dim(A) = 1 is the requirement in Theorem 6
that the subvariety Y have codimension at least 2 in X.

Proof of Proposition 9. (a) We apply Theorem 6 to the variety A, the subvariety
consisting of the single point O, and the ample divisor used to define the height
(19). The canonical divisor on A is trivial, so Theorem 6 says that there is a
subvariety Z CA such that

heed(P; 0) < €h(P) 4 O(1) for all PEA(Q)\Z.

This proves (a), other than the characterization of Z. Let Z’' C Z be any irreducible
subvariety of Z. If Z'(Q) is finite, then we may discard it and adjust the O(1)
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accordingly. And if Z'(Q) is infinite, then Faltings’ theorem [10] says that Z’ is a
translate of an abelian subvariety of A.
(b) We compute

log Dyp < hgca(nP; O) + O(1)  from Proposition 7,
< eh(nP) + O(1) from (a), assuming nP¢Z,
< en®h(P) + O(1) canonical height property [12,B.5.1]

The fact that P has infinite order implies that iz(P) >0, so after replacing e with
€/h(P), this completes the proof of (b) provided nP ¢ Z.

Suppose that Z # (), and let Z; be an irreducible component of Z that contains
infinitely many multiples of P. From (a), we know that Z; = A + R for an abelian
subvariety A CA and a point R;€A(Q). Choose n, >n; with nyP€Z; and
mPe€Z;. Then (n, —ny)P€A;. Letting N =ny —ny, it follows that P€A+
A[N], and hence that nP € A; + A[N] for all n > 1. This contradicts the assumption
that ZP is Zariski dense in A, and hence there is no exceptional set. O]

7. Final Remarks and Questions

We have proven a number of strong bounds for generalized greatest common
divisors and divisibility sequences, all conditional on the validity of Vojta’s beau-
tiful, but deep, conjecture applied to an appropriate blowup variety. It would be of
great interest to find unconditional proofs of some of these results.

In addition to height bounds, there are many other natural questions that one
might ask about abelian, or more generally geometric, divisibility sequences. For
example, which such sequences contain infinitely many prime numbers (cf. [8]).
This is, of course, a notoriously difficult question, even for the simplest divisi-
bility sequence 2" — 1. There is some evidence [6] that elliptic divisibility
sequences (D,p), ; do not contain infinitely many primes, although more gen-
eral elliptic divisibility “sequences” (Dynpimg),,, > may well contain infinitely
many primes. '

One might ask if a geometric divisibility sequence necessarily grows, or if it
often returns to small values. For example, Ailon and Rudnick [1] conjecture that
if a,b € Z are multiplicatively independent, then

ged(a@" —1,0" — 1) = ged(a— 1,b — 1) for infinitely many n > 1.

They prove a strong version of this with Z replaced by the polynomial ring C[T].
(See also [20] and [21] for analogs over [F,[T] and for elliptic curves.) We certainly
suspect that the same is true for semiabelian varieties.

Conjecture 10. Let 4 /7 be a group scheme, let # € 9(Z) be a Z-valued point,
and assume that the following are true:

(1) The generic fiber G =% x 7Q is an irreducible commutative algebraic
group of dimension at least 2 with no unipotent part.

(2) The restriction P € G(Q) of 2 to the generic fiber has the property that the
subgroup 7P generated by P is Zariski dense in G.
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Then the geometric divisibility sequence (Dy»), > | corresponding to P satisfies
D,» = Dy for infinitely many n > 1.

It is tempting to guess that something similar is true for geometric divisibility
sequences associated to any irreducible algebraic group of dimension at least 2,
regardless of whether or not it is commutative. (Note that the Zariski density
condition is vital.) But with no significant evidence for even Conjecture 10, we
will be content to leave the general case as a question.
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