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Abstract. The dyadic diaphony, introduced by Hellekalek and Leeb, is a quantitative measure
for the irregularity of distribution of point sets in the unit-cube. In this paper we study the dyadic
diaphony of digital nets over Z2. We prove an upper bound for the dyadic diaphony of nets and show
that the convergence order is best possible. This follows from a relation between the dyadic diaphony
and the L2 discrepancy. In order to investigate the case where the number of points is small compared
to the dimension we introduce the limiting dyadic diaphony, which is defined as the limiting case where
the dimension tends to infinity. We obtain a tight upper and lower bound and we compare this result with
the limiting dyadic diaphony of a random sample.
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1. Introduction

Many applications, notably numerical integration (see for example [19]),
require well distributed point sets in the unit-cube. What we mean by well dis-
tributed can be defined in several ways, all of which have their own significance.
Geometrical concepts of measuring the irregularity of distribution comprise the
L2 discrepancy and the star-discrepancy (see for example [7], [14], [18]). Other
papers consider measures specifically related to numerical integration [2], [3],
[13], [19], [24]. In such cases the worst-case error, that is, the worst approximation
of the integral of functions from the unit-ball of some function space, has frequent-
ly been considered and analyzed. Furthermore, several connections between those
seemingly different concepts have been pointed out, see [13], [24].

The dyadic diaphony (see Definition 1) considered here is another measure for
the distribution of a point set. This measure is based on a function, depending on a
point set in the unit-cube, whose function value tells us about the distribution
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property of a point set. Introduced by Hellekalek and Leeb [12], it has been shown
that this is indeed a valid measure, in the sense that the function value tends to
zero if and only if the point set is uniformly distributed in the unit-cube.

In [5] several connections between the dyadic diaphony, discrepancy and
numerical integration of functions from a certain function space have been pointed
out. Moreover, it was shown in [5] how the dyadic diaphony can be understood
geometrically.

In this paper we study the dyadic diaphony of digital nets over Z2. Digital nets
are well known for their excellent distribution properties. This is also reflected by
our results here, unless the number of points is small compared to the dimension.
More details are given in the following outline of the paper.

The definitions of dyadic diaphony and digital nets are given in the following
section. In Section 3 we prove an upper bound for the dyadic diaphony of digital
ðt;m; sÞ-nets over Z2 (Theorem 1). From this result we obtain for any dimension
s5 1 the existence of digital nets with dyadic diaphony of order ð logNÞðs�1Þ=2

N�1

(Corollary 1) and in Theorem 2 we show that this order is best possible for any
point set.

Though we have shown the existence of digital nets with the best possible
convergence order, there remains a gap in the applicability of our upper bound.
Namely, the bound is bigger than one if the number of points is small compared to
the dimension, though it is known that the dyadic diaphony lies always between
zero and one. For practical purposes it is often the case that the number of points is
rather small compared to the dimension (and therefore it is a very important
research topic), hence there is a need to investigate this case separately. This point
is pursued in Section 4, where we introduce the limiting dyadic diaphony. The
limiting dyadic diaphony is the limiting case of the dyadic diaphony as the dimen-
sion tends to infinity. This approach is similar to the limiting discrepancy intro-
duced in [24]. Sloan and Wo�zzniakowski [24] introduced the concept of strong
tractability, meaning that the limiting discrepancy is finite and decays polynomi-
ally with the number of points. This has subsequently been the topic of much
research. However, in our setting the notion of strong tractability is not useful, as
the limiting dyadic diaphony is always between zero and one. Still, the limiting
dyadic diaphony is useful to analyze the convergence rate for small point sets, as
obviously any finite number of points is small compared to infinity. We calculate
the limiting dyadic diaphony for digital nets and the expected value of the dyadic
diaphony of a random sample. The comparison shows that in terms of the limiting
dyadic diaphony both point sets perform equally well.

In Section 5 we discuss the previous results. We show that point sets with
almost best possible limiting dyadic diaphony can be constructed in practice using
a component-by-component algorithm. Further we prove that a convergence order
of Oðð logNÞðs�1Þ=2

N�1Þ can only be achieved if N is exponentially large in the
dimension.

2. Preliminaries

Throughout this paper let N0 denote the set of non-negative integers. For
k2N0 with base 2 representation k ¼ �a�12a�1 þ � � � þ �12 þ �0, with
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�i2f0; 1g, we define the Walsh function walk : R�!f�1; 1g periodic with
period 1, by

walkðxÞ :¼ ð�1Þ�1�0þ���þ�a�a�1 ;

for x2 ½0; 1Þ with base 2 representation x ¼ �1=2 þ �2=22 þ � � � (unique in the
sense that infinitely many of the �i must be zero). For dimension s5 2,
x1; . . . ; xs2 ½0; 1Þ and k1; . . . ; ks2N0 we define walk1;...;ks : ½0; 1Þ

s �!f�1; 1g by

walk1;...;ksðx1; . . . ; xsÞ :¼
Ys
j¼1

walkjðxjÞ:

For vectors k ¼ ðk1; . . . ; ksÞ2Ns
0 and x ¼ ðx1; . . . ; xsÞ2 ½0; 1Þs we write

walkðxÞ :¼ walk1;...;ksðx1; . . . ; xsÞ:

It is clear from the definitions that Walsh functions are piecewise constant. It can
be shown that for any integer s5 1 the system fwalk1;...;ks : k1; . . . ; ks 5 0g is a com-
plete orthonormal system in L2ð½0; 1ÞsÞ, see for example [1], [17] or [21, Satz 1].
More information on Walsh functions can be found in [1], [21], [22], [25].

Throughout the paper let PN;s ¼ fx0; . . . ; xN�1g denote a point set in the
s-dimensional unit-cube ½0; 1Þs. For k2Ns

0 we define

SNðk;PN;sÞ :¼
1

N

XN�1

n¼0

walkðxnÞ:

Now we can give the definition of the dyadic diaphony (see Hellekalek and Leeb,
[12]).

Definition 1. The dyadic diaphony FNðPN;sÞ of a point set PN;s ¼
fx0; . . . ; xN�1g in ½0; 1Þs is defined by

FNðPN;sÞ :¼
1

3s � 1

X
k 2Ns

0

k 6¼ 0

�ðkÞjSNðk;PN;sÞj2

0
BBB@

1
CCCA

1=2

;

where for an integer vector k ¼ ðk1; . . . ; ksÞ2Ns
0, �ðkÞ ¼

Qs
i¼1 �ðkiÞ and for

k2N0,

�ðkÞ :¼ 1 if k ¼ 0;
2�2g if 2g 4 k< 2gþ1 with g2N0:

�

We note that Grozdanov and Stoilova [8] generalized the dyadic diaphony to a
so-called b-adic diaphony, b5 2, and quite recently Grozdanov, Nikolova and
Stoilova [10] introduced a so-called generalized b-adic diaphony. For a very
general definition see [9].

In [12], Hellekalek and Leeb proved that for any point set PN;s we have
04FNðPN;sÞ4 1. Further they showed that a sequence Ps ¼ ðxnÞn5 0 is uni-
formly distributed modulo 1 if and only if limN!1 FNðPN;sÞ ¼ 0, where PN;s
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consists of the first N points of the sequence Ps. Further they showed that for any
dimension s5 1 and for any point set PN;s the dyadic diaphony FNðPN;sÞ can be
computed with OðsN2Þ operations. If P0

2gs;s is the regular grid, that is,

P0
2gs;s ¼ fða1=2g; . . . ; as=2gÞ : 04 ai< 2g; ai2Z; 14 i4 sg

then

F2
2gsðP0

2gs;sÞ ¼
1

3s � 1
ðð1 þ 2�2gþ1Þs � 1Þ

(see [12, Proposition 3.4]).
Currently the most effective constructions of point sets with good distribution

properties are based on the concept of ðt;m; sÞ-nets in a base b. For a definition of
such nets see [19]. In practice all concrete constructions of ðt;m; sÞ-nets in a base b
are based on a general construction scheme which is the concept of digital point
sets. Here in this paper we only deal with the case b ¼ 2, i.e., we only consider
ðt;m; sÞ-nets in base 2 and hence we introduce the digital construction only for this
special case. For a general definition see for example [15], [16] or [19]. In the
following let Z2 denote the finite field with two elements.

Definition 2. Let s5 1, m5 1 and 04 t4m be integers. Choose s m�m
matrices C1; . . . ;Cs over Z2 with the following property: for any integers
d1; . . . ; ds 5 0 with d1 þ � � � þ ds ¼ m� t the system of the

first d1 rows of C1; together with the

..

.

first ds�1 rows of Cs�1; together with the

first ds rows of Cs

is linearly independent over Z2.
Consider the following construction principle for point sets consisting of 2m points

in ½0; 1Þs: represent n, 04 n< 2m, in base 2, n ¼ n0 þ n12 þ � � � þ nm�12m�1, and

multiply the matrix Cj, 14 j4 s, with the vector~nn ¼ ðn0; . . . ; nm�1ÞT of digits of n
in Z2,

Cj~nn ¼: ðyðjÞ1 ; . . . ; y
ðjÞ
m ÞT :

Now we set

xðjÞn :¼ y
ðjÞ
1

2
þ � � � þ yðjÞm

2m

and

xn ¼ ðxð1Þn ; . . . ; xðsÞn Þ:
The point set Pnet

2m;s ¼ fx0; . . . ; x2m�1g is called a digital ðt;m; sÞ-net over Z2

and the matrices C1; . . . ;Cs are called the generator matrices of the digital net.
Note that any digital ðt;m; sÞ-net over Z2 is a ðt;m; sÞ-net in base 2 as shown by

Niederreiter [19]. Further it follows from Definition 2 that any d-dimensional
projection of a digital ðt;m; sÞ-net over Z2 is a digital ðt;m; dÞ-net over Z2.
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3. On the Convergence Rate of the Dyadic Diaphony
of Digital Nets over Z2

In this section we investigate the dyadic diaphony of digital nets constructed
over Z2. We show that FNðPnet

N;sÞ ¼ Oðð logNÞ
s�1

2 N�1Þ and that this is best possible
for any point set. (We remark that the generalized spectral test, which is another
measure of uniform distribution closely related to the dyadic diaphony, of digital
nets was computed by Hellekalek [11].)

We introduce some notation. For m�m matrices C1; . . . ;Cs over Z2 we define
the set

D :¼ fk2f0; . . . ; 2m � 1gs n f0g : CT
1
~kk1 þ � � � þ CT

s
~kks ¼~00g;

where k ¼ ðk1; . . . ; ksÞ and where for k2f0; . . . ; 2m � 1g with k ¼ �0 þ
�12 þ � � � þ �m�12m�1 we write~kk ¼ ð�0; . . . ; �m�1ÞT 2Zm

2 .

Proposition 1. Let Pnet
2m;s ¼ fx0; . . . ; x2m�1g be a digital ðt;m; sÞ-net over Z2

generated by the regular m�m matrices C1; . . . ;Cs over Z2. Then for the dyadic
diaphony of Pnet

2m;s we have

1

3s � 1

X
k 2D

�ðkÞ þ 1

3s � 1

��
1 þ 2

22m

�s

� 1

�
4 F2

2mðPnet
2m;sÞ

4
4s

3s � 1

X
k 2D

�ðkÞ þ 1

22m

2s

3s � 1

�
2�ð2Þ

�
3 þ 4�ð2Þ

2m

�s�1

þ
�

1 þ 2

22m

�s�1�
:

For the proof of Proposition 1 we need two lemmas.

Lemma 1. Let fx0; . . . ; x2m�1g be a digital net over Z2 generated by the m�m
matrices C1; . . . ;Cs over Z2. Then for all integers 04 k1; . . . ; ks< 2m we have

X2m�1

n¼0

walk1;...;ksðxnÞ ¼
2m; if CT

1
~kk1 þ � � � þ CT

s
~kks ¼~00;

0; otherwise;

�

where for 04 k< 2m with k ¼ �0 þ �12 þ � � � þ �m�12m�1 we write ~kk ¼
ð�0; . . . ; �m�1ÞT 2Zm

2 and ~00 denotes the zero vector in Zm
2 .

Proof. See [3, Lemma 2]. &

Lemma 2. We haveX
l 2Ns

0

�ðlÞ ¼ 3s and
X
l 2Ns

0

�ð2mlÞ ¼
�

1 þ 2

22m

�s

:

Proof. We have

X
l 2Ns

0

�ð2mlÞ ¼
�X1

l¼0

�ð2mlÞ
�s

¼
�

1 þ
X1
g¼0

X2gþ1�1

l¼2g

1

22ðgþmÞ

�s

¼
�

1 þ 2

22m

�s

:

The first equality follows now by setting m ¼ 0 in the equation above. &
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We are ready to prove Proposition 1.

Proof. The proof is based on an technique introduced by Niederreiter [19]. First
we need some notation: for a non-negative integer k with base 2 representation
k ¼

P1
i¼0 �i2

i we write trmðkÞ :¼ �0 þ �12 þ � � � þ �m�12m�1 and

~trtrmðkÞ :¼ ð�0; . . . ; �m�1ÞT 2Zm
2 :

Since Pnet
2m;s is a digital ðt;m; sÞ-net over Z2, using Lemma 1 we obtain

ð3s � 1ÞF2
NðPnet

2m;sÞ ¼
X

k 2Ns
0nf0g

CT
1
~trtrmðk1Þþ���þCT

s
~trtrmðksÞ¼~00

�ðkÞ ¼: �:

For k2Ns
0, k 6¼ 0, we consider two cases:

1. Assume k ¼ 2ml with l2Ns
0, l 6¼ 0. In this case we have trmðkjÞ ¼ 0 for

14 j4 s and the condition

CT
1
~trtrmðk1Þ þ � � � þ CT

s
~trtrmðksÞ ¼~00

is trivially fulfilled for any choice of C1; . . . ;Cs.
2. Assume k ¼ k� þ 2ml with l2Ns

0, k� ¼ ðk�1 ; . . . ; k�s Þ 6¼ 0 and 04 k�j < 2m

for all 14 j4 s. In this case we have ~trtrmðkjÞ ¼~kk�j for all 14 j4 s and our
condition becomes

CT
1
~kk�1 þ � � � þ CT

s
~kk�s ¼~00: ð1Þ

Hence we obtain

� ¼
X

l 2Ns
0nf0g

�ð2mlÞ þ
X

k� 2D

X
l 2Ns

0

�ðk� þ 2mlÞ ¼: �1 þ �2: ð2Þ

From Lemma 2 we find

�1 ¼ �1 þ
�

1 þ 2

22m

�s

: ð3Þ

We consider

�2 ¼
X
k 2D

Ys
i¼1

�X1
l¼0

�ðki þ 2mlÞ
�
:

If ki ¼ 0, then we haveX1
l¼0

�ðki þ 2mlÞ ¼
X1
l¼0

�ð2mlÞ ¼ 1 þ 2

22m
:

Assume that ki 6¼ 0. Then we haveX1
l¼0

�ðki þ 2mlÞ ¼
X1
l¼0

2�2blog2ðkiþ2mlÞc

4
X1
l¼0

4

ðki þ 2mlÞ2
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4
4

ðkiÞ2
þ
X1
l¼1

4

22ml2

4 4�ðkiÞ þ
4�ð2Þ
22m

:

Hence in both cases we haveX1
l¼0

�ðki þ 2mlÞ4 4�ðkiÞ þ
4�ð2Þ
22m

:

Now

�2 4
X
k2D

Ys
i¼1

�
4�ðkiÞ þ

4�ð2Þ
22m

�

¼ 4s
X
k 2D

�ðkÞ þ 4s�ð2Þs

22sm
ð#DÞ

þ
Xs�1

j¼1

�
4�ð2Þ
22m

�s�j X
14 i1 < ���< ij 4 s

X
k 2D

�ðki1Þ � � � �ðkijÞ:

Let 14 j4 s� 1 and 14 i1 < � � � < ij 4 s be fixed. Then

X
k 2D

�ðki1Þ � � � �ðkijÞ ¼
X2m�1

h1;...;hj¼0

�ðh1Þ � � � �ðhjÞ #fk2D : kid ¼ hd; 14 d4 jg:

If in the system

CT
1
~kk1 þ � � � þ CT

s
~kks ¼~00 ð4Þ

the values of ~kki1 ; . . . ;~kkij are prescribed and s� j� 1 of the remaining ~kk’s are
chosen arbitrarily, then for the remaining ~kk there is exactly one possible choice
such that the equation in (4) holds. This follows since C1; . . . ;Cs are regular.
Hence,

#fk2D : kid ¼ hd; 14 d4 jg4 2mðs�j�1Þ:

Thus with Lemma 2 we get

X
k 2D

�ðki1Þ � � � �ðkijÞ4 2mðs�j�1Þ
X2m�1

h1;...;hj¼0

�ðh1Þ � � � �ðhjÞ4 2m�ðs�j�1Þ3 j:

In the same way as above it follows that #D ¼ 2mðs�1Þ. Therefore we obtain

�2 4 4s
X
k 2D

�ðkÞ þ 4s�ð2Þs

2msþm
þ
Xs�1

j¼1

s

j

� ��
4�ð2Þ
22m

�s�j

2mðs�j�1Þ3 j

¼ 4s
X
k 2D

�ðkÞ þ 1

2m

�
3 þ 4�ð2Þ

2m

�s

� 3s

2m
:
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We get

�4 4s
X
k 2D

�ðkÞ þ 1

2m

�
3 þ 4�ð2Þ

2m

�s

� 3s

2m
� 1 þ

�
1 þ 2

22m

�s

4 4s
X
k 2D

�ðkÞ þ 1

2m
4�ð2Þs

2m

�
3 þ 4�ð2Þ

2m

�s�1

þ 2s

22m

�
1 þ 2

22m

�s�1

:

The upper bound follows. Finally from (2) and (3) we get

�5 �1 þ
�

1 þ 2

22m

�s

þ
X
k 2D

�ðkÞ

such that also the lower bound is proved. &

Lemma 3. Let C1; . . . ;Cs be the generator matrices of a digital ðt;m; sÞ-net
over Z2. For v ¼ fv1; . . . ; veg � f1; . . . ; sg, v 6¼ ;, let

BðvÞ ¼
X

k1;...;ke¼1

2m�1

CT
v1
~kk1þ���þCT

ve
~kke¼~00

Ye
j¼1

�ðkjÞ:

Then we have

BðvÞ4 22t

22m

�
16

3

�jvj�
m� t þ 1

8

�jvj�1

:

Proof. The result follows from [4, Lemma 7] by noting that for k 6¼ 0 we have
�ðkÞ ¼ 6 ðkÞ, where  is defined in [4]. &

In order to obtain an upper bound on the dyadic diaphony we need to establish
an upper bound on

P
k 2D �ðkÞ. This is done in the following proposition.

Proposition 2. Let C1; . . . ;Cs be the generator matrices of a digital ðt;m; sÞ-
net over Z2 with t<m. Then we haveX

k 2D

�ðkÞ4 22t

22m
7sðm� tÞs�1:

Proof. With Lemma 3 we have

X
k 2D

�ðkÞ ¼
X

k1;...;ks¼0

ðk1;...;ksÞ 6¼ ð0;...;0Þ
CT

1
~kk1þ���þCT

s
~kks¼~00

2m�1 Ys
i¼1

�ðkiÞ ¼
X

v�f1;...;sg
v 6¼ ;

BðvÞ ð5Þ

4
22t

22m

1

m� t

X
v�f1;...;sg

v 6¼ ;

�
16

3

�jvj�
m� t þ 1

8

�jvj
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4
22t

22m

1

m� t

�
1 þ 16

3

�
m� t þ 1

8

��s

4
22t

22m
7sðm� tÞs�1: ð6Þ

This is the desired result. &

The following theorem follows now easily from Propositions 1 and 2.

Theorem 1. Let Pnet
2m;s be a digital ðt;m; sÞ-net over Z2 with t<m and with

regular generator matrices C1; . . . ;Cs. Then we have

F2
2mðPnet

2m;sÞ4 cðsÞ22t ðm� tÞs�1

22m
;

where cðsÞ> 0 only depends on the dimension s.

As the upper bound also depends on the t-value of the digital net we consider
ðt; sÞ-sequences in the following. A ðt; sÞ-sequence in base 2 is a sequence of points
ðxnÞn5 0 such that for allm> t and l5 0 we have that fxn : l2m 4 n< ðlþ 1Þ2mg is a
ðt;m; sÞ-net in base 2. A digital ðt; sÞ-sequence over Z2 is obtained by using N�N
generator matrices C1; . . . ;Cs over Z2, see [19] for more information.

From [20] it follows that for every dimension s there exists a digital ðt; sÞ-
sequence over Z2 such that t4 5s. Thus it follows that for all s5 1 and m> 5s
there is a digital ð5s;m; sÞ-net over Z2. (Note that if there is a digital ðt;m; sÞ-net
then it follows that also a digital ðt þ 1;m; sÞ-net exists.) As we can now increase
m without changing the t-value we obtain the following corollary from Theorem 1.

Corollary 1. For any dimension s5 1 and m> 5s there exists a digital net Pnet
N;s

over Z2 consisting of N ¼ 2m points such that

FNðPnet
N;sÞ4 c0ðsÞ ð logNÞ

s�1
2

N
;

where the constant c0ðsÞ> 0 only depends on the dimension s.

In the following we also prove a lower bound on the dyadic diaphony which shows
that the convergence rate shown in Corollary 1 is best possible. This is done using
Roth’s lower bound on the L2 discrepancy, which is another measure for the dis-
tribution properties of a point set. In the proof below we use the generalized notion of
weightedL2 discrepancy, which was introduced in [24]. In the following letD denote
the index set D ¼ f1; 2; . . . ; sg and let � ¼ ð�1; �2; . . .Þ be a sequence of non-nega-
tive real numbers. For u � D let juj be the cardinality of u and for a vector x2 ½0; 1Þs
let xu denote the vector from ½0; 1Þjuj containing all components of xwhose indices are
in u. Further let �u ¼

Q
j 2 u �j, dxu ¼

Q
j 2 u dxj and let ðxu; 1Þ be the vector from

½0; 1Þs with all components whose indices are not in u replaced by 1. Then the
weighted L2 discrepancy of a point set PN;s ¼ fx0; . . . ; xN�1g is defined as

L2;�ðPN;sÞ ¼
X
u�D

u 6¼ ;

�u

ð
½0;1�juj

�ððxu; 1ÞÞ2
dxu

0
BB@

1
CCA

1=2

;
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where

�ðt1; . . . ; tsÞ ¼
ANð½0; t1Þ� � � � � ½0; tsÞÞ

N
� t1 � � � ts;

where 04 tj 4 1 and ANð½0; t1Þ� � � � � ½0; tsÞÞ denotes the number of indices n
with xn2 ½0; t1Þ� � � � � ½0; tsÞ. We can see from the definition of the weighted L2

discrepancy that the weights �u ¼
Q

j 2 u �j modify the importance of different
projections (see [6], [24] for more information on weights).

Theorem 2. For any dimension s5 1 there exists a constant �ccðsÞ> 0, depend-
ing only on the dimension s, such that for any point set PN;s consisting of N points
in ½0; 1Þs we have

FNðPN;sÞ5�ccðsÞ ð logNÞ
s�1

2

N
:

Proof. In [2] it was shown that the expected value of the weighted L2 dis-
crepancy of a point set ePPN;s, which is randomized by a digital shift in base 2, is
given by

EðL2
2;ð12ÞðePPN;sÞÞ ¼

X
k 2Ns

0

k 6¼ 0

rð�; kÞ
���� 1

N

XN�1

h¼0

walkðxhÞ
����2;

where k ¼ ðk1; . . . ; ksÞ2Ns
0, rð�; kÞ ¼

Qs
j¼1 rð�j; kjÞ and for k ¼ 0 we have

rð�j; 0Þ ¼ 1 þ �j=3 and for k5 1 we have rð�j; kÞ ¼ �j�ðkÞ=12. Hence for �j ¼
12 we have rð�j; 0Þ ¼ 5 ¼ 5�ð0Þ and for k5 1 we have rð12; kÞ ¼ �ðkÞ. Therefore
we have

rðð12Þ; kÞ ¼
Ys
i¼1

rð12; kiÞ4 5s
Ys
i¼1

�ðkiÞ ¼ 5s�ðkÞ:

Hence from the definition of dyadic diaphony we obtain the inequality

EðL2
2;ð12ÞðePPN;sÞÞ4 5sð3s � 1ÞF2

2;NðPN;sÞ: ð7Þ

Roth [23] proved that for any dimension s5 1 there exists a constant ĉcðsÞ> 0 such
that for any point set consisting of N points in the s-dimensional unit-cube ½0; 1Þs
the classical L2 discrepancy of a point set satisfies

L2
2ðPN;sÞ5 ĉcðsÞ ð logNÞs�1

N2
:

Here we just note that the weights only change the constant ĉcðsÞ, but do not change
the convergence rate of the bound (see [4], [24] for more information). Hence, for
any point set PN;s consisting of N points in the s-dimensional unit-cube there is a
constant ~ccðsÞ, depending only on the dimension s, such that

L2
2;ð12ÞðPN;sÞ5~ccðsÞ ð logNÞs�1

N2
:

294 J. Dick and F. Pillichshammer



Now from (7) it follows that there is a constant �ccðsÞ, depending only on the
dimension, such that

F2
2;NðPN;sÞ5�cc2ðsÞ ð logNÞs�1

N2
:

The result follows. &

By keeping track of the constant c0ðsÞ in Corollary 1 we observe that c0ðsÞ is
growing exponentially with the dimension s. Hence, though we obtain the best
possible convergence of Oðð logNÞðs�1Þ=2

N�1Þ of the dyadic diaphony of digital
nets, the upper bound in Corollary 1 is only smaller than 1 if N is exponentially
large in the dimension s. Recall that for any point set PN;s consisting of N elements
we have FNðPN;sÞ4 1, hence only if N is large compared to the dimension s we
can observe the best possible convergence order. One might improve the constant
c0ðsÞ so that it actually decays with the dimension (this was done for the L2

discrepancy, see [4]), but still the logN factor grows exponentially with the
dimension, causing the bound to be greater than one in many practical cases. Note
that for high dimensional problems choosing a number of points N exponentially
large in the dimension is often not feasible.

This problem is addressed in the next section where we consider the case when
N is small compared to the dimension.

4. The Limiting Dyadic Diaphony

In many applications we require high dimensional point sets which are well
distributed. In order to investigate the behaviour of such point sets in very high
dimensions we introduce the concept of limiting dyadic diaphony (see also [24],
where a limiting discrepancy was introduced). Let PN be a point set in ½0; 1Þ1 with
N elements and let PN;s be the projection of PN to the first s coordinates. Then we
have

F2
NðPN;sÞ ¼

1

3s � 1

1

N2

XN�1

l;n¼0

X
k 2Ns

0

k 6¼ 0

�ðkÞwalkðxlÞwalkðxnÞ

0
BBB@

1
CCCA

¼ � 1

3s � 1
þ 1

3s � 1

1

N2

XN�1

l;n¼0

Ys
j¼1

�X1
k¼0

�ðkÞwalkðxl;jÞwalkðxn;jÞ
�

¼ � 1

3s � 1
þ 3s

3s � 1

1

N2

XN�1

l;n¼0

Ys
j¼1

�
1

3
þ 1

3

X1
k¼1

�ðkÞwalkðxl;jÞwalkðxn;jÞ
�
:

ð8Þ
Note that

04
1

3
þ 1

3

X1
k¼1

�ðkÞwalkðxl;jÞwalkðxn;jÞ4 1; ð9Þ
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which follows from [5, Theorem 1] and [3, Eq. (7)]. Hence it follows that

3s

3s � 1

1

N2

XN�1

l;n¼0

Ys
j¼1

�
1

3
þ 1

3

X1
k¼1

�ðkÞwalkðxl;jÞwalkðxn;jÞ
�

is monotonically decreasing with increasing dimension. As it is also bounded from
below by zero it follows that

lim
s!1

3s

3s � 1

1

N2

XN�1

l;n¼0

Ys
j¼1

�
1

3
þ 1

3

X1
k¼1

�ðkÞwalkðxl;jÞwalkðxn;jÞ
�

exists and hence also lims!1 FNðPN;sÞ exists for any point set PN in ½0; 1Þ1.

Definition 3. The limiting dyadic diaphony FN;limðPNÞ of a point set PN in
½0; 1Þ1 is defined by

FN;limðPNÞ :¼ lim
s!1

FNðPN;sÞ;

where PN;s is the projection of PN to the first s coordinates.

Recall that 04FNðPN;sÞ4 1, hence we also have 04FN;limðPNÞ4 1. In the
following we consider two choices of point sets in ½0; 1Þ1.

From [5, Theorem 1] together with [2, Theorem 4.4] it follows that there exists
a digital net Pnet

2m;s, extensible in the dimension s, such that

F2
2mðPnet

2m;sÞ4
3s

3s � 1

1

2m � 1
for all s5 1:

(In [2] it is also shown that such a digital net can be found by computer search
using a component-by-component algorithm, see [2, Algorithm 4.3], where �j ¼ 1
for all j5 1.) Hence for the infinite dimensional digital net Pnet

2m we obtain

F2m;limðPnet
2m Þ4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m � 1

p :

Note that in this case we can only obtain a convergence rate of Oð2�m=2Þ. This is
indeed best possible, as it follows from (8) and (9) that

F2
NðPN;sÞ ¼ � 1

3s � 1
þ 3s

3s � 1

1

N2

XN�1

l;n¼0

Ys
j¼1

�
1

3
þ 1

3

X1
k¼1

�ðkÞwalkðxl;jÞwalkðxn;jÞ
�

5 � 1

3s � 1
þ 3s

3s � 1

1

N2

XN�1

n¼0

Ys
j¼1

�
1

3
þ 1

3

X1
k¼1

�ðkÞwalkðxn;jÞwalkðxn;jÞ
�

¼ � 1

3s � 1
þ 3s

3s � 1

1

N2

XN�1

n¼0

Ys
j¼1

�
1

3
þ 1

3

X1
k¼1

�ðkÞ
�

¼ 1

3s � 1

�
� 1 þ 3s

N

�
: ð10Þ

Therefore we obtain the following theorem.
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Theorem 3. For any point set PN in ½0; 1Þ1 consisting of N elements we
have

FN;limðPNÞ5
1ffiffiffiffi
N

p :

Hence we also obtain the following theorem.

Theorem 4. For a digital net Pnet
2m constructed by a component-by-component

algorithm we have

1ffiffiffiffiffiffi
2m

p 4F2m;limðPnet
2m Þ4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m � 1

p :

In the following we also calculate the expected value of the limiting dyadic
diaphony of a random sample Prand

N ¼ fx0; . . . ; xN�1g. As
Ð 1

0
wal0ðxÞdx ¼ 1 andÐ 1

0
walkðxÞdx ¼ 0 for k> 0 we obtainð
½0;1ÞNs

jSNðk;Prand
N Þj2 dx0 � � � dxN�1 ¼ 1

N2

XN�1

n;m¼0

ð
½0;1Þ2s

walkðxnÞwalkðxmÞdxndxm

¼ 1

N2

XN�1

n¼0

1 ¼ 1

N
:

Therefore we obtain from Definition 1 and Lemma 2 that

EðF2
NðPrand

N;s ÞÞ ¼
ð
½0;1ÞNs

F2
NðPrand

N;s Þdx1 � � � dxN ¼ 1

N
: ð11Þ

Let PN;s be a point set with N elements in ½0; 1Þs. By adding k zeros in the
remaining coordinates of each point we obtain a point set PN;sþk in ½0; 1Þsþk

and
for k ¼ 1 we obtain a point set PN in ½0; 1Þ1. It can easily be verified that

ð3sþ1 � 1ÞF2
N;sþ1ðPN;sþ1Þ ¼ 3ð3s � 1ÞF2

N;sðPN;sÞ þ 2

and therefore

ð3sþk � 1ÞF2
N;sþkðPN;sþkÞ ¼ 3kð3s � 1ÞF2

N;sðPN;sÞ þ 3k � 1 for all k5 0:

Hence the limiting dyadic diaphony for such a point set is given by

F2
N;limðPNÞ ¼

3s � 1

3s
F2
N;sðPN;sÞ þ

1

3s
: ð12Þ

If we consider a point set Prand
N;s;0 where the first s coordinates of each point are

chosen randomly and the remaining coordinates are chosen to be zero, we obtain,
by using (11), that the mean square limiting dyadic diaphony of this point set is
given by

EðF2
N;limðPrand

N;s;0ÞÞ ¼
3s � 1

3s
1

N
þ 1

3s
:

Hence, by choosing all coordinates randomly, we obtain

1ffiffiffiffi
N

p 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðF2

N;limðPrand
N ÞÞ

q
5 EðFN;limðPrand

N ÞÞ5 1ffiffiffiffi
N

p ;
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where the rightmost inequality follows from Theorem 3. We have shown the
following theorem.

Theorem 5. The expected value of the limiting dyadic diaphony of a random
sample Prand

N is given by

EðFN;limðPrand
N ÞÞ ¼ 1ffiffiffiffi

N
p :

5. Discussion

It follows from Theorem 5 that, in terms of the limiting dyadic diaphony,
digital nets do not perform better than an average random sample. This may not
come as a surprise as for very high dimensions we necessarily obtain a quality
parameter t ¼ m for any digital net. On the other hand, Theorem 4 (using a
component-by-component construction algorithm presented in [2]) yields a con-
structive approach to a point set with a limiting dyadic diaphony almost as small as
possible. (Let "> 0. Then, in order to obtain a limiting dyadic diaphony smaller
than ðN � 1Þ�1=2 þ ", it is enough to construct only s ¼ d�2 log 3"e many dimen-
sions as the rest of the coordinates can be chosen to be zero. This follows from
(12). For example, for N ¼ 230 � 109 it would be enough to construct 28 dimen-
sions to obtain a limiting dyadic diaphony of at most 1:01 � ð230 � 1Þ�1=2

and 32
dimensions to obtain a limiting dyadic diaphony of at most 1:001 � ð230 � 1Þ�1=2

.
This is feasible using a component-by-component algorithm.

It follows from (11) that for a finite dimensional random sample Prand
N;s we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EðF2
N;sðPrand

N;s ÞÞ
q

¼ 1ffiffiffiffi
N

p :

Thus it follows thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðF2

N;sðPrand
N;s ÞÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðF2

N;limðPrand
N ÞÞ

q
for all s5 1;

where PN;s is again the projection of PN to the first s coordinates. Hence, the root
mean square dyadic diaphony of a random sample is independent of the dimension.
Corollary 1 on the other hand shows that for digital nets with a large enough number
of points the dyadic diaphony converges faster than the limiting dyadic diaphony.

What we mean by a large enough number of points will be made more precise
in the following. From (10) it follows that

F2
NðPN;sÞ5

1

3s � 1

�
�1 þ 3s

N

�
for any point set PN;s. Hence, for example for 0<N< 3s=2 it follows that

FNðPN;sÞ5
ffiffiffiffiffiffi
1

2N

r
:

Thus only if N is exponentially large in the dimension we can observe the
convergence rate shown in Corollary 1.
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