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Abstract. Let a; b be given, multiplicatively independent positive integers and let �> 0. In a recent
paper jointly with Y. Bugeaud we proved the upper bound expð�nÞ for g.c.d.ðan � 1; bn � 1Þ; shortly
afterwards we generalized this to the estimate g.c.d.ðu� 1; v� 1Þ< maxðjuj; jvjÞ� for multiplicatively
independent S-units u; v2Z. In a subsequent analysis of those results it turned out that a perhaps better
formulation of them may be obtained in terms of the language of heights of algebraic numbers. In fact,
the purposes of the present paper are: to generalize the upper bound for the g.c.d. to pairs of rational
functions other than fu� 1; v� 1g and to extend the results to the realm of algebraic numbers, giving at
the same time a new formulation of the bounds in terms of height functions and algebraic subgroups of
G2

m.
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1. Introduction

Let a; b be given, multiplicatively independent positive integers and let �> 0. In
the paper [2] a nearly best-possible upper bound expð�nÞ for g.c.d.ðan � 1; bn � 1Þ
was proved, as the integer n tends to infinity. In the subsequent paper [7] we
observed (see Remark 1) that the combination of those arguments with [2] yields
a generalization, where an; bn are replaced by multiplicatively independent S-units
u; v2Z. Namely the upper bound g.c.d.ðu� 1; v� 1Þ< maxðjuj; jvjÞ� holds with
finitely many exceptions. (Full details for this can be obtained in a straightforward
way from [2] and [7], as is done in [14] and [5].)

In a subsequent analysis of those results it turned out that a perhaps better
formulation of them may be obtained in terms of the language of heights of
algebraic numbers. This also suggested an extension to general number fields.
Finally, in view of possible applications (like, e.g., the one in [7], where a con-
jecture about the greatest prime factor of ðabþ 1Þðacþ 1Þ was settled) we have
tried to replace u� 1; v� 1 with more general functions.

In fact, the purposes of the present paper are:



(i) to generalize the upper bound for the g.c.d. to pairs of rational functions
other than fu� 1; v� 1g and

(ii) to extend the results to the realm of algebraic numbers, giving at the same
time a new formulation of the bounds in terms of height functions and algebraic
subgroups of G2

m.

More precisely, note that a ‘‘good’’ upper bound for the g.c.d. of two integers
amounts to a lower bound for the height of their ratio, essentially by their max-
imum height. With this in mind, we seek lower bounds for the height hð’ðu; vÞÞ,
where ’ is a rational function and u; v run along S-units in a number field, for a
finite set S. Equivalently, we may let ðu; vÞ run through a finitely generated group
� � G2

mðQÞ. Our main results will give, under suitable assumptions, the expected
lower bounds, with the possible exceptions of the pairs ðu; vÞ contained in a finite
union of proper algebraic subgroups (or translates) of G2

m: these kind of subvari-
eties are certainly relevant in the context; for instance, a pair ðu; vÞ lies in some
proper algebraic subgroup of G2

m if and only if u; v are multiplicatively dependent.
Before stating the results we observe that analogous investigations appear in [1]

in the function field case, and from the quantitative point of view appear in [3] (for
the greatest prime factor of ðabþ 1Þðacþ 1Þðbcþ 1Þ) and [4] (where some results
of [8] are in part quantified).

We immediately proceed to give the formal statements.

Theorem 1. Let � � G2
mðQÞ be a finitely generated group, pðX;YÞ,

qðX;YÞ2Q½X; Y � be non constant coprime polynomials and suppose that not both
of them vanish at ð0; 0Þ. For every positive �, the Zariski closure of the set of
solutions ðu; vÞ2� to the inequality

h

�
pðu; vÞ
qðu; vÞ

�
< hð pðu; vÞ : qðu; vÞ : 1Þ � � � maxfhðuÞ; hðvÞg ð1:1Þ

is the union of finitely many translates of 1-dimensional subtori of G2
m which can

be effectively determined and a finite set.

Note that, since hðx : y : 1Þ5 maxfhðxÞ; hðyÞg, in (1.1) we can replace
hðpðu; vÞ : qðu; vÞ : 1Þ with maxfhðpðu; vÞÞ; hðqðu; vÞÞg (but this would lead to a
weaker statement). Also, we could have replaced (1.1) with the equivalent inequalityX

� 2MK

log� maxfjpðu; vÞj�; jqðu; vÞj�g< � �maxfhðuÞ; hðvÞg; ð1:2Þ

where log�ð�Þ stands for minf0; logð�Þg. (See the beginning of next section for
conventions about valuations.)

Actually, the proof will go through (1.2) and we shall show later the equiva-
lence. Note that the left hand side of (1.2) is an analogue of the g.c.d. (in a sense
which considers also archimedean valuations), and for rational integers it is pre-
cisely its logarithm.

Theorem 1 easily implies the following corollary:

Corollary 1. Let � be as before. Then for multiplicatively independent pairs
ðu; vÞ2� the height of the ratio ðu� 1Þ=ðv� 1Þ verifies the asymptotic equivalence,
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as maxfhðuÞ; hðvÞg ! 1:

hððu� 1Þ=ðv� 1ÞÞ � hð1 : u : vÞ:
Note that, as before, this is (essentially) equivalent to the boundX

� 2MK

log� maxfju� 1j�; jv� 1j�g> �� � maxfhðuÞ; hðvÞg; ð1:3Þ

valid for all � and all multiplicatively independent pairs ðu; vÞ2� apart from a
finite set depending on � and �.

Also, the main results of [2] and [7] are immediate consequences of this
Corollary.

Our most general result is the following

Main Theorem. Let f ðX; YÞ2QðX; YÞ be a rational function and � � G2
mðQÞ

be a finitely generated subgroup. Denote by T1ðX;YÞ; . . . ; TNðX; YÞ the monomials
appearing in the numerator and denominator of f ðX; YÞ and suppose that
12fT1; . . . ; TNg. Then for every �> 0 the Zariski closure of the set of solutions
ðu; vÞ2� of the inequality

hð f ðu; vÞÞ< ð1 � �ÞmaxfhðT1ðu; vÞÞ; . . . ; hðTNðu; vÞÞg ð1:4Þ
is a finite union of translates of proper subtori of G2

m. Also, outside a finite union of
translates of proper subtori of G2

m, one has

hð f ðu; vÞÞ> ð1 � �Þmax
hðuÞ

2 degY f
;

hðvÞ
2 degX f

� �
: ð1:5Þ

We shall now explain the strategy behind our proofs. For instance, to prove our
Main Theorem above, observe first that we can reduce to the case when f is
defined over a number field K and � is the group ðO�

S Þ
2

of points whose coordi-
nates are S-units for a certain fixed finite set of places S � MK . Now, put

f ðX; YÞ ¼ pðX;YÞ
qðX;YÞ, where p; q2K½X;Y � are coprime polynomials; for every point

ðu; vÞ2K2, where f is defined, the height of f ðu; vÞ is hð f ðu; vÞÞ ¼ hð pðu; vÞ :
qðu; vÞÞ. Hence it verifies

hð f ðu; vÞÞ ¼
X
� 2MK

log maxfjpðu; vÞj�; jqðu; vÞj�g

¼
X
� 2MK

logþ maxfjpðu; vÞj�; jqðu; vÞj�g

þ
X
� 2MK

log� maxfjpðu; vÞj�; jqðu; vÞj�g

where logþð�Þ ¼ maxf0; logð�Þg and log�ð�Þ ¼ minf0; logð�Þg. Hence

hð f ðu; vÞÞ5 maxfhðpðu; vÞÞ; hðqðu; vÞÞg þ
X
� 2MK

log� maxfjpðu; vÞj�; jqðu; vÞj�g:

We then need lower bounds for maxfhðpðu; vÞÞ; hðqðu; vÞÞg and forP
� 2MK

log� maxfjpðu; vÞj�; jqðu; vÞj�g. These estimates are the object of
Propositions 1 and 4 and will be proved by using in an essential way the
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Subspace Theorem. While the techniques to prove lower bounds like in
Proposition 1 are well known, to prove upper bounds as in Proposition 4 we
need a new method, introduced in [6] and developed in [2] and [7], which
consists in applying the Subspace Theorem to suitable linear combinations
of S-units and S-integers.

2. Proofs

We start by recalling the definitions:

logþx :¼ maxf0; log xg; log�x :¼ minf0; log xg x> 0:

Note that these functions are nondecreasing.
In the sequel, K will denote a number field, MK the set of places of K, M0 the

subset of finite places; for a finite subset S � MK containing all archimedean
places, let us denote by OS the ring of S-integers and by O�

S its group of units
(S-units). For a place �2MK , let us denote by j � j� the corresponding absolute
value, normalized with respect to K, i.e. in such a way that the product formula
holds, and the absolute Weil height reads HðxÞ ¼ expðhðxÞÞ ¼

Q
� maxf1; jxj�g.

For a point x ¼ ðx1; . . . ; xnÞ2Kn and a place �2MK , put jxj� ¼ maxi jxij�. For a
point x ¼ ðx1 : . . . : xnÞ2Pn�1ðKÞ, put HðxÞ ¼

Q
� maxfjx1j�; . . . ; jxnj�g¼Q

� jxj� (where in the last term the point x is considered in Kn), and call it the
height of the point x; note that it is well defined in view of the product formula.

We begin by stating the so called Subspace Theorem, which represents the
main technical tool in the present proofs.

Subspace Theorem. Let S be a finite set of absolute values of a number field K,
including the archimedean ones. For �2S, let L1;�; . . . ;LN;� be linearly independ-
ent linear forms in N variables, defined over K; let � > 0. Then the solutions
P ¼ ðx1; . . . ; xNÞ2KNnf0g to the inequality

Y
� 2 S

YN
i¼1

jLj;�ðPÞj�
jPj�

<HðPÞ�N��

are contained in finitely many proper subspaces of KN .

For a proof, see [12, 13].
In the sequel, we shall also make use of the following two lemmas:

Lemma 1. Let ~KK be a number field, ’ðTÞ2 ~KKðTÞ be a rational function of
degree d. Then for t2 ~KK,

Hð’ðtÞÞ�HðtÞd;
where the constant appearing implicitely in the symbol � can be effectively
determined.

The proof of Lemma 1 can be found for instance in [10]: it is a very particular
case of Theorem B.2.5 of [10].

Lemma 2. Let fT1ðX; YÞ; . . . ; TMðX; YÞg be a set of non constant monomials in
X; Y and suppose that degX Ti4 d1, degY Ti4 d2 for i ¼ 1; . . . ;M. Suppose also
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that the intersection of the M subgroups defined by the equations TiðX;YÞ ¼ 1 is
zero-dimensional. Let ðu; vÞ2 ðK�Þ2

be an algebraic point of G2
m. Then

maxfhðT1ðu; vÞÞ; . . . ; hðTMðu; vÞÞg5
1

2
max

�
hðuÞ
d2

;
hðvÞ
d1

�
:

Proof. Denote by T � Z2 the set of exponents ði; jÞ appearing in the monomials
T1; . . . ; TM. The group generated by T in Z2 is of rank two by our assumption.
Hence the set T contains two linearly independent points ði1; i2Þ; ðj1; j2Þ. Hence
Xd ¼ ðXi1Yi2Þj2ðXj1Yj2Þ�i2 where d ¼ i1 j2 � i2 j1 6¼ 0. By substituting X;Y by u; v
and considering the corresponding height one obtains

jdj � hðuÞ4 j j2j � hðui1vi2Þ þ ji2j � hðu j1v j2Þ4 2d2 maxfhðui1vi2Þ; hðu j1v j2Þg:

Hence the maximum of the heights of the monomials is bounded from below by
1
2

hðuÞ
d2

. Of course the analogous inequality holds for hðvÞ, thus proving the lemma.
The following proposition is essentially a corollary of Evertse’s paper [9]. For

the readers’ convenience, we give here a complete proof.

Proposition 1. Let S � MK and � � G2
mðQÞ be as above, f ðX; YÞ2

K½X;Y ;X�1; Y�1� be a regular function on G2
m. Denote by T1ðX; YÞ; . . . ;TNðX; YÞ

the monomials in X;X�1;Y ; Y�1 which appear in f and suppose that 12
fT1; . . . ; TNg. Let �> 0 be fixed. Then the solutions ðu; vÞ2� to the inequality

hð f ðu; vÞÞ< ð1 � �ÞmaxfhðT1ðu; vÞÞ; . . . ; hðTNðu; vÞÞg ð2:1Þ

lie in the union of finitely many translates of 1-dimensional subtori of G2
m, which

can be effectively determined, and a finite set. The same conclusion holds for the
solutions to the inequalityX

� 2 S

log�j f ðu; vÞj� < ��maxfhðuÞ; hðvÞg: ð2:2Þ

The idea of the proof is two-fold: first, by an application of the Subspace
Theorem, we obtain that the solutions to the above inequality belong to the union
of finitely many proper subgroups. Then, a Liouville-type argument enables to
bound the degree of the minimal equations satisfied by any solution.

Proof of Proposition 1. We shall first prove our contention for the solutions to
the inequality (2.1). Let us write

f ðX; YÞ ¼
X

ði; jÞ 2 T

ai; jX
iYj ¼ b1T1 þ � � � þ bNTN

where T �Z2 is a finite set of cardinality N and, for ði; jÞ2T, ai;j2K� are
nonzero algebraic numbers in K ordered as b1; . . . ; bN .

We first treat the (easier) case where T is contained in a line of Z2. In this
case, there exists a rational function ’ðTÞ2K½T ; T�1� and a pair ði0; j0Þ such that
identically

f ðu; vÞ ¼ ’ðui0v j0Þ:
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Also, for ðu; vÞ2G2
mðKÞ, degð’Þ � hðui0vj0Þ5 maxfhðT1ðu; vÞÞ; . . . ; hðTNðu; vÞÞg.

So, by Lemma 1, there exists a computable constant c such that for all ðu; vÞ2G2
mðKÞ

hð f ðu; vÞÞ5 maxfhðT1ðu; vÞÞ; . . . ; hðTNðu; vÞÞg � c:

Then, if inequality (2.1) holds, the above lower bound gives

maxfhðT1ðu; vÞÞ; . . . ; hðTNðu; vÞÞg4 c=�:

This implies that the pair ðu; vÞ is contained in a finite translate of a subtorus of G2
m

defined by an equation of the form

ui0v j0 ¼ �

where �2K is an algebraic number with hð�Þ4 c=�. This implies our contention
in that particular case.

We now consider the generic case where the subset T � Z2 is not contained in
a line.

As we have already remarked, we can choose a finite set S of places of K
containing the archimedean ones such that the subgroup � is contained in ðO�

S Þ
2
.

Now, for each solution ðu; vÞ2 ðO�
S Þ

2
of the inequality (2.1) and each �2S, let

kðu; v;�Þ be an index in f1; . . . ;Ng for which the quantity jTkðu; vÞj� is maximal.
By partitioning the set of solutions of inequality (2.1) in at most N subsets, and

working separately with each subset, we can suppose that for each �2S,
kðu; v;�Þ ¼: k� does not depend on ðu; vÞ.

Let us define, for each �2S, N linearly independent linear forms in T1; . . . ;TN
as follows: for i 6¼ k�, put Li;� ¼ Ti, while for i ¼ k�, put

Lk�;� ¼ b1T1 þ � � � þ bNTN :

Note that for each �2S, the above defined linear forms are indeed independent,
since all coefficients bi are nonzero.

For a solution ðu; vÞ2 ðO�
S Þ

2
of the inequality (2.1) we put P ¼ Pðu; vÞ ¼

ðT1ðu; vÞ; . . . ; TNðu; vÞÞ2ON
S , so that for each �2S we have Lk�;�ðPÞ ¼ f ðu; vÞ.

Note that, by Lemma 2 and the assumption that T is not contained in a line, the
height of P tends to infinity on every infinite sequence of points ðu; vÞ2K2. We
now consider the double productY

� 2 S

YN
i¼1

jLi;�ðPÞj�
jPj�

; ð2:3Þ

an application of the Subspace Theorem to the above double product will give
what we want. We note that, since the coordinates of P are S-integers (in fact even
S-units), the quantity

Q
� 2 S jPj� equals the height HðPÞ of P. We can then rewrite

the above double product asY
� 2 S

YN
i¼1

jLi;�ðPÞj�
jPj�

¼ HðPÞ�N �
� Y
� 2 S

j f ðu; vÞj�
�

�
� Y
� 2 S

YN
i¼1

jTiðu; vÞj�
�
�
Y
� 2 S

jTk�;�ðu; vÞ
�1j�: ð2:4Þ
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Clearly, the inequality
Q

�2 S j f ðu; vÞj�4Hð f ðu; vÞÞ holds and by assumption

(2.1) we also have Hð f ðu; vÞÞ< maxfHðT1ðu; vÞÞ; . . . ;HðTNðu; vÞÞg1��
. In turn,

since by assumption 12fT1; . . . ;TNg, the height ofP is larger then the maximum of
the heights of its coordinates. Then from (2.1) it follows that Hð f ðu; vÞÞ<HðPÞ1��

.
Also the third factor in (2.4) equals 1 since all the Tiðu; vÞ are S-units. The last

factor
Q

� 2 S jTk�;�ðu; vÞj� is equal to the height HðPÞ, by the choice of the k�.
Hence the double product (2.3) can be bounded as

Y
� 2 S

YN
i¼1

jLi;�ðPÞj�
jPj�

4HðPÞ�N��:

The Subspace Theorem, applied with � ¼ �, asserts that the points P arising from
the solutions ðu; vÞ to the inequality (2.1) lie in finitely many hyperplanes. Then we
obtain finitely many equations of the form  jðu; vÞ ¼ 0 ( j ¼ 1; . . . ;M), such that:
(i)  jðX; YÞ ( j ¼ 1; . . . ;M) are irreducible polynomials in �KK½X; Y �; (ii) all but
finitely many solutions of (2.1) satisfy one of these equations and (iii) each such
equation has infinitely many solutions in S-units ðu; vÞ2 ðO�

S Þ
2
. By a Theorem of

Lang [10, Theorem 7.3, p. 207], each equation  jðX; YÞ ¼ 0 defines a translate of a
proper subtorus. Every translate of a proper subtorus is either a point or a curve
defined by an equation of the form

UpVq ¼ w ð2:5Þ
for coprime p; q and nonzero w2K� . Our next goal is to show that the pairs ðp; qÞ
such that infinitely many solutions of ð2:1Þ satisfy the above equation (2.5) can be
effectively determined.

Fix such a translate, given by (2.5), and suppose it contains infinitely many
solutions ðu; vÞ2 ðO�

S Þ
2

to the inequality (2.1). For each ðu; vÞ2 ðO�
S Þ

2
, write

u ¼ tq; v ¼ s�p

where t; s lie in a fixed number field ~KK. The relation upvq ¼w can be rewritten as
ðt=sÞpq ¼ w; so that ðt=sÞp is a q-th root of w. Select one such root w. We obtain the
parametrization

u ¼ tq

v ¼ �wwt�p

(
ð2:6Þ

Then, using the above parametrization, we can write

f ðu; vÞ ¼ f ðtq; �wwt�pÞ ¼: ’ðtÞ; ð2:7Þ
for a rational function ’ðtÞ2 ~KKðtÞ.

Note that in our case the function ’ðtÞ in (2.7) can be written as

’ðtÞ ¼
X

ði;jÞ 2 T

ai; j�ww
jtqi�pj ¼

X
l 2 Z

clt
l

where, for every l2Z,

cl ¼
X

ði; jÞ 2 T : qi�pj¼l

ai;j�ww
j;
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the last sum running over those pairs ði; jÞ2T with qi� pj ¼ l. Since the degree d
of ’ðtÞ is at least maxfjlj : cl 6¼ 0g, Lemma 1 implies that

hð f ðu; vÞÞ ¼ hð’ðtÞÞ5 maxfjlj : cl 6¼ 0ghðtÞ þ Oð1Þ
Now, if l ¼ qi� pj, for a pair ði; jÞ2T, the height of the corresponding monomial
uiv j is jljhðtÞ þ Oð1Þ. Hence, if all the coefficients cl, for l of the form l ¼ qi� pj
for at least one ði; jÞ2T , are nonzero, we have the inequality

hð f ðu; vÞÞ5 maxfhðT1ðu; vÞÞ; . . . ; hðTNðu; vÞÞg þ Oð1Þ
which contradicts (2.1) for large values of maxfhðT1ðu; vÞÞ; . . . ; hðTNðu; vÞÞg
(recall that by Lemma 2 such a maximum does tend to infinity, so we indeed
obtain a contradiction with the hypothesis that the given subgroups contains infi-
nitely many solutions of (2.1)). Hence some cl must vanish, which means that,
after the substitution (2.6), some cancellation occurs among the monomials
T1; . . . ; TN . This fact implies that there exist two distinct pairs of exponents
ði; jÞ; ði0; j0Þ 2T such that qi� pj ¼ qi0 � pj0, so ðp; qÞ verifies a (non trivial) equa-
tion of the form

qði� i0Þ � pðj� j0Þ ¼ 0:

Each such equation has exactely two solutions in coprime integers p; q2Z, which
can be effectively determined. This proves the first contention in Proposition 1.

We shall now obtain the same conclusion under assumption (2.2). Chosing
linear forms as before, we arrive again at equality (2.4). As we have already
remarked, the third factor equals 1, since Tiðu; vÞ are S-units for all i ¼ 1; . . . ;N.
The product of the second and fourth factors in (2.4) can be rewritten as�Y

� 2 S

j f ðu;vÞj�
�Y
� 2 S

jTk�;�ðu;vÞ
�1j�

¼
�Y
� 2 S

minf1; j f ðu;vÞj�g
�
�
�Y
� 2 S

maxf1; j f ðu;vj�Þg
�
�
Y
� 2 S

jTk�;�ðu;vÞ
�1j�:

Clearly, for every �2S,

maxf1; j f ðu; vÞj�g4 maxf1; jNj�g � maxfjb1j�; . . . ; jbN j�g � jTk�;�ðu; vÞj�;
so we have � Y

� 2 S

maxf1; j f ðu; vÞj�g
� Y
� 2 S

jTk�;�ðu; vÞ
�1j� ¼ Oð1Þ:

Now from (2.4) we obtain (recall that the third factor in (2.4) equals 1)

Y
� 2 S

YN
i¼1

jLi;�ðPÞj�
jPj�

� HðPÞ�N �
Y
� 2 S

minf1; j f ðu; vÞj�g

where the constant implicit in the symbol � does not depend on ðu; vÞ. The
inequality (2.2) readsY

� 2 S

minf1; j f ðu; vÞj�g< maxfHðuÞ;HðvÞg��:
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Clearly, HðPÞ4 maxfHðuÞ;HðvÞgD for a positive constant D (which can be taken
to be 2 maxfjij þ j jj : ði; jÞ2Tg). Then from the last displayed inequality we
obtain

Y
� 2 S

YN
i¼1

jLi;�ðPÞj�
jPj�

� HðPÞ�N��=D:

The Subspace Theorem, applied with � ¼ �=ð2DÞ, say, asserts that all points
Pðu; vÞ are contained in the union of finitely many hyperplanes. The final argument
to obtain the conclusion is exactly the same as in the previous case, so we do not
repeat it.

Our next goal is to prove an ‘‘explicit’’ version of Corollary 1, which will be
used in the subsequent proofs of Theorem 1 and the Main Theorem. Corollary 1
can be refrased by saying that if the ratio ðu� 1Þ=ðv� 1Þ has ‘‘small’’ height,
where u and v belong to a given finitely generated multiplicative group, then, apart
from finitely many exceptions, the pair ðu; vÞ verifies a multiplicative dependence
relation, i.e. a relation of the form

up �vq ¼ 1

for a vector ð p; qÞ2Z2nfð0; 0Þg. In other words, the point ðu; vÞ2G2
m belongs to a

one-dimensional subgroup. Note that if u and v are not both roots of unity, then
vectors ðp; qÞ2Z2 such that the above relation holds form a rank-one subgroup.
The following Proposition 2 quantifies the above mentioned Corollary, in the sense
that it permits to explicitely obtain the dependence relations satisfied by all but
finitely many exceptions to the inequality (1.3).

Proposition 2. Let K be a number field, S a finite set of places as before
and �> 0 a real number. All but finitely many solutions ðu; vÞ2 ðO�

S Þ
2
to the

inequality X
� 2MK

log� maxfju� 1j�; jv� 1j�g< �� � maxfhðuÞ; hðvÞg ð2:8Þ

are contained in finitely many 1-dimensional subgroups of G2
m which can be

effectively determined. Namely they are defined by an equation of the form
up ¼ vq for coprime integers p; q with maxfjpj; jqjg4��1.

Proof of Proposition 2. Let us suppose that ðui; viÞ is an infinite sequence in
ðO�

S Þ
2

verifying the above inequality (2.8). We shall prove the existence of finitely
many pairs ðp; qÞ2Z2nfð0; 0Þg such that for all but finitely many indices, ui and
vi verify one dependence relation of the form upvq ¼ 1 (in particular for all but
finitely many indices, ui; vi are multiplicatively dependent). We shall later show
how to bound the size of p and q. In the sequel, we will drop the index i for
convenience of notation.

First of all, notice that by Ridout’s theorem (the case N ¼ 2 of the above
Subspace Theorem) for all but finitely many ðu; vÞ2� we haveY

� 2 S

minf1; ju� 1j�g>HðuÞ��; and
Y
� 2 S

minf1; jv� 1j�g>HðvÞ��:
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Hence we clearly have that except for finitely many pairs ðu; vÞ2 ðO�
S Þ

2

X
� 2 S

log� maxfju� 1j�; jv� 1j�g> � �

2
� maxfhðuÞ; hðvÞg;

so all but finitely many solutions of (2.8) also verifyX
�2MKnS

log� maxfju� 1j�; jv� 1j�g¼
X

� 2MKnS
log maxfju� 1j�; jv� 1j�g

< � �

2
� maxfhðuÞ; hðvÞg: ð2:80Þ

We can suppose (since the expressions (2.8), (2.80) are symmetric in u; v) that
HðvÞ5HðuÞ. Let us denote by Sþ (resp. S�), the subset of S made up of those
absolute values � such that jvj� > 1 (resp. jvj�41). Since there are only finitely
many choices for the pair Sþ; S�, we can partition the solutions in a finite number
of subsets for which Sþ and S� are constant. From now on, we shall work sepa-
rately with each subset.

Now the proof follows the same lines as [7]. Let ðu; vÞ be a pair in ðO�
S Þ

2
,

satisfying inequality (2.80). We write, for a positive integer j,

zjðu; vÞ ¼ zj :¼
u j � 1

v� 1
: ð2:9Þ

Note that

zj ¼ z1 � ðu j�1 þ � � � þ uþ 1Þ: ð2:10Þ

Fix an integer h> 0 and consider the identity

1

v� 1
¼ 1

v
� 1

1 � v�1
¼ 1

v
1 þ v�1 þ � � � þ v�hþ1 þ v�h

1 � v�1

� �
:

Let us fix a second integer k> 0. Then for j2f1; . . . ; kg we obtain, on multiplying
by u j � 1 in the above identity,

zj ¼ ðu j � 1Þ � v�1 þ v�2 þ � � � þ v�h þ v�h�1

v� 1

� �
:

For �2Sþ, we then derive the inequality (in fact an equality)

jzj � u jv�1 � � � � � u jv�h þ v�1 þ � � � þ v�hj�4 ju j � 1j� �
jvj�h�1

�

j1 � vj�
: ð2:11Þ

We put N ¼ hk þ hþ k; for convenience we shall write vectors in KN as

x ¼ ðx1; . . . ; xNÞ ¼ ðz1; . . . ; zk; y0;1; . . . ; y0;h; . . . ; yk;1; . . . ; yk;hÞ:

In this notation we choose linear forms with integral coefficients as follows. For
j ¼ 1; . . . ; k, and �2Sþ, we put

Lj;� ¼ zj þ y0;1 þ � � � þ y0;h � yj;1 � � � � � yj;h;
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while, for ð j; �Þ 2= f1; . . . ; kg� Sþ we put

Lj;� ¼ xj:

Observe that for each �2S, the linear forms are indeed linearly independent. For a
given pair ðu; vÞ we also set

P ¼ Pðu; vÞ ¼ ðz1; . . . ; zk; v
�1; . . . ; v�h; uv�1; . . . ; uv�h; . . . ; ukv�1; . . . ; ukv�hÞ:

Note that all the coordinates of P apart from the first k of them are S-units.
To apply the Subspace Theorem we have to estimate the double productQN

j¼1

Q
� 2 S

jLj;�ðPÞj�
jPj�

at points P ¼ Pðu; vÞ. First note that for j> k,Y
� 2 S

jLj;�ðPÞj� ¼ 1

since all the involved linear forms are projections on the coordinates, which are
S-units. Then

YN
j¼kþ1

Y
� 2 S

jLj;�ðPÞj�
jPj�

¼
Y
� 2 S

jPj�Nþk
� : ð2:12Þ

Let now j be an index in f1; . . . ; kg. For �2S�, we recall that Lj;�ðPÞ ¼
zj ¼ ðu j � 1Þ=ðv� 1Þ, so in particular

jLj;�ðPÞj�
jPj�

4
ju j � 1j�
jv� 1j�

� jPj�1
� : ð2:13Þ

For �2Sþ we use ð2:11Þ which gives, since Lj;�ðPÞ coincides with the left hand
side term of ð2:11Þ,

jLj;�ðPÞj�4 ju j � 1j� �
jvj�h

�

j1 � vj�
so, since ju j � 1j�4 maxf1; j2j�g � maxf1; juj�g

j
,

jLj;�ðPÞj�
jPj�

4 maxf1; j2j�g � maxf1; juj�g
j � 1

j1 � vj�
� jvj�h

� � jPj�1
� : ð2:14Þ

Then, from (2.13), (2.14), we haveYk
j¼1

Y
� 2 S

jLj;�ðPÞj�
jPj�

4
�Yk

j¼1

Y
� 2 S

maxf1; j2j�g � maxf1; juj�g
j � 1

j1 � vj�
� jPj�1

�

�

�
� Y
� 2 Sþ

jvj�h
�

�k

:

Now, using the fact that
Q

� 2 S maxf1; j2j�g4Hð2Þ ¼ 2 (and the analogue esti-
mates for the products of maxf1; juj�g and 1

j1�vj�
), and using also the equality

HðvÞ ¼
Q

� 2 Sþ jvj�, we obtainYk
j¼1

Y
� 2 S

jLj;�ðPÞj�
jPj�

4HðvÞ�hkð2HðuÞÞ1þ���þk
Hð1 � vÞk

Y
� 2 S

jPj�k
� : ð2:15Þ
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Finally, from (2.12), (2.15) we obtainYN
j¼1

Y
� 2 S

jLj;�ðPÞj�
jPj�

4
� Y
� 2 S

jPj�Nþk
�

�
HðvÞ�hkð2HðuÞÞk

2

Hð1 � vÞk
Y
� 2 S

jPj�k
� :

Observe that the product of the first and last factors can be written as� Y
� 2 S

jPj�
��N

¼ HðPÞ�N �
�Y
� 62 S

jPj�
�N

:

Hence we can rewrite the above inequality asYN
j¼1

Y
� 2 S

jLj;�ðPÞj�
jPj�

4HðPÞ�N

�Y
� 62 S

jPj�
�N

HðvÞ�hkð2HðuÞÞk
2

Hð1 � vÞk: ð2:16Þ

Our next goal will be to estimate the quantity
Q

� 62 S jPj�. Now, observe that the
only coordinates which are not S-integers are the first k, i.e. z1; . . . ; zk, and, for
j ¼ 1; . . . ; k,

zj ¼
u j � 1

v� 1
¼ z1 � ðu j�1 þ u j�2 þ � � � þ uþ 1Þ;

also, the factor u j�1 þ � � � þ uþ 1 is an S-integer, so the only contribution comes
from the first factor z1 ¼ ðu� 1Þ=ðv� 1Þ; hence we have the boundY

� 62 S

jPj�4
Y
� 62 S

max

�
1;

���� u� 1

v� 1

����
�

�
:

Now, we haveY
� 62 S

max

�
1;

���� u� 1

v� 1

����
�

�
¼

Y
�62 S

1

jv� 1j�
� maxfju� 1j�; jv� 1j�g

4Hðv� 1Þ
Y
�62 S

maxfju� 1j�; jv� 1j�g;

we now use the hypothesis that our pairs ðu; vÞ satisfy (2.80) so thatY
� 62 S

maxfju� 1j�; jv� 1j�g<HðvÞ��=2;

so finally Y
� 62 S

jPj�4Hðv� 1Þ � HðvÞ��=2:

Using the above estimate and the fact that Hð1 � vÞ4 2HðvÞ, we can rewrite
(2.16) as

YN
j¼1

Y
� 2 S

jLj;�ðPÞj�
jPj�

4HðvÞ�hk
HðPÞ�N

HðvÞð1��=2ÞN
2Nð2HðuÞÞk

2

ð2HðvÞÞk

4HðvÞ�hk
HðPÞ�N

HðvÞð1��=2ÞN
2Nð2HðvÞÞk

2þk: ð2:17Þ
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Since N ¼ hk þ hþ k, the exponent of HðvÞ can be estimated (at least when
k52), by�

1 � �

2

�
N þ k2 þ k � hk< � �

2
hk þ hþ k þ k2 þ k4 � �

2
hk þ hþ 2k2:

By choosing k> 4
� we obtain that for large enough h (in particular h> 2k2 þ 1),

�hk=2 � h� 2k2 ¼: �0 > 0. Choose k, h in such a way. From (2.17) we then obtain
that the double product is bounded as

YN
j¼1

Y
� 2 S

jLj;�ðPÞj�
jPj�

4HðPÞ�N
HðvÞ��0 � 2Nþkþk2

: ð2:18Þ

Our next goal, in view of the application of the Subspace Theorem, will be to
compare the height of P with the height of v. A rough estimate gives

HðPÞ4HðuÞkHðvÞhHð1 � vÞ4HðuÞk2HðvÞhþ1 4HðvÞhþkþ2

at least for HðvÞ5 2, which we may suppose. Hence

HðvÞ��0 4HðPÞ
��0

hþkþ2

so that, for � :¼ �0

hþkþ3
and large values of HðvÞ, we obtain from (2.18)

YN
j¼1

Y
� 2 S

jLj;�ðPÞj�
jPj�

4HðPÞ�N��:

Now we are able to apply the Subspace Theorem, which implies that there exist
finitely many hyperplanes containing all the points P. Choose one such hyper-
plane, containing infinitely many points P. Then we obtain an equation of the kind

�k
uk � 1

v� 1
þ � � � þ �1

u� 1

v� 1
þ
X
i; j

�i; ju
jvi ¼ 0; ð2:19Þ

where the sum runs over the pairs ði; jÞ2f�1; . . . ;�hg�f0; . . . ; kg. Here
�1; . . . ; �k and the �i; j are elements of the number field K, not all zero. By multi-
plying by vhðv� 1Þ we obtain that the point ðu; vÞ lies in the affine curve given by
the equation

�kV
hðUk � 1Þ þ � � � þ �1V

hðU � 1Þ þ ðV � 1Þ
X
i; j

�i; jU
jVhþi ¼ 0:

We pause to show that this equation is non trivial, so it defines in fact a curve. If
the left hand side term vanishes identically, then the binomial ðV � 1Þ would divide
�kV

hðUk � 1Þ þ � � � þ �1V
hðU � 1Þ, which implies that �1 ¼ � � � ¼ �k ¼ 0. But

then all coefficients �i; j would vanish, contrary to the assumption.
In view of (2.19), infinitely many points ðu; vÞ lie in the curve defined by the

above equation. Then, by the mentioned theorem of Lang [11, Thm. 7.3, p. 207],
all such points lie in the union of finitely many translates of subtori of G2

m;
every translate of a proper subtorus is either a point or a curve defined by an equa-
tion of the form (2.5) for coprime p, q. The remaining part of the proof is similar to
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the last part of the proof of Proposition 1: Fix such a translate and suppose it
contains infinitely many solutions ðu; vÞ2 ðO�

S Þ
2

to the inequality (2.8). For
each ðu; vÞ2 ðO�

S Þ
2
, write

u ¼ tq; v ¼ s�p

where t; s lie in a fixed number field ~KK. As in the proof of Proposition 1, we arrive
at the parametrization (2.6). Then

u� 1

v� 1
¼ tq � 1

�wwt�p � 1
¼: ’ðtÞ; ð2:20Þ

say.
Now, we distinguish four cases:

First Case: pq> 0 and �wwq 6¼ 1. In this case the rational function ’ in (2.20),
which can be written as ’ðtÞ ¼ �tp � tq�1

tp��ww, has degree jpj þ jqj (note that the
numerator and denominator are coprime polynomials in t, or in t�1). So, in this
case, we have Hððu� 1Þ=ðv� 1ÞÞ�HðuÞHðvÞ, i.e.

hððu� 1Þ=ðv� 1ÞÞ5 hðuÞ þ hðvÞ þ Oð1Þ
where the implied constant in the Oð1Þ term does not depend on u; v. Since

hððu�1Þ=ðv�1ÞÞ¼ hðu�1 : v�1Þ
4hðuÞþhðvÞþ

X
� 2MK

log�maxfju�1j�; jv�1j�gþOð1Þ;

we obtain from the above inequalities and from (2.8) a uniform bound for the
maxfhðuÞ; hðvÞg, contrary to the assumption that the given subgroup contains
infinitely many solutions to the inequality (2.8).

Second Case: pq> 0 and �wwq ¼ 1. First of all, note that in this case w ¼ �wwq ¼ 1,
so that the dependence relation (2.5) takes the form upvq ¼ 1. Also, the rational
function ’ðtÞ has degree jpj þ jqj � 1, since the polynomials tpðtq � 1Þ, and tp � �ww
have a greatest common divisor of degree one. Then from the parametrization
(2.6), we clearly obtain

hð1 : u� 1 : v� 1Þ4 ðjpj þ jqjÞhðtÞ þ Oð1Þ
and from Lemma 1

hððu� 1Þ=ðv� 1ÞÞ5 ðjpj þ jqj � 1ÞhðtÞ:
Since we always have

hððu�1Þ=ðv�1ÞÞ¼ hðu�1 : v�1Þ
4hð1 : u�1 : v�1Þþ

X
� 2MK

log�maxfju�1j�; jv�1j�g

we deduce

ðjpj þ jqj � 1ÞhðtÞ4 ðjpj þ jqjÞhðtÞ þ
X
� 2MK

log� maxfju� 1j�; jv� 1j�g þ Oð1Þ
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from which

�
X
� 2MK

log� maxfju� 1j�; jv� 1j�g4 hðtÞ þ Oð1Þ:

Since hðtÞ ¼ maxfhðuÞ; hðvÞgðmaxfjpj; jqjgÞ�1
, the above inequality can be

satisfied by infinitely many solutions of (2.8) only if maxfjpj; jqjg4 ��1, as
wanted.

Third Case: pq< 0 and �wwq 6¼ 1. Now, the rational function ’ has degree
maxfjpj; jqjg, so, by Lemma 1, we have Hððu� 1Þ=ðv� 1ÞÞ �maxfHðuÞ;HðvÞg,
i.e.

hðu� 1 : v� 1Þ5 maxfhðuÞ; hðvÞg þ Oð1Þ: ð2:21Þ
Note that in this case it follows from the parametrization (2.6) that u and v are,
apart from a constant �ww, positive powers of a same element t (or t�1). From this
fact it easily follows that

hð1 : u : vÞ ¼ maxfhðuÞ; hðvÞg þ Oð1Þ: ð2:22Þ
Using again the inequality

hðu� 1 : v� 1Þ4 hð1 : u : vÞ þ
X
� 2MK

log� maxfju� 1j�; jv� 1j�g

we obtain from (2.21) and (2.22)

maxfhðuÞ;hðvÞgþOð1Þ4hðu�1 : v�1Þ
4 maxfhðuÞ;hðvÞgþ

X
� 2MK

log�maxfju�1j�; jv�1j�g:

Then from (2.8) we obtain, as before, a uniform upper bound for the
maxfhðuÞ; hðvÞg, contrary to the assumption that our subgroup contains infinitely
many solutions of (2.8).

Fourth Case: pq< 0 and �wwq ¼ 1. Then from the parametrization ð2:6Þ we
obtain, as in the Second Case, upvq ¼ 1, i.e. a multiplicative dependence relation
as wanted.

Now, since p; q are coprime and of opposite sign, the rational function ’ðtÞ ¼
ðtq � 1Þ=ðt�p � 1Þ has degree d ¼ maxfjqj � 1; jpj � 1g. Then the Lemma 1
gives

hððu� 1Þ=ðv� 1ÞÞ5 maxfjqj � 1; jpj � 1ghðtÞ þ Oð1Þ
¼ ðmaxfjqj; jpjg � 1ÞhðtÞ þ Oð1Þ

On the other hand, the above estimates and (2.8) give

hðu� 1 : v� 1Þ4 maxfjqj; jpjghðtÞ � �maxfjqj; jpjghðtÞ;
so that we finally obtain

ðmaxfjqj; jpjg � 1ÞhðtÞ þ Oð1Þ4 maxfjqj; jpjghðtÞ � �maxfjqj; jpjghðtÞ
which gives maxfjqj; jpjg4 ��1, as wanted.
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Notice that we have also proved that, in the only cases when infinitely many so-
lutions can occur (i.e. the second and fourth cases), the constant w in (2.5) equals 1.
In other terms, the minimal dependence relation has coprime exponents, i.e. the
infinite families of solutions of (2.8) are contained in finitely many connected one-
dimensional subgroups.

From Proposition 2 we easily obtain the following statement:

Proposition 3. Let S, as before, be a finite set of places of a number field K
containing the archimedean ones, �; � be nonzero elements of K, �> 0. The
solutions ðu; vÞ2 ðO�

S Þ
2
to the inequalityX

� 2MK

log� maxfju� �j�; jv� �j�g< �� � maxfhðuÞ; hðvÞg

are contained in finitely many translates of proper subgroups of G2
m. Those of

dimension one can be effectively determined.

Proof. Fix �; �2K � . By enlarging S, we can suppose that they both are
S-units. Now, note that X

� 2MK

log� maxfju� �j�; jv� �j�g

¼
X
� 2MK

log� maxfju��1 � 1j�; jv��1 � 1j�g þ Oð1Þ:

Then Proposition 2 implies that apart from finitely many exceptions, the pairs
ðu��1; v��1Þ are contained in finitely many one-dimensional subgroups, which
can be effectivley determined; this in turn implies that the pairs ðu; vÞ, apart from
finitely many of them, are contained in finitely many translates of one-dimensional
subgroups, which can be effectively determined.

The following Proposition represents a particular but crucial case of
Theorem 1.

Proposition 4. Let rðXÞ; sðXÞ2 �QQ½X� be two non zero polynomials. Then for
every �> 0, all but finitely many solutions ðu; vÞ2 ðO�

S Þ
2
to the inequalityX

� 2MKnS
log� maxfjrðuÞj�; jsðvÞj�g< �� � ðmaxfhðuÞ; hðvÞgÞ ð2:23Þ

are contained in finitely many translates of one-dimensional subgroups of
G2

m, which can be effectively determined. Moreover, if rðXÞ and sðXÞ do not
both vanish at 0, the same conclusion holds for the solutions to the
inequalityX

� 2MK

log� maxfjrðuÞj�; jsðvÞj�g< �� � ðmaxfhðuÞ; hðvÞgÞ ð2:24Þ

Proof. We begin by observing that the points ðu; vÞ such that rðuÞ � sðvÞ ¼ 0 are
contained in a finite union of translates of proper subtori; hence we will tacitely
disregard these pairs. Also, for each constant C, the pairs ðu; vÞ2 ðO�

S Þ
2

such that
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maxfhðuÞ; hðvÞg4C are finite in number, so they certainly lie in finitely many
translates of proper subtori. For this reason, we can restrict our attention to ‘‘large’’
solutions of the inequality (2.23) or (2.24). Let us write

rðXÞ ¼ r0X
aðX � �1Þa1 � � � ðX � �mÞam ;

sðXÞ ¼ s0X
bðX � �1Þb1 � � � ðX � �nÞbn ;

here a and b are non-negative integers with ab ¼ 0, a1; . . . ; am; b1; . . . ; bn are
positive integers and �1; . . . ; �m, (resp. �1; . . . ; �n) are pairwise distinct nonzero
algebraic numbers in a number field K. We shall first prove the first part of the
Proposition, so we shall estimate the relevant sum for � running in the complement
of S. Let, for each place �2MKnS, �� be the minimum of the set

fj�i � �jj�; for ði; jÞ2f1; . . . ;mg�f1; . . . ;mg; ði 6¼ jÞg
[ fj�i � �jj�; for ði; jÞ2f1; . . . ; ng�f1; . . . ; ng; ði 6¼ jÞg
[ fj�1j�; . . . ; j�mj�; j�1j�; . . . ; j�nj�g:

Clearly, �� > 0 for all � and �� ¼ 1 for all but finitely many places. Let us divide
the places of MKnS in two classes A and B: namely,

A :¼
�
�2MK j there exist i2f1; . . . ;mg and j2f1; . . . ; ng

such that ju� �ij� <
��
2

and jv� �jj� <
��
2

�

while B is its complement in the subset of MKnS composed by the places � such
that maxfjrðuÞj�; jsðvÞj�g< 1. Then the left hand side of (2.23) becomesX

� 2MKnS
log�ðmaxfjrðuÞj�; jsðvÞj�gÞ ¼

X
� 2A

log�ðmaxfjrðuÞj�; jsðvÞj�gÞ

þ
X
� 2B

log�ðmaxfjrðuÞj�; jsðvÞj�gÞ:

The second term is simply bounded independently of u; v byX
� 2B

log�ðmaxfjrðuÞj�; jsðvÞj�gÞ5 � hðr0Þ � hðs0Þ

þ maxfdeg r; deg sg
X
� 2B

log� ��
2
: ð2:25Þ

To estimate the first term, let us notice that for each �2A there exists exactly one
pair ði�; j�Þ2f1; . . . ;mg�f1; . . . ; ng such that ju� �i� j� <

��
2
, and jv� �j� j� <

��
2
.

Then, for each such place �, we can bound

log� maxfjrðuÞj�; jsðvÞj�g5 log�jr0j� þ log�js0j� þ maxfdeg r; deg sg log� ��
2

þ log� maxfju� �i� j
ai�
� ; jv� �j� j

bj�
� g; ð2:26Þ
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where we have used the fact that juja� ¼ jvjb� ¼ 1 for �2MKnS. Again the
quantity

�
X
� 2A

�
log�jr0j� þ log�js0j� þ maxfdeg r; deg sg log� ��

2

�

is bounded independently of u; v simply by hðr0Þ þ hðs0Þ þ maxfdegðrÞ; degðsÞgP
� 2A log� ��

2
. It remains to estimate the termX

� 2A

log� maxfju� �i� j
ai�
� ; jv� �j� j

bj�
� g

in the quantity appearing in (2.26). This can be rewritten asX
ði; jÞ 2 f1;...;mg�f1;...;ng

X
� 2Ai; j

log� maxfju� �ijai�� ; jv� �jjbj�� g

where we define Ai; j to be the subset of A composed of the places � for which
ði�; j�Þ ¼ ði; jÞ. Proposition 3, applied with �=ð2ðdeg rÞðdeg sÞÞ instead of �, gives
for each pair ði; jÞ the upper boundX
� 2Ai; j

log�maxfju��ij�;jv��jj�g5� �

2ðdegrÞðdegsÞ �maxfhðuÞ;hðvÞg ð2:27Þ

for ðu; vÞ2 ðO�
S Þ

2
outside a finite union of translates of proper subgroups, of

which those of dimension one can be effectively determined. Then, outside
the union of such exceptional subvarieties, we get from (2.25), (2.26) and
(2.27),X

� 2MKnS
log� maxfjrðuÞj�; jsðvÞj�g5 � �

2
maxfhðuÞ; hðvÞg þ Oð1Þ: ð2:28Þ

This clearly implies the first part of Proposition 4. We shall now estimate the
relevant sum for � running over the places in S. Recall that by hypothesis one
at least between the exponents a and b vanishes. Suppose that b ¼ 0, say. We shall
apply Ridout’s theorem (i.e. the case N ¼ 2 of the Subspace Theorem) to give a
lower bound for log�jsðvÞj�, valid for all but finitely many v (of course, in our
situation, we could also apply the stronger Baker’s bound for linear forms in
logarithms). For each �2S, we denote by j�2f1; . . . ; ng an index such that for
all j ¼ 1; . . . ; n

jv� �j� j�4 jv� �jj�:

Then

jsðvÞj�5 js0j� � jv� �j� j
deg s
� :

By Ridout’s theorem we have that for all but finitely many S-units v2O�
S ,

jv� �j� j� >HðvÞ�
�

3ðdeg sÞjSj 5 maxfHðuÞ;HðvÞg�
�

3ðdeg sÞjSj
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so that, for all but finitely many v2O�
S ,X

� 2 S

log� maxfjrðuÞj�; jsðvÞj�g5
X
� 2 S

log�jsðvÞj�

5 � �

3
maxfhðuÞ; hðvÞg þ Oð1Þ: ð2:29Þ

Putting together (2.28) and (2.29) we obtain that outside the union of a finite set
and a finite number of effectively computable translates of one dimensional sub-
groups we haveX

� 2 S

log� maxfjrðuÞj�; jsðvÞj�g5 � 5

6
� � maxfhðuÞ; hðvÞg þ Oð1Þ

from which the Proposition follows immediately.

Proof of Theorem 1. We start by remarking that it suffices to prove that the
relevant set is contained in a finite union of translates of proper subtori of G2

m. This
is very easy to see directly, since we are working in dimension 2; in any case,
this equivalence follows from a well-known theorem of M. Laurent (see e.g. [14]).
This remark applies also to the Main Theorem.

To go on with the proof, we may clearly assume that the polynomials
pðX;YÞ; qðX; YÞ are defined over a number field K and that � is the group
ðO�

S Þ
2

for a suitable finite subset S of MK .
We first slightly transform the relevant inequality. Observe that, by definition,

hðpðu; vÞ : qðu; vÞ : 1Þ ¼
X
� 2MK

log maxfjpðu; vÞj�; jqðu; vÞj�; 1g

¼
X
� 2MK

maxf0; log maxfjpðu; vÞj�; jqðu; vÞj�gg:

Then, using the formula maxf0; logð�Þg ¼ logþð�Þ ¼ logð�Þ � log�ð�Þ, we can
write

hðpðu; vÞ : qðu; vÞ : 1Þ ¼
X
� 2MK

log maxfjpðu; vÞj�; jqðu; vÞj�g

�
X
� 2MK

log� maxfjpðu; vÞj�; jqðu; vÞj�g

¼ hðpðu; vÞ : qðu; vÞÞ
�

X
� 2MK

log� maxfjpðu; vÞj�; jqðu; vÞj�g:

Note that hðpðu; vÞ=qðu; vÞÞ ¼ hðpðu; vÞ : qðu; vÞÞ so the Theorem is reduced to
proving that the solutions to the inequalityX

� 2MK

log� maxfjpðu; vÞj�; jqðu; vÞj�g< ��maxfhðuÞ; hðvÞg ð2:30Þ

are contained in finitely many translates of proper subtori of G2
m, of which those of

dimension one can be effectively determined. We shall prove this contention, by
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estimating separately the two subsums
P

� 2MKnS log� maxfjpðu; vÞj�; jqðu; vÞj�g
and

P
� 2 S log� maxfjpðu; vÞj�; jqðu; vÞj�g.

Let us begin with the second. By hypothesis not both pðX; YÞ and qðX; YÞ van-
ish at the origin; suppose, for instance, that pð0; 0Þ 6¼ 0. We apply Proposition 1,
with f ðX; YÞ ¼ pðX; YÞ and �=2 instead of �. Then (the second part of)
Proposition 1 states that, outside the union of a finite set and finitely many effec-
tively computable translates of one dimensional subgroups, one hasX

� 2 S

log�jpðu; vÞj� > � �

2
maxfhðuÞ; hðvÞg

so clearlyX
� 2 S

log� maxfjpðu; vÞj�; jqðu; vÞj�g> � �

2
maxfhðuÞ; hðvÞg: ð2:31Þ

To estimate the sum for � running over the complement of S, we argue as
follows: Since pðX; YÞ; qðX; YÞ are coprime polynomials, there exist polynomials
AðX;YÞ, BðX; YÞ;CðX;YÞ, DðX; YÞ2OS½X; Y � and nonzero polynomials rðXÞ; sðYÞ
such that

AðX; YÞpðX; YÞ þ BðX;YÞqðX;YÞ ¼ rðXÞ
CðX; YÞpðX; YÞ þ DðX;YÞqðX;YÞ ¼ sðYÞ

Clearly, for a place � 2= S and S-unit point ðu; vÞ, we can bound by 1 the quantities
jAðu; vÞj�, jBðu; vÞj�, jCðu; vÞj�, jDðu; vÞj�. ThenX

� 2MKnS
log� maxfjpðu; vÞj�; jqðu; vÞj�g5

X
� 2MKnS

log� maxfjrðuÞj�; jsðvÞj�g:

The last quantity can be bounded, using Proposition 4, by �ð�=2ÞmaxfhðuÞ; hðvÞg
on the S-unit points ðu; vÞ outside a finite union of translates of proper subgroups of
G2

m. This inequality, combined with (2.31), concludes the proof of Theorem 1.

Proof of Corollary 1. We could derive Corollary 1 both from Theorem 1 and
from Proposition 2. We choose the latter possibility. We always have

hððu� 1Þ=ðv� 1ÞÞ ¼ hðu� 1 : v� 1Þ
¼

X
� 2MK

log maxfju� 1jv; jv� 1j�g

4
X
� 2MK

log maxf1; ju� 1jv; jv� 1j�g ¼ hð1 : u� 1 : v� 1Þ:

Also, hð1 : u� 1 : v� 1Þ4 hð1 : u : vÞ þ Oð1Þ. So in particular

lim sup
ðu;vÞ

hððu� 1Þ=ðv� 1ÞÞ
hð1 : u : vÞ 4 1:

We shall prove the non trivial inequality

lim inf
ðu;vÞ 2 �

hððu� 1Þ=ðv� 1ÞÞ
hð1 : u : vÞ 5 1;

222 P. Corvaja and U. Zannier



where now the limit is taken only over the multiplicative independent pairs
ðu; vÞ2�. This means that given a positive �, only finitely many such pairs should
verify the inequality

hððu� 1Þ=ðv� 1ÞÞ< ð1 � �Þhð1 : u : vÞ:
As we have already remarked,

hððu� 1Þ=ðv� 1ÞÞ5 hð1 : u� 1 : v� 1Þ þ
X
� 2MK

log� maxfju� 1j�; jv� 1j�g

and by Proposition 2 all but finitely many multiplicative independent pairs
ðu; vÞ2� satisfyX

�2MK

log� maxfju� 1j�; jv� 1j�g5 � �maxfhðuÞ; hðvÞg5 � �hð1 : u : vÞ:

Proof of Main Theorem. Let us write f ðX; YÞ ¼ pðX; YÞ=qðX; YÞ for polyno-
mials pðX; YÞ; qðX;YÞ defined over a number field K. Note that the hypothesis that
12fT1ðX;YÞ; . . . ; TNðX; YÞg appearing on the Main Theorem is equivalent to the
hypothesis in Theorem 1 that pðX; YÞ, qðX;YÞ do not both vanish at (0,0). The
Main Theorem then follows essentially from Proposition 1 and Theorem 1. We
have just to compare the maximum of the heights of the monomials appearing in
the development of pðX; YÞ; qðX; YÞ with the maximum of the heights of u and v.
This is the object of Lemma 2.

First of all, note that (the elementary) Lemma 1 immediately implies the result
in a stronger form if all the non constant monomials TiðX; YÞ vanish on a same
one-dimensional subtorus. In fact, in such a case, the function f ðX; YÞ could be
written as f ðX; YÞ ¼ ’ðXaYbÞ for a suitable one-variable rational function
’ðTÞ2KðTÞ and a pair ða; bÞ2Z2; in that case the proof is exactly the same
as in the corresponding case of the proof of Proposition 1. So we suppose that the
set of monomials fT1; . . . ;TNgnf1g satisfies the hypothesis of Lemma 2.

Fix a positive �. Since hð f ðu; vÞÞ ¼ hðpðu; vÞ : qðu; vÞÞ, we have

hð f ðu; vÞÞ5 maxfhðpðu; vÞÞ; hðqðu; vÞÞg
þ

X
� 2MK

log� maxfjpðu; vÞj�; jqðu; vÞj�g; ð2:32Þ

by Proposition 1 the first summand is bounded from below as

maxfhðpðu;vÞÞ;hðqðu;vÞÞg
5ð1� �=2ÞmaxfhðT1ðu;vÞÞ; . . . ;hðTNðu;vÞÞg ð2:33Þ

outside a finite union of translates of proper subgroups. From the proof of
Theorem 1 (see inequality (2.31)), the second summand in (2.32) is bounded,
outside a finite union of translates of proper subgroups of G2

m, asX
� 2MK

log�maxfjpðu;vÞj�; jqðu;vÞj�g

>� �

4maxfdegX p;degY p;degX q;degY qg
maxfhðuÞ;hðvÞg
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so by Lemma 2 we haveX
� 2MK

log� maxfjpðu; vÞj�; jqðu; vÞj�g

> � �

2
maxfhðT1ðu; vÞÞ; . . . ; hðTNðu; vÞÞg: ð2:34Þ

Putting together (2.32), (2.33) and (2.34) we obtain that the solutions to (1.4) are
contained in a finite union of proper translates, as wanted. Using this fact and
Lemma 2 we obtain (1.5).

Acknowledgements. After the present paper was written, Prof. J. Silverman kindly sent us a preprint
exploring related questions. Concerning the formulations in terms of heights, he goes further than we,
relating with certain cases of Vojta’s conjecture: for instance he proves that Corollary 1 follows from the
Vojta conjecture suitably applied to the blow-up of P2

1 at one point. A paper of Silverman in this respect
is expected soon. The authors are grateful to the referee for his comments.
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