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Abstract. We show that the multifractal decomposition behaves as expected for a family of sets E
known as homogeneous Moran fractals associated with the Fibonacci sequence !, using probability
measures �ð!Þ associated with the Fibonacci sequence !. For each value of a parameter
�2 ð�min; �maxÞ, we define ‘multifractal components’ E� of E, and show that they are fractals in the
sense of Taylor. We give the explicit formula for the dimension of E�. Also our method can be used for
the Moran fractals associated with some more general sequences.
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1. Introduction

Multifractal analysis has been proved to be a very useful technique in the
analysis of singular measures, both in theory and applications; see, for example,
[6, 7, 10] and references therein. Under certain circumstances, a measure � gives
rise to sets of points where � has local density of exponent �, with the dimensions
of these sets indicating the distribution of the singularities of the measure.

To be more precise, for a finite measure � on Rd, its pointwise dimension at x is
defined as follows:

dimloc�ðxÞ ¼ lim
r!0

log�ðBðx; rÞÞ
log 2r

;

if this limit exists. For �> 0, define

K� ¼
n
x2K : lim

r!0
log�ðBðx; rÞÞ= log 2r ¼ �

o
ð1:1Þ

where Bðx; rÞ is the closed ball with center x and radius r. The set K� may be
thought of as the set where the ‘local dimension’ of K equals � or as a ‘multi-
fractal component’ of K.

The main problem in multifractal analysis is to estimate the size of K�. This is
done by calculating the functions f�ð�Þ ¼ dimK�; F�ð�Þ ¼ DimK� for �5 0,
where dim and Dim denote the Hausdorff dimension and Packing dimension,
respectively. These functions are generally known as the ‘‘multifractal spectrum’’
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of �, or ‘‘the singularity spectrum’’ of �. Heuristic arguments, using techniques of
Statistical Mechanics (see [10] for example), show that the singularity spectrum
should be finite on a compact interval, noted by Dom ð�Þ, and is expected to the
Legendre transform conjugate of the Lq-spectrum � associated with � (see defini-
tion below), that is, for all �2Domð�Þ,

f�ð�Þ ¼ inff�qþ �ðqÞ; q2Rg ¼: ��ð�Þ: ð1:2Þ
The multifractal analysis of a probability measure is concerned with rigorous
arguments insuring that the Legendre transform formula (1.2) holds. The rigorous
arguments for multifractal formalisms have been established for Gibbs measures
(see, [1, 3, 14, 15]) and graph directed self-similar measures (see [2, 4]). The aim of
the present paper is to discuss multifractal structures of a particular type of fractal
called a Moran fractal. It should be pointed out that the Moran fractal discussed in
this paper is quite different from that in [2]. The Moran fractals in [2] are con-
structed by an iterative procedure using a given fixed number of similarity ratios.
In our case, the contraction ratios and the number of ratios may be different at each
step, and the measure associated with this kind of structure is neither Gibbs nor
self-similar. We cannot do most of the work on a symbolic space and then transfer
the results to subsets of Rd, as done in the ordinary way. Our proofs are for a class
of homogeneous Moran fractals associated with Fibonacci sequence; Using the
arguments of this paper it is easy to extend the results to a larger class of homo-
geneous Moran fractals associated with the sequences of which the frequency of
the letter exists. We have restricted to the special case in order to get to the heart of
the problem without introducing unnecessary technical details.

2. Definitions and Results

This section contains some basic definitions and the main results of this paper.
The proofs will be given in Section 3.

2.1. Moran set. Let fnkgk5 1 be a sequence of positive integers and fckgk5 1 be
a sequence of positive numbers satisfying that

nk 5 2; 0< ck < 1; nkck 4 1 for k5 1:

Define D0 ¼ �, and for any k5 1, set

Dm;k ¼ fðim; imþ1; . . . ; ikÞ; 14 ij 4 nj; m4 j4 kg
and Dk ¼ D1;k. Define D ¼

S
k5 0 Dk. If � ¼ ð�1; . . . ; �kÞ2Dk, � ¼ ð�1; . . . ; �mÞ2

Dkþ1;m, let � � � ¼ ð�1; . . . ; �k; �1; . . . ; �mÞ.
Definition 2.1. Suppose J is a closed interval of length 1. The collection F ¼

fJ�; �2Dg of closed subintervals of J is called having homogeneous Moran
structure, if it satisfies the following conditions:

(i) j� ¼ j;
(ii) For all k5 0 and �2Dk, J��1; J��2; . . . ; J��nkþ1

are subintervals of J�, and
satisfy that J���i \ J���j ¼ �ði 6¼ jÞ, where A� denotes the interior of A.

(iii) For any k5 1, �2Dk�1, ck ¼
jJ��jj
jJ�j , 14 j4 nk where jAj denotes the

diameter of A.
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Suppose that F is a collection of closed subintervals of J having homogeneous
Moran structure, we call EðFÞ ¼

T
k5 1

S
� 2Dk

J� a homogeneous Moran set
determined by F. we often use MðJ; fnkg; fckgÞ to denote the collection of homo-
geneous Moran sets determined by J, fnkg and fckg. A more general Moran fractal
structure was proposed in [9].

Remark 2.1. If limn!1 sup� 2Dn
jJ�j> 0, then E contains interior points. Thus

the measure and dimension properties will be trivial. We assume therefore

lim
n!1

sup
� 2Dn

jJ�j ¼ 0:

Let A ¼ fa; bg be a two-letter alphabet, and A� the free monoid generated by
A. Consider the following homomorphism on A�, F : a ! ab, b ! a, we see that
FnðaÞ ¼ Fn�1ðaÞFn�2ðaÞ, thus FnðaÞ, as n ! 1, will define an infinite sequence

! ¼ lim
n!1

FnðaÞ ¼ s1s2s3 � � � sn � � � 2fa; bgN;

which is called the Fibonacci sequence.
Let FnðaÞ ¼ s1s2 � � � sjFnðaÞj, si2A, where jFnðaÞj denotes the length of the word

FnðaÞ. For any n5 1, write !n ¼ !jn ¼ s1s2 � � � sn, j!nj ¼ n. We denote by j!nja
the number of the occurrence of the letter a in !n, and j!njb the number of
occurrence of b. Then j!nja þ j!njb ¼ n.

By [16], we know that limn!1
j!nja
n

¼ �, where �2 þ � ¼ 1, For more details on
substitutive sequence and related properties, we refer to [16].

Let 0< ra <
1
2
, 0< rb <

1
3
, ra; rb2R. In the Moran construction above, let

jJj ¼ 1; nk ¼
2; if sk ¼ a

3; if sk ¼ b
;

�

ckj ¼ ck ¼
ra; if sk ¼ a

rb; if sk ¼ b

�
; 14 j4 nk:

Assume that 8k5 1, 8�2Dk and 14 j4 nkþ1, for the k þ 1-order fundamen-
tal element J��j � J�, dðJ��i; J��jÞ5�kjJ�j for all i 6¼ j, where f�kg is a
sequence of positive reals. Let � ¼ inf �k.

Then we construct the homogeneous Moran set relating to the Fibonacci se-
quence and denote it by Eð!Þ ¼ ðJ; fnkg; fckgÞ. By [9], we have that dimHE ¼
lim infn!1 dn, dimPE ¼ lim supn!1 dn, where dn fulfills

Qk
i¼1 nic

dk
i ¼ 1. In our

setting

dk ¼
�j!kja log 2 � j!kjb log 3

j!kja log ra þ j!kjb log rb
;

and

dimHE ¼ dimPE ¼ lim
k!1

dk ¼
� log 2 � � log 3

log ra þ � log rb
;

where �2 þ � ¼ 1.
By the construction of Eð!Þ, we have 8�2Dk, jJ�j ¼ r

j!k ja
a r

j!k jb
b .

The Singularity Spectrum f(�) of Some Moran Fractals 143



2.2. Measure. Let Pa ¼ ðPa1
;Pa2

Þ, Pb ¼ ðPb1
;Pb2

;Pb3
Þ be probability vectors,

i.e. Pai > 0, Pbi > 0, and
P2

i¼1 Pai ¼ 1,
P3

i¼1 Pbi ¼ 1. For any k5 1, �2Dk, from
Section 2.1, we know � ¼ �1�2 � � � �k where

�k 2
f1; 2g; if sk ¼ a

f1; 2; 3g; if sk ¼ b

�
:

For � ¼ �1�2 � � � �k, define �ðaÞ as follows: let !k ¼ s1s2 � � � sk,
e1 < e2 < � � � < ej!kja be the occurrences of the letter a in !k, then �ðaÞ ¼
�e1

�e2
� � � �ej!k ja . Similarly, let �1 <�2 < � � � <�j!k jb be the occurrences of the letter

b in !k, then �ðbÞ ¼ ��1
��2

� � � ��j!k jb .
Now define

P�ðaÞ ¼ P�e1
P�e2

� � �P�e j!k ja
;

P�ðbÞ ¼ P��1
P��2

� � �P��j!k jb
:

It is obvious that �� 2Dk
P�ðaÞP�ðbÞ ¼ 1.

Let � be a mass distribution on E, such that for any �2Dk,

�ðJ�Þ ¼ P�ðaÞP�ðbÞ;

since � is relating with !, we denote it by �ð!Þ.
2.3. The multifractal dimension function. Let us briefly recall the notations

and the main results proved by Olsen [12]. In the sequel, � is a Borel probability
measure on Rd. Let K be a nonempty subset of Rd. For any q, t2R and � > 0, we
introduce the quantities

�HHq;t
�;�ðKÞ¼ inf

�X
i

�ðBðxi;riÞqð2riÞt;fBðxi;riÞg is a centered �-covering of K

�
;

�HHq;t
� ðKÞ¼ sup

�>0

�HHq;t
�;�ðKÞ;

�PPq;t
�;�ðKÞ¼ sup

�X
i

�ðBðxi;riÞqð2riÞt;fBðxi;riÞg is a centered �-packing of K

�
;

�PPq;t
� ðKÞ¼ inf

�>0

�PPq;t
�;�ðKÞ:

The function �HHq;t
� is �-subadditive but not increasing and the function �PPq;t

� is
increasing but not �-subadditive. That is the reason why Olsen introduced the
following modifications of �HHq;t

� and �PPq;t
� :

Hq;t
� ðKÞ ¼ sup

F�K

�HHq;t
� ðFÞ; Pq;t

� ðKÞ ¼ inf
K�[Ki

X
i

�PPq;t
� ðKiÞ:

The functions Hq;t
� and Pq;t

� are outer measures (in the Carath�eeodory sense) for
which Borel sets are measurable. They are multifractal extensions of the Hausdorff
measure Ht and the packing measure Pt, for more details on the measures Ht and
Pt, see [5].
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The measures Hq;t
� , Pq;t

� assign in the usual way a dimension to each subset K
of Rd. They are respectively denoted by dimq

�ðKÞ, Dimq
�ðKÞ and characterized

by:

Hq;t
� ðKÞ ¼

1; for t< dimq
�ðKÞ;

0; for t> dimq
�ðKÞ;

(

Pq;t
� ðKÞ ¼

1; for t<Dimq
�ðKÞ;

0; for t>Dimq
�ðKÞ:

(

The number dimq
�ðKÞ is a multifractal extension of the Hausdorff dimension

dimðKÞ of K whereas the number Dimq
�ðKÞ is a multifractal extension of the

packing dimension DimðKÞ. More precisely, we have the equalities

dimðKÞ ¼ dim0
�ðKÞ; DimðKÞ ¼ Dim0

�ðKÞ:

We can also remark that dimq
�ðKÞ4Dimq

�ðKÞ. Then we are able to define the
multifractal dimension functions b�, B� : R ! ½�1;þ1� by

b�ðqÞ ¼ dimq
�ðsupp�Þ; B�ðqÞ ¼ Dimq

�ðsupp�Þ:

These functions satisfy the following properties:

Proposition 2.1 [12]. Let � be a probability measure on Rd. Then

(i) b�ð1Þ ¼ B�ð1Þ ¼ 0;
(ii) b�ð0Þ ¼ dimðsupp�Þ; B�ð0Þ ¼ Dimðsupp�Þ;
(iii) b� 4B�;
(iv) b� is decreasing and B� is convex and decreasing.

The functions b� and B� are related to the multifractal spectrum of the measure
�. More precisely, if f�ðxÞ ¼ infyðxyþ f ðyÞÞ denotes the Legendre transform of
the function f , Olsen rigorously proved the following statement.

Proposition 2.2 [12]. Let � be a probability measure on Rd. Define � ¼
supq> 0

�bðqÞ
q

and ��� ¼ infq< 0
�bðqÞ

q
. For all �2ð�; ���Þ, we have

dimfx2 supp�; dimloc�ðxÞ ¼ �g4 b�� ð�Þ:
Dimfx2 supp�; dimloc�ðxÞ ¼ �g4B�� ð�Þ:

It is more difficult to obtain a minoration for the dimensions of the sets described
in the proposition. Nasr et al. in [8] give a new sufficient condition for a valid
multifractal formalism as follows.

Theorem 2.1 [8]. Let � be a probability measure on Rd and q2R, suppose that
B0
�ðqÞ exists, if �HHq;B�ðqÞ

� ðsupp�Þ> 0, then

dimðKð�B0
�ðqÞÞÞ ¼ DimKð�B0

�ðqÞÞ ¼ B�ð�B0
�ðqÞÞ ¼ b�ð�B0

�ðqÞÞ:

2.4. Main results. From now on, we assume that Eð!Þ is a Moran fractal
defined in section 2.1, and �ð!Þ is a probability measure introduced in section
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2.2. The notations Dk, J�, P�ðaÞ, P�ðbÞ are as above, in the following, we denote Eð!Þ
by E, and �ð!Þ by � for simplicity. Let

Eð�Þ ¼
�
x2 supp�; lim

r!0

log ð�ðBðx; rÞÞÞ
log ð2rÞ ¼ �

�
; �5 0;

f�ð�Þ ¼ dim
H

Eð�Þ;

F�ð�Þ ¼ DimEð�Þ; b�ðqÞ ¼ dimq
�ðsupp�ð!ÞÞ; B�ðqÞ ¼ Dimq

�ðsupp�ð!ÞÞ:

Now we define an auxiliary function �ðqÞ as follows: For each q2R and
k5 1, there is a unique number �kðqÞ such thatX

� 2Dk

ðP�ðaÞP�ðbÞÞqjJ�j�kðqÞ ¼ 1: ð2:1Þ

By a simple calculation, we get

�kðqÞ ¼
� log ð

P2
1 P

q
ai
Þ � k�j!k ja

j!k ja
log ð

P3
1 P

q
bi
Þ

log ra þ k�j!k ja
j!k ja

log rb
:

Clearly, for any k5 1, �kð0Þ ¼ dk and �kð1Þ ¼ 0. Also, by implicit differentiation

�0
kðqÞ ¼

�
P

� 2Dk
ðP�ðaÞP�ðbÞÞqðr

j!k ja
a r

j!k jb
b Þ�kðqÞ log ðP�ðaÞP�ðbÞÞP

� 2Dk
ðP�ðaÞP�ðbÞÞqðrj!k ja

a r
j!k jb
b Þ�kðqÞ log ðrj!k ja

a r
j!k jb
b Þ

ð2:2Þ

and

�00
k ðqÞ ¼

�
P

� 2 Dk
ðP�ðaÞP�ðbÞÞqðr

j!k ja
a r

j!k jb
b Þ�kðqÞ½ log ðP�ðaÞP�ðbÞÞ þ �0

kðqÞ log ðrj!k ja
a r

j!k jb
b Þ�2P

� 2Dk
ðP�ðaÞP�ðbÞÞqðr

j!k ja
a r

j!k jb
b Þ�kðqÞ log ðrj!k ja

a r
j!k jb
b Þ

ð2:3Þ
Thus �0

kðqÞ< 0 for all q and �kðqÞ is a strictly decreasing function. Also, note that
�00
k ðqÞ5 0. As a matter of fact, either �00

k ðqÞ> 0 for all q or else P�ðaÞP�ðbÞ ¼
ðrj!k ja

a r
j!k jb
b Þdk and �kðqÞ ¼ �dkqþ dk for all q. This follows from the fact that

if �00
k ðq0Þ ¼ 0 for some q0, then from Eq. (2.3), �0

kðq0Þ ¼ � log ðP�ðaÞP�ðbÞÞ=
log ðrj!k ja

a r
j!k jb
b Þ, for all �2Dk. Therefore, P�ðbÞP�ðaÞ ¼ r

j!k ja
a r

j!k jb
��0

k
ðq0Þ

b for all

�2Dk and k5 1. This implies P�ðbÞP�ðaÞ ¼ ðrj!k ja
a r

j!kjb
b Þdk for all �2Dk and

k5 1. In this case, and only in this case, �kðqÞ ¼ �dkqþ dk for all q.

Proposition 2.3. For all q2R, for all k5 1, �kðqÞ defined by (2.1) fulfills the
following:

(i) �kðqÞ is decreasing, and limq!�1 �kðqÞ ¼ �1;

(ii) Either P�ðaÞP�ðbÞ ¼ ðrj!k ja
a r

j!k jb
b Þdk, 8�2Dk, k5 1 and �kðqÞ ¼ �qdk þ dk,

or �00
k ðqÞ> 0 for all q.

(iii) For all k5 1, �kð0Þ ¼ dk, �kð1Þ ¼ 0.
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Our auxiliary function is

�ðqÞ ¼ lim
k!1

�kðqÞ ¼
� log ð

P2
i¼1 Pai

qÞ � � log ð
P3

j¼1 Pbj
qÞ

log ra þ � log rb
; ð2:4Þ

where �2 þ � ¼ 1.

Also, by implicit differentiation

�0ðqÞ ¼ �1

log ra þ � log rb

"P2
i¼1 Pai

q logPaiP2
i¼1 Pai

q
þ �

P3
j¼1 Pbj

q logPbjP3
j¼1 Pbj

q

#
ð2:5Þ

and

�00ðqÞ ¼ �1

log ra þ � log rb

" ðPa1
Pa2

Þqð log
Pa1

Pa2

Þ2

ð
P2

i¼1 Pai
qÞ2

þ �

P3
i;j¼1;i 6¼ jðPbjPbiÞ

qð log ðPbj=PbiÞÞ
2

ð
P3

j¼1 Pbj
qÞ2

#
ð2:6Þ

Thus, �0ðqÞ< 0 for all q, so that �ðqÞ is a strictly decreasing function. Also, note
that �00ðqÞ5 0. As a matter of fact, either �00ðqÞ> 0 for all q, or Pa1

¼ Pa2
, Pb1

¼
Pb2

¼ Pb3
and �ðqÞ ¼ �dqþ d for all q. This follows from the fact if �00ðq0Þ ¼ 0

for some q0 then from Eq. (2.6), Pa1
¼ Pa2

, and Pb1
¼ Pb2

¼ Pb3
. This implies

�ðqÞ ¼ �dqþ d. In this case, and only in this case, �ðqÞ ¼ �dqþ d for all q.

Proposition 2.4. For all q2R, for all k5 1, �ðqÞ defined by (2.4) fulfills the
following:

(i) �ðqÞ is strictly decreasing and limq!�1 �ðqÞ ¼ �1;
(ii) Either Pa1

¼ Pa2
, Pb1

¼ Pb2
¼ Pb3

and �ðqÞ ¼ �dqþ d, or �00ðqÞ> 0 for
all q;

(iii) �ð0Þ ¼ limk!1 dk ¼ d, �ð1Þ ¼ 0.

Remark 2.1. By a simple calculation, we get: Pa1
¼ Pa2

¼ 1
2

and Pbi ¼ 1
3
,

i ¼ 1; 2; 3. , P�ðaÞP�ðbÞ ¼ ðrj!k ja
a r

j!k jb
b Þdk for all �2Dk and k5 1.

In this paper, we get two main theorems:

Theorem A. Assume �> 0, then for all q2R, b�ðqÞ ¼ B�ðqÞ ¼ �ðqÞ.
Theorem B. Assume that �> 0 and let �ðqÞ be the function in (2.4). Then

there exist numbers 04�4 ��� such that

f�ð�Þ ¼ F�ð�Þ ¼ ��ð�Þ; for �2ð�; ���Þ
0; for � 2= ð�; ���Þ:

�

The complete proofs of Theorem A and Theorem B are given in Section 3.

3. Proof of the Theorems

In this section, we shall give the proofs of Theorem A and Theorem B. At first,
we prove some auxiliary results.
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3.1. Propositions.

Proposition 3.1. Given q2R, there exists a probability measure 	q supported
by supp� such that for any k5 1 and �0 2Dk,

	qðJ�0
Þ ¼ �ðJ�0

ÞqjJ�0
j�ðqÞP

� 2Dk
�ðJ�ÞqjJ�j�ðqÞ

:

Proof. Take a sequence of probability measures f	m;m5 1g supported by
supp� such that for any �0 2Dm,

	mðJ�0
Þ ¼ �ðJ�0

ÞqjJ�0
j�ðqÞP

� 2Dm
�ðJ�ÞqjJ�j�ðqÞ

: ð3:1Þ

More precisely, we can construct 	m as follows:
First, we distribute the unit mass among the rank-m basic intervals according to

(3.1). Inductively, suppose we have already distributed mass of proportion 	mðJ�Þ
to a basic interval J�ð�2Dn; n5mÞ, then we distribute the mass concentrated on
J� evenly to each of its nþ 1 subintervals, i.e.,

	mðJ��jÞ ¼

P
q
ajP2

i¼1
P
q
ai

	mðJ�Þ; 14 j4 2; snþ1 ¼ a;

P
q

bjP3

i¼1
P
q

bi

	mðJ�Þ; 14 j4 3; snþ1 ¼ b:

8>><
>>:

Repeating the above procedure, we get the desired measure. Now fix some m5 1,
for any k<m and �0 2Dk, we get

	mðJ�0
Þ ¼

X
� 2Dkþ1;m

	mðJ�0��Þ;

combining with (3.1), we haveX
� 2Dm

jJ�jq�ðJ�Þq	mðJ�0
Þ ¼

X
� 2Dkþ1;m

�ðJ�0��Þ
qjJ�0��j

�ðqÞ: ð3:2Þ

For any �1 2Dk, by the definition of �

�ðJ�1��Þ=�ðJ�1
Þ ¼ �ðJ�0��Þ=�ðJ�0

Þ;
thus by (3.2)

�ðJ�1
Þq
 X

� 2Dm

jJ�j�ðqÞ�ðJ�Þq
!
	mðJ�0

Þ ¼ �ðJ�0
Þq

X
� 2Dkþ1;m

�ðJ�1��Þ
qjJ�1��j

�ðqÞ;

this gives  X
�1 2Dk

�ðJ�1
ÞqjJ�1

j�ðqÞ
! X

� 2Dm

jJ�j�ðqÞ�ðJ�Þq
!
	mðJ�0

Þ

¼ �ðJ�0
ÞqjJ�0

j�ðqÞ
X

�1 2Dk ;� 2Dkþ1;m

�ðJ�1��Þ
qjJ�1��j

�ðqÞ:
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Observing thatX
� 2Dm

�ðJ�ÞqjJ�j�ðqÞ ¼
X

�1 2Dk ;� 2Dkþ1;m

�ðJ�1��Þ
qjJ�1��j

�ðqÞ;

one gets

	mðJ�0
Þ ¼ �ðJ�0

ÞqjJ�0
j�ðqÞ
�X

� 2Dk

�ðJ�ÞqjJ�j�ðqÞ:

To summarize, we get a sequence of probability measures f	mgm5 1 which are
supported by supp�, and satisfy (3.1) for any k4m and �0 2Dk.

Now Helly’s theorem [13] enables us to extract a subsequence f	mn
g1n¼1 con-

verging weakly to a limit measure 	q. By the properties of weak convergence, we
have for any k5 1 and �0 2Dk,

	qðJ�0
Þ ¼ �ðJ�0

ÞqjJ�0
j�ðqÞP

� 2Dk
�ðJ�ÞqjJ�j�ðqÞ

:

Finally, for any x 2= supp�, since supp� is a closed set, there exists an open
interval U containing x and separated for supp�, thus 	qðUÞ4 limn!1	mn

ðUÞ ¼
0, which asserts that 	q is supported by supp�. &

If � ¼ �1�2 � � � �n2Dn

�
indeed, �k 2

n
f1;2g; sk¼a
f1;2;3g; sk¼b

�
and k2 f1; 2; . . . ; ng then

we write �jk ¼ �1�2 � � � �k, put p0 ¼ min i¼1;2
j¼1;2;3

fpai ; pbjg and r0 ¼ maxfra; rbg.

Proposition 3.2. Suppose �> 0. We have limr!0

�
supx 2 E

�Bðx;crÞ
�Bðx;rÞ

�
<1 for

any c> 1.

Proof. Let c> 1 and r> 0. For x2 J� � F, �2D, choose k, l2N such
that

jJ�jkþ1j4 r< jJ�jkj; ð3:2Þ

�jJ�j‘þ1j4 cr<�jJ�j‘j: ð3:3Þ

Then we have

J�jkþ1ðxÞ 	 Bðx; rÞ;

E \ Bðx; crÞ 	 J�j‘þ1ðxÞ:

[Indeed, it is obvious that J�jkþ1ðxÞ 	 Bðx; rÞ. Now let y2E \ Bðx; crÞ and
assume y2 J�j‘þ1ðxÞ. Then there exists j<‘þ 1 such that � jj ¼ �jj and
�jþ1 6¼�jþ1, and

jy� xj5 dðJ�jjþ1; J� jjþ1Þ5�kjJ�jjj5�jJ�j‘j> cr;
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which is a contradiction since y2Bðx; crÞ.]
Since c> 1 and �< 1, k5 ‘. Equations (3.2) and (3.3) imply that

1

c
¼ r

cr
4

jJ�jkj
�jJ�j‘þ1j

¼ r
jwk ja
a r

jwk jb
b

�r
jw‘þ1ja
a r

jw‘þ1jb
b

¼ r
jwk ja�jw‘þ1ja
a � rjwk jb�jw‘þ1jb

b

�

4
rk�‘�1

0

�
;

which yields

k � ‘4 1 þ log ð�=cÞ
log r0

¼^ �ðcÞ:

Now the definition of � implies that

�Bðx; crÞ
�Bðx; rÞ 4

�ðJ�j‘þ1Þ
�ðJ�jkþ1Þ

4
1

pk�‘
0

4
1

p
�ðxÞ
0

¼^ p0ðcÞ;

thus

lim
r!0

�
sup
x 2 E

�Bðx; crÞ
�Bðx; rÞ

	
4 p0 <1:

Proposition 3.3. If �> 0 then there exist ch > 0 and cp > 0 such that for any
q2R

ch lim
n!1

X
� 2Dn

�ðJ�ÞqjJ�j�ðqÞ

4Hq;�ðqÞ
� ðEÞ4P�ðEÞq;�ðqÞ 4 �PPq;�ðqÞ

� ðEÞ

4 cp lim
n!1

X
� 2Dn

�ðJ�ÞqjJ�j�ðqÞ:

Proof. Write �hh ¼ limn!1
P

� 2Dn
�ðJ�ÞqjJ�j�ðqÞ, h ¼ lim n!1

P
�2Dn

�ðJ�ÞqjJ�j�ðqÞ. Since Hq;�ðqÞ
� ðEÞ4Pq;�ðqÞ

� ðEÞ4 �PPq;�ðqÞ
� ðEÞ (see [12]), in order to

prove the proposition, it suffices to verity that

(i) 0< h<1 ) Hq;�ðqÞ
� ðEÞ5 ch � h

(ii) h ¼ 1 ) Hq;�ðqÞ
� ðEÞ ¼ 1,

(iii) �hh ¼ 0 ) �PPq;�ðqÞ
� ðEÞ ¼ 0,

(iv) 0< �hh<1 ) �PPq;�ðqÞ
� ðEÞ4 cp�hh.

(i) If 0< h<1, then when n is sufficiently large, we haveX
�2Dn

�ðJ�ÞqjJ�j�ðqÞ >
h

2
: ð3:4Þ

Let � > 0 and fBðxi; riÞgi 2N be a centered �-covering of E. For each i choose
�ðiÞ2Dn, for any n5 1 such that xi2 J�ðiÞ. For each i2N choose ki; ‘i2N such that

jJ�ðiÞjkiþ1j4 ri < jJ�ðiÞjki j;

�jJ�ðiÞj‘iþ1j4 ri <�jJ�ðiÞj‘i j:
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Notice that

J�ðiÞjkiþ1ðxiÞ 	 Bðxi; riÞ; E \ Bðxi; riÞ 	 J�ðiÞj‘iþ1ðxÞ;
by Proposition 3.2, there exists a probability measure 	q supported by E, such
that

	qðJ�ðiÞÞ ¼
�ðJ�ðiÞÞqjJ�ðiÞj�ðqÞP
� 2Dj�ðiÞj

�ðJ�ÞqjJ�j�ðqÞ
: ð3:5Þ

Then we have

	qðEÞ4
X
i

	qBðxi; riÞ4
X
i

	qðJ�ðiÞj‘iþ1ðxiÞÞ

¼
X
i

�ðJ�ðiÞj‘iþ1ðxiÞÞqjJ�ðiÞj‘iþ1ðxiÞj�ðqÞP
�2D‘iþ1

�ðJ�ÞqjJ�j�ðqÞ

< 2=h
X
i

�ðJ�ðiÞj‘iþ1ðxiÞÞqjJ�ðiÞj‘iþ1ðxiÞj�ðqÞ: ð3:6Þ

If �ðqÞ5 0, then jJ�ðiÞj‘iþ1ðxiÞj�ðqÞ 4 ð2�Þ�ðqÞð2riÞ�ðqÞ. If �ðqÞ< 0, then

jJ�ðiÞj‘iþ1ðxiÞj ¼
rajJ�ðiÞj‘i j; s‘iþ1 ¼ a;
rbjJ�ðiÞj‘i j; s‘iþ1 ¼ b;

�

implies that jJ�ðiÞj‘iþ1j5 minfra; rbg � jJ�ðiÞj‘i j, thus

2ri 4 2�jJ�ðiÞj‘i j4
2�

minfra; rbg
jJ�ðiÞj‘iþ1j;

that is jJ�ðiÞj‘iþ1j�ðqÞ 4
�

minfra;rbg
2�

��ðqÞð2riÞ�ðqÞ. In all cases

jJ�ðiÞj‘iþ1j�ðqÞ 4 k1ð2riÞ�ðqÞ; ð3:7Þ
where k1 is a suitable constant.

If q< 0, E \ Bðxi; riÞ 	 J�ðiÞj‘iþ1 implies that

�ðJ�ðiÞj‘iþ1Þq 4�ðBðxi; riÞÞq: ð3:8Þ
If q5 0, J�ðiÞj‘iþ1 	 Bðxi; ri=�Þ implies that

�ðJ�ðiÞj‘iþ1Þq 4
�
�B
�
xi;

ri
�

�
�Bðxi; riÞ

	q

�Bðxi; riÞq 4mq�Bðxi; riÞq; ð3:9Þ

where m¼^ sup
x 2 E
r> 0

�Bðx;��1rÞ
�Bðx;rÞ <1 (by Proposition 3.2). It follows from (3.5)–(3.9) that

	qðEÞ4
k2

h

X
i

�Bðxi; riÞqð2riÞ�ðqÞ

for a suitable constant k2. Hence

ch � h¼^
h

k2

¼ h

k2

	qðEÞ4 �HH
q;�ðqÞ
�;� ðEÞ4 �HHq;�ðqÞ

� ðEÞ4Hq;�ðqÞ
� ðEÞ:

The Singularity Spectrum f(�) of Some Moran Fractals 151



(ii) h ¼ 1. For any "> 0, we have for sufficiently large n,X
� 2Dn

jJ�j�ðqÞ � �ðJ�Þq >"�1;

by an argument analogous to that of (i), we get

	qðEÞ4
"k2

2

X
i

�Bðxi; riÞqð2riÞ�ðqÞ

for any � > 0 and fBðxi; riÞgi a centered �-covering of E. Hence

Hq;�ðqÞ
� ðEÞ5 �HHq;�ðqÞ

� ðEÞ5 �HH
q;�ðqÞ
�;� ðEÞ5 	qðEÞ

2

k2"
¼ 2

k2 � "
this implies Hq;�ðqÞ

� ðEÞ ¼ 1.

(iii) �hh ¼ 0. For any "> 0, X
� 2Dn

�ðJ�ÞqjJ�j�ðqÞ <" ð3:10Þ

holds for all sufficiently large n. Let � > 0 and fBðxi; riÞgi be a centered �-packing
of E. For each i2N, choose �ðiÞ2Dn, 8n such that xi2 J�ðiÞ, and integers ki, ‘i2N
such that

jJ�ðiÞjkiþ1j4 ri < jJ�ðiÞjki j;
�jJ�ðiÞj‘iþ1j4 ri <�jJ�ðiÞj‘i j:

Since

J�ðiÞjkiþ1ðxiÞ 	 Bðxi; riÞ; E \ Bðxi; riÞ 	 J�ðiÞj‘iþ1ðxÞ;
by Proposition 3.2, there exists a probability measure 	q supported by E such that

	qðJ�ðiÞÞ ¼
�ðJ�jiÞqjJ�ðiÞj�ðqÞP

� 2Dj�ðiÞj
�ðJ�ÞqjJ�j�ðqÞ

: ð3:11Þ

If �ðqÞ4 0, we have

ð2riÞ�ðqÞ 4 2�ðqÞjJ�ðiÞjkiþ1j�ðqÞ:
If �ðqÞ> 0,

jJ�ðiÞjkiþ1j ¼
rajJ�ðiÞjki j; ski þ 1 ¼ a;
rbjJ�ðiÞjki j; ski þ 1 ¼ b

�

implies jJ�ðiÞjkiþ1j5 minfra; rbgjJ�ðiÞjki j, i.e.

ð2riÞ�ðqÞ 4
�

2

minfra; rbg

	�ðqÞ
jJ�ðiÞjkiþ1j�ðqÞ:

Thus in both cases, we always have

ð2riÞ�ðqÞ 4K1jJ�ðiÞjkiþ1j�ðqÞ; ð3:12Þ
where K1 is a suitable constant.
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If q4 0, we have

�ðBðxi; riÞÞq 4�ðJ�ðiÞjkiþ1Þq:

If q> 0, the proof of Proposition 3.2 implies that

�ðBðxi; riÞÞq 4�ðJ�ðiÞj‘iþ1Þq

¼
�
�ðJ�ðiÞj‘iþ1Þ
�ðJ�ðiÞjkiþ1Þ

	q

�ðJ�ðiÞjkiþ1Þq

4 ðp0ðcÞÞq�ðJ�ðiÞjkiþ1Þq:

In both cases, we have

�ðBðxi; riÞÞq 4K2�ðJ�ðiÞjkiþ1Þq; ð3:13Þ
where K2 is a suitable constant.

It follows from (3.10)–(3.13) thatX
i

�ðBðxi; riÞÞqð2riÞ�ðqÞ 4K1K2

X
i

�ðJ�ðiÞjkiþ1ÞqjJ�ðiÞjkiþ1j�ðqÞ

¼ K1K2

X
i



�ðJ�ðiÞjkiþ1ÞqjJ�ðiÞjkiþ1j�ðqÞP

� 2Dkiþ1�ðJ�ÞqjJ�j�ðqÞ

�
X

� 2Dkiþ1

�ðJ�ÞqjJ�j�ðqÞ
�

<K1K2 � "
X
i

	qðJ�ðiÞjkiþ1Þ4K1K2 � "
X
i

	qðBðxi; riÞÞ

¼ K1K2 � " � 	q
�[

i

Bðxi; riÞ
	
4K1K2 � ":

Thus

�PP
q;�ðqÞ
�;� ðEÞ4K1K2"

for any "> 0 and � > 0, which clearly implies that �PPq;�ðqÞ
� ðEÞ ¼ 0.

(iv) 0< �hh<1. When n is large enough, we haveX
� 2Dn

jJ�j�ðqÞ�ðJ�Þq < 2�hh;

using a similar argument as that in (i). we showX
i

�ðBðxi; riÞÞqð2riÞ�ðqÞ 4K1K2 � 2�hh

for any � > 0 and any centered �-packing fBðxi; riÞgi of E. Hence

�PPq;�ðqÞ
� ðEÞ4K1K2 � 2�hh¼^ cp � �hh:

&
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3.2. Proof of Theorems.

Proof of Theorem A. We only give the proof for b�ðqÞ ¼ �ðqÞ, the proof of
B�ðqÞ ¼ �ðqÞ is similar. For any t5�ðqÞ ¼ limk!1 �kðqÞ, there exist infinitely
many k such that t>�kðqÞ: For any F � supp�, we have for sufficiently large
k ð�2Dk; jJ�j4 �Þ

�HH
q;t
�;�ðFÞ4

X
�ðJ�ÞqjJ�jt 4

X
�ðJ�ÞqjJ�j�kðqÞ ¼ 1;

then we obtain Hq;t
� ðsupp�Þ4 1 and b�ðqÞ4 �ðqÞ.

For any t<�ðqÞ, if Hq;t
� ðsupp�Þ ¼ 1, we have b�ðqÞ5�ðqÞ. If

Hq;t
� ðsupp�Þ < 1, we have Hq;�ðqÞ

� ðsupp�Þ<1. Since Hq;�ðqÞ
� ðsupp�Þ4

Hq;t
� ðsupp�Þ and one has t<�kðqÞ for k large enough, we haveX

� 2Dk

�ðJ�ÞqjJ�j�ðqÞ >
X
� 2Dk

�ðJ�ÞqjJ�j�kðqÞ ¼ 1;

which implies

lim
k!1

X
� 2Dk

�ðJ�ÞqjJ�j�ðqÞ > 0:

Now by Proposition 3.3, we get Hq;�ðqÞ
� ðsupp�Þ> 0, this implies b�ðqÞ5�ðqÞ.

Proof of Theorem B. Since for any q2R, �0ðqÞ exists, then 8�2ð���; �Þ, there
exists a unique q� such that �� ¼ d�ðqÞ

dq
, whereupon ��ð�Þ ¼ ��0ðq�Þq�þ

�ðq�Þ ¼ �q� þ �ðq�Þ. If Hq�;�ðq�Þ
� ðsupp�Þ ¼ 1> 0, by Theorem 2.1 [8], we

have

f�ð�Þ ¼ F�ð�Þ ¼ ��ð�Þ:
If Hq�;�ðq�Þ

� ðsupp�Þ<1, by Proposition 3.3, we have

Hq�;�ðq�Þ
� ðsupp�Þ5 ch lim

n!1

X
� 2Dn

�ðJ�Þq� jJ�j�ðq�Þ:

Now if lim n!1
P

� 2Dn
�ðJ�Þq� jJ�j�ðq�Þ > 0, by Theorem 2.1 of [8], we have f�ð�Þ ¼

F�ð�Þ ¼ ��ð�Þ. By a direct calculation, we can get �ðqÞ � �nðqÞ ¼ Oð1
n
Þ, by (2.1),

we have
P

� 2Dn
�ðJ�Þq� jJ�j�ðq�Þ ¼ jJ�j�ðq�Þ��nðq�Þ 5 ðminfra; rbgÞnð�ðq�Þ��nðq�ÞÞ,

therefore

lim
n!1

X
� 2Dn

�ðJ�Þq� jJ�j�ðq�Þ > 0:

If � 2= ð�; ���Þ, by Lemma 4.4 of [2], we have Eð�Þ ¼ �, this completes the
proof.

Remark. Let A ¼ fa1; a2; . . . ; amg. w ¼ s1s2 � � � sk � � � is a sequence over A,

si2A. If for any ai2A, limk!1
js1s2���sk jai

k
¼ �i > 0, then we say that the sequence

w has the frequency vector � ¼ ð�1; �2; . . . ; �mÞ.
For the Moran fractals associated with this kind of sequences, our method in

this paper can be employed to give the similar result as in the Fibonacci case.
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