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Abstract. We show that the multifractal decomposition behaves as expected for a family of sets £
known as homogeneous Moran fractals associated with the Fibonacci sequence w, using probability
measures p(w) associated with the Fibonacci sequence w. For each value of a parameter
@ € (Qtmin, max ), We define ‘multifractal components’ E, of E, and show that they are fractals in the
sense of Taylor. We give the explicit formula for the dimension of E,. Also our method can be used for
the Moran fractals associated with some more general sequences.
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1. Introduction

Multifractal analysis has been proved to be a very useful technique in the
analysis of singular measures, both in theory and applications; see, for example,
[6, 7, 10] and references therein. Under certain circumstances, a measure 4 gives
rise to sets of points where p has local density of exponent «, with the dimensions
of these sets indicating the distribution of the singularities of the measure.

To be more precise, for a finite measure 1 on RY, its pointwise dimension at x is
defined as follows:

dimyeepe(x) = lim
if this limit exists. For o > 0, define
K, = {xeK:lir% logu(B(x,r))/long:a} (L.1)

where B(x,r) is the closed ball with center x and radius r. The set K, may be
thought of as the set where the ‘local dimension’ of K equals « or as a ‘multi-
fractal component’ of K.

The main problem in multifractal analysis is to estimate the size of K. This is
done by calculating the functions f,(a) = dimK,; F,(«) = DimK, for o >0,
where dim and Dim denote the Hausdorff dimension and Packing dimension,
respectively. These functions are generally known as the “multifractal spectrum”
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of u, or “the singularity spectrum” of . Heuristic arguments, using techniques of
Statistical Mechanics (see [10] for example), show that the singularity spectrum
should be finite on a compact interval, noted by Dom (u), and is expected to the
Legendre transform conjugate of the L7-spectrum 7 associated with . (see defini-
tion below), that is, for all & € Dom(u),

fiu(a) = inf{ag + 7(q); g € R} =: 7%(). (1.2)
The multifractal analysis of a probability measure is concerned with rigorous
arguments insuring that the Legendre transform formula (1.2) holds. The rigorous
arguments for multifractal formalisms have been established for Gibbs measures
(see, [1, 3, 14, 15]) and graph directed self-similar measures (see [2, 4]). The aim of
the present paper is to discuss multifractal structures of a particular type of fractal
called a Moran fractal. It should be pointed out that the Moran fractal discussed in
this paper is quite different from that in [2]. The Moran fractals in [2] are con-
structed by an iterative procedure using a given fixed number of similarity ratios.
In our case, the contraction ratios and the number of ratios may be different at each
step, and the measure associated with this kind of structure is neither Gibbs nor
self-similar. We cannot do most of the work on a symbolic space and then transfer
the results to subsets of R?, as done in the ordinary way. Our proofs are for a class
of homogeneous Moran fractals associated with Fibonacci sequence; Using the
arguments of this paper it is easy to extend the results to a larger class of homo-
geneous Moran fractals associated with the sequences of which the frequency of
the letter exists. We have restricted to the special case in order to get to the heart of
the problem without introducing unnecessary technical details.

2. Definitions and Results

This section contains some basic definitions and the main results of this paper.
The proofs will be given in Section 3.

2.1. Moran set. Let {n;}, . | be a sequence of positive integers and {c; }, - | be
a sequence of positive numbers satisfying that

ng =2, O<c<l, me <1l fork=1.
Define Dy = ¢, and for any k > 1, set
D = {(im,ims1,---,0k); 1 <ij<mnj, m<j<k}
and Dy = Dy . Define D = | J; - o Dy. If 0 = (0, ..., 00) €Dy, 7= (71, ..., Tw) €
Divim, let ox7 = (01,...,06,T1y. . Tim)-

Definition 2.1. Suppose J is a closed interval of length 1. The collection # =
{J5,0€D} of closed subintervals of J is called having homogeneous Moran
structure, if it satisfies the following conditions:

@ Jjo =

(i1) For all £ > 0 and o € Dy, Jox1,J5%2, - - - ; Joxn,,, are subintervals of J,;, and
satisty that Jo; N Joy; = ¢(i #j), where ‘140 ‘denotes the interior of A.

(iii) For any k = 1, 0 €Dy, ¢ zlj—f‘j, 1 <j < m where |A| denotes the
diameter of A.



The Singularity Spectrum f{c)) of Some Moran Fractals 143

Suppose that % is a collection of closed subintervals of J having homogeneous
Moran structure, we call E(F) = ()5 U,cp Jo a homogeneous Moran set
determined by 7. we often use M(J, {ny}, {cx}) to denote the collection of homo-
geneous Moran sets determined by J, {n;} and {c¢; }. A more general Moran fractal
structure was proposed in [9].

Remark 2.1. 1f lim, . sup, ¢ p, |J5| >0, then E contains interior points. Thus

the measure and dimension properties will be trivial. We assume therefore
lim sup |J,| =0.
n—xX45eD,

Let A = {a,b} be a two-letter alphabet, and A* the free monoid generated by
A. Consider the following homomorphism on A* F:a— ab, b — a, we see that
F"(a) = F""'(a)F""*(a), thus F"(a), as n — oo, will define an infinite sequence

w= lim F"(a) = 515,53 -5 - - - €{a,b}",
n—oo
which is called the Fibonacci sequence.

Let F"(a) = 5152 - - - S|pn(a)|» i €A, where |F"(a)| denotes the length of the word
F"(a). For any n > 1, write w, = w|, = $152 - - - S, |wy| = n. We denote by |w,|,
the number of the occurrence of the letter a in w,, and |w,|, the number of
occurrence of b. Then |wy|, + |wy|, = n.

By [16], we know that lim,,_, |“’”l|a =1, where 172 + 1 = 1, For more details on
substitutive sequence and related properties, we refer to [16].

LetO<r, < %, O<r< %, rq, 1y € R. In the Moran construction above, let

2, ifsg=a
Vi=1, m= . ;
3, ifsg=0>b

re, if sp=a l<i<
Ck, = Cp = , <Jj < .
KT T N\, ifsi=b IS

Assume that Vk > 1, Vo€ Dy and 1 < j < ny, for the k + 1-order fundamen-
tal element Joxj C Jo, d(Joxi,Joxj) = Ai|J,| for all i#j, where {A;} is a
sequence of positive reals. Let A = inf Ay.

Then we construct the homogeneous Moran set relating to the Fibonacci se-
quence and denote it by E(w) = (J,{m},{ck}). By [9], we have that dimyE =
lim inf, . d,, dimpE = lim sup,_, ., d,, where d, fulfills Hf:l n,-c?k = 1. In our
setting

_ —lwl,1og2 — Jwxl, log 3
|wk |, log rq + |wil, logry

and

—log2 — nlog3
dimyE = dimpE = lim d, = ——8= 17082
k—o0 logr, +nlogr,

where > +1n = 1.
By the construction of E(w), we have Vo € Dy, |J,| = ekl r‘bwklb‘
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2.2. Measure. Let P, = (Pal,P )s P» = (Pp,, Pp,, Pp,) be probability vectors,
ie. P, >0, Py, >0, andzl 1Pa, =1, 213 Py, = 1. For any k > 1, 0 € Dy, from
Sectlon 2.1, we know o = o0, - - - o where

{1,2}, ifsi=a
""E{{l,z,3}, ifs=b

For o=o010y - 0y define o(a) as follows: let wp=s152-"5,
e1<ep< - <ey, be the occurrences of the letter a in wy, then o(a) =
O O, "+ Oey - Similarly, let 6; < < -+ < 6M|b be the occurrences of the letter
b in wy, then o(b) = 05,05, -~ 05, .

Now define

Py = Pq, Py, -+ P

Oelwgly?

Pg(b) = P‘Tﬁl P"(‘z o ol

It is obvious that X, ¢ p, Po(a)Po(p) = 1.
Let 14 be a mass distribution on E, such that for any o € Dy,

() = Po(a)Pop)
since p is relating with w, we denote it by pu(w).

2.3. The multifractal dimension function. Let us briefly recall the notations
and the main results proved by Olsen [12]. In the sequel, y is a Borel probability
measure on RY. Let K be a nonempty subset of R?. For any ¢, € R and ¢ >0, we
introduce the quantities

J_fzté([() =inf { Z w(B(x;,r;)"(2r;)"; {B(x;,r;)} is a centered 6-covering of K},

A (K )—Zglgff,m( ),

P(K) = sup { Z,u(B(x,», ) (2r:)";{B(x;,r;)} is a centered §-packing of K},

P (K) = inf 9" *
1(K) = inf 27 (K).

The function #7" is o-subadditive but not increasing and the function 27 is
increasing but not o-subadditive. That is the reason why Olsen introduced the
following modifications of #%" and 24"

H LK) = sup HL(F), 24 (K) = inf o

FCK KCUK;

The functions #%" and 27" are outer measures (in the Carathéodory sense) for
which Borel sets are measurable. They are multifractal extensions of the Hausdorff
measure #" and the packing measure 2", for more details on the measures #" and
P, see [5].
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The measures #'7', 29" assign in the usual way a dimension to each subset K
of R?. They are respectlvely denoted by dim!(K), Dim?(K) and characterized
by:

oo, for t <dim!(K),
0, for > dim{(K),

(K oo, for #<Dim(K),
P —_
(K) 0, for #>Dim!(K).

The number dim?(K) is a multifractal extension of the Hausdorff dimension
dim(K) of K whereas the number Dim?(K) is a multifractal extension of the
packing dimension Dim(K). More precisely, we have the equalities

dim(K) = dim(K), ~ Dim(K) = Dim)(K).
We can also remark that dim?(K) < Dim?(K). Then we are able to define the
multifractal dimension functions b,, B,, : R — [—o0, +-00| by
bu(q) = dim!(suppu),  B,(g) = Dim(supp p).
These functions satisfy the following properties:

Proposition 2.1 [12]. Let ;i be a probability measure on R?. Then

(@) bu(1) =B,(1) =0;
(i) b,(0) = dim(supp p), B,,(0) = Dim(supp p);
(iii) b, < By;
(iv) b, is decreasing and B,, is convex and decreasing.
The functions b, and B,, are related to the multifractal spectrum of the measure
p. More precisely, if £*(x) = infy(xy + f(y)) denotes the Legendre transform of
the function f, Olsen rigorously proved the following statement.

Proposition 2.2 [12]. Let # be a probability measure on R®. Define o =
supq>0b— and & = infy <o —*. For all a € (o, &), we have

d1m{x€supp w; dimyeepp(x) = a} < ( ).
Dim{x € supp p; dimpcpt(x) = a} < B ( ).

It is more difficult to obtain a minoration for the dimensions of the sets described
in the proposition. Nasr et al. in [8] give a new sufficient condition for a valid
multifractal formalism as follows.

Theorem 2.1 [8]. Let y1 be a probability measure on R? and g € R, suppose that
B, (q) exists, if # Z,’B #@) (supp 1) > 0, then

dim(K(~B),(¢))) = DimK(~B,,(q)) = B*(~B,(9)) = b* (B, ().

2.4. Main results. From now on, we assume that E(w) is a Moran fractal
defined in section 2.1, and p(w) is a probability measure introduced in section
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2.2. The notations Dy, J;, Po.(a), PU@ are as above, in the following, we denote E(w)
by E, and u(w) by p for simplicity. Let

E(a) = {xesuppu;}%%w = a}, a=0;
fula) = dim E(a);

F(a) = DimE(e), b,(g) = dimf(supp p(w)),  B(g) = Dimf(supp u(w)).

Now we define an auxiliary function ((g) as follows: For each ¢ € R and
k =1, there is a unique number [3;(g) such that

> (Po@Pon) Mol = 1. (2.1)

o€ Dy
By a simple calculation, we get

—log (357 P4,) — e log (5} PY)

logr, + ‘U-"klil logry

Bi(q) =

Clearly, for any k > 1, 8;(0) = dj and Gi(1) = 0. Also, by implicit differentiation

_ Zg - (Pa(a)Po(b) )q (rtllwkla r}\:}k\b )ﬂk (@) log (p b))

Bi(q) = (2.2)
o (PataPo)" ()M Log (1 ‘”'b)
and
,,<q)i—zgem(m(q)n@))q( rbtla k) 3D [ Hog (P Pogsy) + B, (q) log (rile i) ?
1(g) =

ZUGD/((PO‘(G> G(b)) (rl‘lw‘ﬂrl‘awk‘h)dk >10g( e lwkll))
(2.3)
Thus 3, (q) <0 for all g and ((g) is a strictly decreasing function. Also, note that
i (g) = 0. As a matter of fact, either 3(g) >0 for all g or else Py(y)Py(p) =

(rl,w"‘“rllfk"’)dk and f3(q) = —diq + d; for all g. This follows from the fact that

if 3/(qo) =0 for some gy, then from Eq. (2.3), B.(q0) = —log( o) Pov))/
s, A

log (rq Jkla M‘”), for all o€Dy. Therefore, P,()Py) — plklay ‘w"l” " for all

o€Dy and k> 1. This implies P, Py = (rL”"‘“r,kal”)dk for all o€ Dy and
k = 1. In this case, and only in this case, Gi(¢) = —diq + dj for all q.

Proposition 2.3. For all g€ R, for all k = 1, B;(q) defined by (2.1) fulfills the
following:
(i) Br(q) is decreasing, and limy_.+ B(q) = £00;
(i) Either Py Poy) = (ri™ry"")". Yo € Dy k > 1 and fi(q) = —qdi + di.

or B(q) >0 for all q.
(111) Forall k =1, 5(0) =di, (1) =0
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Our auxiliary function is

ﬂ( ) lim ﬂ ( ) - IOg (21‘2:1 Plliq> - T]lOg (21'3:1 ijq)
==t logr, +nlogr,
where n* +n = 1.

, (2.4)

Also, by implicit differentiation

3
1 F:iz:l PoilogP, ~ SoiyiPyilogPy

(4) logr, + nlogr, Z,»zzl P17 Z;:I Py

] 0

and

_ (P Pay)?(log 72)?

logry+nlogry | (37, Paf)’
S0 12 (PoPy) (log (Py, /Py,))
(S0 Py)?

Thus, 3'(g) <0 for all ¢, so that 3(q) is a strictly decreasing function. Also, note
that 5”(¢g) = 0. As a matter of fact, either 3"(¢q) > 0 for all ¢, or P,, = P,,, Py, =
Py, = Py, and (3(q) = —dq + d for all q. This follows from the fact if 5”(g9) =0
for some ¢o then from Eq. (2.6), P, = P,,, and P, = P;, = P},. This implies
B(q) = —dq + d. In this case, and only in this case, 3(q) = —dg + d for all g.

Proposition 2.4. For all g€ R, for all k = 1, 3(q) defined by (2.4) fulfills the
following:

+n (2.6)

(i) B(q) is strictly decreasing and lim,_.+, 3(q) =

(ii) Either P,, = P,,, Py, = Py, = Py, and [3(q) —dq + d or 3"(q) >0 for

all g;
(i) (0) = limy_oc di = d, (1) =
Remark 2.1. By a simple calculation, we get: P, = P, =5 and Py, =3

i=1,2,3. & PyyPopy = (kM er )% for all o€ Dy and k > 1.
In this paper, we get two main theorems:

Theorem A. Assume A >0, then for all g€ R, b,(q) = B,(q) = 5(q).

Theorem B. Assume that A >0 and let $(q) be the function in (2.4). Then
there exist numbers 0 < o < & such that

fula) = Fu(a) = {Oﬂ,*(a)’ J{;Orroo[z;((i,g))’

The complete proofs of Theorem A and Theorem B are given in Section 3.

3. Proof of the Theorems

In this section, we shall give the proofs of Theorem A and Theorem B. At first,
we prove some auxiliary results.
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3.1. Propositions.

Proposition 3.1. Given q € R, there exists a probability measure v, supported
by supp p such that for any k = 1 and o¢ € Dy,

o) = —Pe) W
g\oo) I T Bla)
2en o) Vol

Proof. Take a sequence of probability measures {v,,;m > 1} supported by
supp u such that for any o¢ € D,

N(Jao)q|-]cfo|ﬂ(q)
PO VALIVALS

More precisely, we can construct v, as follows:

First, we distribute the unit mass among the rank-m basic intervals according to
(3.1). Inductively, suppose we have already distributed mass of proportion v, (J,,)
to a basic interval J, (o € D,,n = m), then we distribute the mass concentrated on
J, evenly to each of its n 4 1 subintervals, i.e.,

7
P
o) = 4 23"

b vu(Jp), 1<j<3, Sp1=0.

3
P
Repeating the above procedure, we get the desired measure. Now fix some m > 1,
for any k <m and oy € Dy, we get

Un(Joy) = Z Un(Jopko)s

0 € Dis1m

Vm(JUO) = (31)

Vm("(f)7 1 <J < 27 Sp41 = d,

combining with (3.1), we have

Z Vo |q Vm(JUo) = Z N(Joo*o)q|‘loo*0|ﬁ(q)- (32)

oceD, 0 € Diyim
For any o € Dy, by the definition of

wJox0) /(o) = 1(Jopxa) /(o)
thus by (3.2)

I} 3

)q< Z Vol (q)U(JU)q> Un(Joy) = (o )? Z H(Jal*U)q|J01*0|[(q)
oceD, € Diiim

this gives

( > wlUy) o, | )( DA ) Vin(Jon)

o1 € Dy oceD,

5 B
= u(Jao)”lfaoV(") Z 1o %0) Vool @

01 € Di,0 € Diyim
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Observing that

STl W™ = 3T ilTae) Mool ",

o €D,y 01 € Di,0 € Dys1m

one gets

V(o) = 1) Moo "> 1u(I) a2,

o€ Dy

To summarize, we get a sequence of probability measures {v,,},, - ; which are
supported by supp u, and satisfy (3.1) for any k < m and oy € Dy.

Now Helly’s theorem [13] enables us to extract a subsequence {v,, },—, con-
verging weakly to a limit measure v,. By the properties of weak convergence, we
have for any k > 1 and o € Dy,

11T 0y) |7
POV ALV ALY

Finally, for any x ¢ supp u, since supp p is a closed set, there exists an open
interval U containing x and separated for supp y, thus v,(U) < lim,_, v, (U) =

—n—0o0

0, which asserts that v, is supported by supp . O
If o =010, 0,€D, (indeed, s {35}3} ;:iZ) and ke {1,2,...,n} then

Vl](*]tfo) =

we write 0|, = 0107 - - - 0y, put pg = min_[:llézs{pai,p,,j} and ro = max{r,,r}.
J=12,

uB(x,cr)
pB(x.r)

Proposition 3.2. Suppose A>0. We have mHo(supXE E ) < oo for

any c> 1.

Proof. Let ¢>1 and r>0. For xe€J, C #, c€D, choose k, [N such
that

|‘]U|k+1| sr< |JUV<|7 (32)
A‘J(7|(g+1| < cr < A|J0V| (33)
Then we have

J(r\k+l ()C) - B(X, r)7

ENB(x,cr) C Jyjeq ().

[Indeed, it is obvious that J,u.i(x) C B(x,r). Now let yc ENB(x,cr) and
assume y€Jy41(x). Then there exists j</+1 such that 7|, =o0|; and
Tiy1 7 0jy1, and

|y_x| = d<]UU+17JT[j+1) = Ak'-’o[jl = A|JU|£| >cr,



150 M. Wu

which is a contradiction since y € B(x, cr).]
Since ¢>1 and A < 1, k > £. Equations (3.2) and (3.3) imply that

W, w, Wi |, —|we W], —|w
1 B r |Jr7|k| B rL k‘""‘[‘g ko B r‘a kla—IWetily . rl|7 klp—westly
—=—X — —
c cr A|J<TV+1 | Ar(\lwul \nrll:wﬂ l A
k -1
o
< A

which yields
log (A
k—0<1+ Mé A
logry

Now the definition of y implies that
MB()C, cr) < p‘(‘]r7|€+l> < 1 1 A
pB(x, r) 1(olkr1) P p(?

thus

m < uB(x, cr)) <<
im ( sup——= ) < po<oo.
r—0 erI)E /,LB(_X l") p

Proposition 3.3. If A >0 then there exist c;, >0 and c, >0 such that for any

geR
en lim > p(Jy) 7,7

ogeD,

< y/q,ﬂ(q)( E) < Q’M(E)q"ﬁ( 9 < pa.5) (E)

m
< ¢, lim E
n—oo

Proof. Write h= hm,,_m ZUeD w19, h=1lim, Y oen,
1(J,)?7,|”?. Since %”Zﬂ (E) < ﬂzﬁ (E) < Qzﬁ ( ) (see [12]), in order to
prove the proposition, it suffices to verity that

(i) 0<h <oo:>%”jﬁ(")(E) >cy-h
(i) h*oo:>%"ﬂ‘%(E):oo,

(iii) h = 0;»9)‘””‘1(2 0,
(iv) O<h<oo:>9‘m (E) < cph.

(1) If 0 < h < o0, then when n is sufficiently large, we have

h
PONICALTARLES (3.4)

oceD,

Let 6>0 and {B(x;,7;)};cn be a centered d-covering of E. For each i choose
o(i) € Dy, forany n > 1 such thatx; € J, o(i)- For each i € N choose k;, £; € N such that

o1l < 10 < o

Al siyg1] < 1 < Algel-



The Singularity Spectrum f{c)) of Some Moran Fractals 151

Notice that
Jo(i) kw1 (Xi) € B(xi, 1), ENB(xi, i) € Jogiyjg+1(%),

by Proposition 3.2, there exists a probability measure v, supported by E, such
that

(i) i) 7@

V(Uo(i)) = - (3.5)
> e pyy o) o "
Then we have
Zl/qB(x,,r, S qu( Joi)le+1(xi)
_Zﬂu|ﬁwmw|uwm>
ey 1U0) 16"
dmzu Wmlmmmww. (3.6)
If B(q) > 0, then [Jy(pyg1 ()| " < (28)"(2r)"9 1t B(g) <0, then
raldoiels  Ser1 = a,
J g — i i
Motne+1 ()] { "ol s@iels  Se1 = b,
implies that |J,(),+1| = min{r,, 7} - /5. thus
2A
2r; < 2A 0010 € ————< Ws)ti+1l5
" Vol < gy Mo
that is |J,; |[+1| (%)ﬁ@(Zn)ﬁ@. In all cases
o (i))t41 |ﬂ(q> < ki (2"1')‘3([])7 (3.7)
where k; is a suitable constant.
If ¢ <0, ENB(x;,1;) C Jy(i)e,+1 implies that
1(Jo(iyj1)" < p(B(xi mi)7. (338)
If g > @l+1 € B(xi,ri/A) implies that
/’LB Xis A ¢
1(Joie+1)? < (ﬁ) pB(xi, ri)? < m?uB(x;, ri)?, (3.9)

where m 2 sup “ i(;(f;)l ") < 50 (by Proposition 3.2). It follows from (3.5)—(3.9) that
x€E ’

r>0

k
vy(E) < 573 pBlxi,r)* (2r2) "

for a suitable constant k,. Hence

enhE— == v,(E) < #49(E) < #9°9D(E) < #979D(E).
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(i1) h = oo. For any € > 0, we have for sufficiently large n,

ST ) > e

oceD,

by an argument analogous to that of (i), we get
k ;
v(E) < %Z B (x;, ;) (2r;)"@

for any 6 >0 and {B(x;,r;)}, a centered §-covering of E. Hence
2
kzs kz - €

HID(E) > H9VD(E) > #7)(E) > vy (E)

this implies #4719 (E) = oc.
(iii) 2~ = 0. For any € >0,
> ule) | < (3.10)
ogeD,

holds for all sufficiently large n. Let 6 > 0 and {B(x;, r,)} be a centered 6-packing
of E. For each i € N, choose o(i) € D,, Vn such that x; € J,(;), and integers k;, £; € N
such that

1 < ooyl
< A|J0(i)\1{,~ |

Vo) k+1

|
Al giyj+1]

NN

Since
Jo(i) k1 (xi) € B(xi, 1), ENB(xi,1i) C Jo(iyj1(x),
by Proposition 3.2, there exists a probability measure v, supported by E such that
M(Ja|i)q |J<7(i) ‘[3((1)
3
ey 1) |

vg(Joti) = (3.11)

If 5(g) <0, we have
(2r;) B(q) < 27 |J ‘ki+l|ﬁ(q)

If B(q) >0
| = 4 Tallotol s+ 1=a,
o ooyl sk +1=0b
implies |J \k+l| min{rmrb}wﬁ(i)\k[l, i.e.

. 2 B(q) p
<2ri)d(q> < (7) ‘Ja(i)|k,-+1 |J(l])

min{r,, rp}
Thus in both cases, we always have
2" < Kl | (3.12)

where K| is a suitable constant.
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If ¢ <0, we have
p(B(xi, i) < p(Jo(iyer1)?
If g > 0, the proof of Proposition 3.2 implies that
u(B(xi, 1)) < pllo(iyje1)’

Jsi)e+1) >q p
= /’L(Jrri i )
<M( (')\k+1> (Ot

< (po(c))? ( () |k: +1)h
In both cases, we have
1(B(xis 1)) < Kap(oiip1)?,

where K, is a suitable constant.
It follows from (3. 10)—(3.13) that

ZM (xi,7:))* (2r;) KlezM +1)7 (i)\ki+l|ﬂ(q)

Jo(
—KIKZZ[ Z\kﬂ ‘ |k+1|

0 € D1p(Js) Vs |

S nlan 0"

0 € D41

153

(3.13)

<K K, - 621/,1 |k+l) <K1K2'52Vq(3(xiuri>)

=KK, ¢- Vq<UB(xi, r,-)) < KK, e
i

Thus
@‘L@(‘]) (E) < K1K26

for any € >0 and 6 > 0, which clearly implies that g’q A (E) = 0.
(iv) 0 < h < 0o. When n is large enough we have

> ol ()" < 2h,

oceD,

using a similar argument as that in (i). we show

Z,u(B(x,-, ri))q(Zr,-)mq) < KK, -2h

for any ¢ >0 and any centered 6-packing {B(x;,r;)}, of E. Hence
7179)(E) < KKy - 2h=c, - h.



154 M. Wu

3.2. Proof of Theorems.

Proof of Theorem A. We only give the proof for b,(q) = ((g), the proof of
B, (q) = B(q) is similar. For any ¢ > (3(g) = limy_.o Bx(q), there exist infinitely
many k such that ¢ > ;(g). For any F C supp p, we have for sufficiently large
k (UeDkvu | < 6)

B
/L5 Z/‘ ) o] < ZM(J0>{I|JU|‘ M) = L,
then we obtain #% t(supp p) < 1andb,(q) < B(q).
For any t<ﬂ( ), if A%(suppu) =oo, we have b,(q) = B(q). If
A4 (supp 1) < oo, we have %ZM )(supp 1) < oo. Since %Z’*g(")(supp p) <
A" (supp 1) and one has 1 < ((g) for k large enough, we have

7wl W > 3T o) Y =1,

o€ Dy o€ Dy

lim > pu(J,) 1)

k—o0 o€ Dy

Now by Proposition 3.3, we get %Zﬂ(")(supp p) >0, this implies b,(q) > B(q).

which implies

Proof of Theorem B. Since for any g€ R, §'(g) exists, then Va € (&, o), there

exists a unique ¢, such that a:%zq), whereupon 3% () = —'(qa)qua+

B(ga) = aqo + B(qa). If J/’q” (@) (supp 1) = 00 >0, by Theorem 2.1 [8], we
have
fula) = Fy(a) = 6*(a).
If ]/q” (@) (supp 1) < 00, by Proposition 3.3, we have
H ! 4a) (supp p1) = e hm Z SLAVALLD)
UGD

Now1f11m,,_>OO Y oen, M) "y #4) > 0, by Theorem 2.1 of [8], we have f, () =

F.(a) = 3*(a). By a direct calculation, we can get 5(q) — 3,(q) = ( ), by (2.1),
we have EgeDn M(]U)q“ Ja_|ﬁ((1a ‘J | (9a) ﬁlz(‘ht) (mln{r rb}) B(qa)— ﬂn(qg))’

therefore

I Io)* 75| > 0.
lim rT;”u( o) o

If « ¢(a,@), by Lemma 4.4 of [2], we have E(a) = ¢, this completes the
proof.

Remark. Let A ={ay,az,...,an}. w=s153---s¢--+ is a sequence over A,
‘S]Sz"-sklai

si€A. If for any a; €A, limy_,oc — =n; >0, then we say that the sequence
w has the frequency vector 7 = (91,72, - - -, Thm)-

For the Moran fractals associated with this kind of sequences, our method in
this paper can be employed to give the similar result as in the Fibonacci case.
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