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1. Introduction

Recently, Hartono, Kraaikamp and Schweiger [6] introduced a new continued
fraction algorithm with non-decreasing partial quotients, called the Engel contin-
ued fraction (ECF) expansion. Basic and ergodic properties of this expansion were
studied. The name of this new continued fraction expansion is ‘borrowed’ from the
classical Engel Series expansion, although it should be stressed that the ECF-
expansion of a number x € (0, 1), and the corresponding Engel Series expansion
of x hardly have anything in common, except that for both types of expansions the
sequences of digits are non-decreasing sequences of positive integers. To illustrate
this point a little bit further, recall that the Engel Series expansion of any x € (0, 1)
is generated by the map S: [0,1) — [0, 1), given by

S(x) == (H +1> G—ﬁ) x#0; S(0):=0,

where [€] is the largest integer not exceeding &, see also Figure 1. Note that the Engel

Series map S is in fact equal to the Liiroth Series expansion map, normalized by [1 /x|

(see e.g. Section 2.2 in [1] for more information on the Liiroth Series expansion).
Using S, one can find a (unique) series expansion of every x € (0, 1), given by
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where g,(x) = [1/8""1(x)] + 1, n > 1. In fact, it was Sierpinski [14] in 1911 who
first studied these series expansions. Note however, that the Engel Series expan-
sion can be also written as an ascending continued fraction
14+

IO

92(x)

q1(x)

and as a continued fraction expansion of x it has been studied as early as 1202 by
Fibonacci in his classical book Liber abaci [3].

The metric properties of the Engel Series expansion have been studied by Erdos,
Rényi and Sziisz [2] and Rényi [10]. Schweiger [11] showed that S is ergodic and
Thaler [15] found a whole family of o-finite, infinite invariant measures for S.
Fractal properties of exceptional sets related to the Engel Series expansion have
been discussed by Liu and the second author, see [16, 9]. Further information on the
Engel series can be found in Galambos [4, 5] and Schweiger [12].

In [6], Hartono, Kraaikamp and Schweiger introduced and studied a variation
of the classical regular continued fraction (RCF) expansion. As is well-known, for
every x€(0,1), the RCF-expansion of x can be obtained using the so-called
Gauss-map T : [0,1) — [0, 1), defined by

T(x) =+ — H x#0; T(0) =0,

1+
1+
X =

X X
Now — as the Engel Series expansion map is equal to the Liiroth Series map
divided by [1/x] — the Engel continued fraction (ECF) map Tg : [0,1) — [0, 1) is
given by

x#0; Tg(0) :=0, (1)

hence the name, ECF (see also Figure 1).

1 .. . . . 1

.....

11 1 1 11
0...543 5 1 O...54

Figure 1. The Engel Series expansion map S (left), and the ECF-map T (right)
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For any x € (0, 1), the ECF-map generates a new continued fraction expansion
of x of the form

1
b (x) ’
bn_l(x)
ba(x) + -

where b,(x) = [1/T{'(x)], n = 1. We denote the continued fraction in the right-
hand side of (2) — the ECF-expansion of x — by [[0; by, ba, . .., by, . . .]]. Note that for
x€(0,1) one has that ¢ (x) = b;(x) + 1, but that in general no apparent relation
exists between ¢,(x) and b,(x) for n > 2.

Hartono, Kraaikamp and Schweiger [6] studied the ergodic properties of Ty
associated to this new continued fraction expansion. They showed that 7T has no
finite invariant measure equivalent to the Lebesgue measure A, but that T has
infinitely many o-finite, infinite invariant measures. Also it is shown that T is
ergodic with respect to .

Clearly, as S is a piecewise linear map, and T is a continued fraction map (see
Figure 1), the metric properties of the ECF-expansion are quite different from
those of the Engel Series expansion. For example, in [10] Rényi introduced the
random variables e, = g¢(x) (k = 2,3, ...), defined as the number of times that the
integer k occurs in the non-decreasing sequence of digits (g,(x)), > ;. It is shown
that the ¢; are independent variables and that the distribution of ¢, is given by
P(ex =r)=(k—1)/k"" (r=0,1,...). From this Rényi obtains most of the — at
that time — known and several new metric results for Engel’s series. Since T is a
continued fraction map, the random variables ¢, now defined for the ECF, are not
independent, and Rényi’s elegant approach cannot be applied here. See also the
recent paper by Schweiger [13], where it is shown that algorithms — similar to the
Engel Series expansion or the ECF — ‘producing’ monotonically non-decreasing
sequences of digits can have very different metric behavior.

The aim of this paper is to derive metric properties of the digits (b,(x)), > |
occurring in the Engel continued fraction expansion. We also give the Hausdorff
dimensions of different kinds of exceptional sets on which the metric properties
fail to hold.

This paper is organized as follows. In Section 2, we recall the basic properties
of the Engel continued fraction expansions. Section 3 is devoted to study the
metric properties of the digits. Also some fractal properties of exceptional sets
are mentioned in this section.

b,,(x) € N> bn(x) < bn+1(x)7 (2)

b1<x)+
by(x) + .+

2. The Engel Continued Fraction (ECF) Expansions

In this section we recall some basic properties of the ECF. Let x € (0, 1), and
define
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From definition (1) of T, it follows that
1 1

X = T e e e y

bi(x) + by (x)Tg(x) by (x) + bi(x)

where T9(x) = x and T} (x) = Te(Tp ' (x)) for n > 1 and
lgbl( ) \bZ(x)\ <bn(x) <

As usual the convergents are obtained via finite truncation,

Pa(x) _ 1
Gy, (x) + - by (x)
by(x)+---+ b ()
where Py(x) := 0, Qo(x) := 1. We have (see [6], Proposition 2.1)
Py ( ) = ba(x)Puy (%) + byt (x) Paa(x)  for n =2, (3)
0,(x) = by (x)On—1(x) + by—1(x)On—2(x) for n > 2. (4)
From (3) and (4), one has
Pp(x)Op-1(x) = Ppo1(x)On(x) = ) 1I_Ib for n = 2. (5)

For any x € (0, 1), let { g”(fcg ,
<x> n

then lim,,_, o, o =X and for any n > 1,
Py(x )+b () T (x) P (x)
= 0,0) + B TEW 01 (1) ©)

For any n > 1 and by, by, ...,b, €N with b; < b, < --- < b, we define the
cylinder sets B(by,by, . ..,b,) by

B(bi,ba, ..., by) = {x€(0,1): bi(x) = b1, ba(x) = bs,...,bu(x) = by}

The following results have been obtained in [6] and will play key roles in the
sequel.

n>= 1} be the sequence of ECF-convergents of x,

Lemma 1. For any n = 1 and by, b,, ..., b, eNwith by < b, < --- < b,, we

have
H}: 11 bj

AB(b1,bs, ..., by)) 00+ 00

where Q, is obtained by (4) recursively.

Lemma 2. For any n = 1 and by,b;,...,b,eNwithb) < b, < --- < b,
)\( (b17b27"'7bn>) < (313)"
b <Ten, b, + 1 324
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For any n > 1 and x € (0, 1), setting
Zn(x) = by (x)TE(x).

Lemma 3. Let v = gﬁ, then

A{x€(0,1) : z,(x) <t}) = t(1 + O(")).

3. Metric Properties of {b,(x),n > 1}

In this section, we will study the metric properties of the digits occurring in
the ECF. We shall make use of the following more general result obtained by
Galambos [4].

Lemma 4. Let X1,X5,...,X,,... be random variables defined on a given
probability space and assume that

(1) the X’s are uniformly bounded from below, i.e., there is a fixed real
number M such that

(i) lim,_. EX, = 0;
(iii) the variance

Var(é > o(n') (0<r<2).

Then

1L
P(,}LTOZ;X" = 0) =1.
Erdos, Rényi and Sziisz showed in [2] that for the Engel Series expansion for

A-almost all x

lim g,/ (x) = e,

n—oo

see also [5, p. 101]. For the ECF a similar result holds.
Theorem 5. For A-almost all x € (0, 1),
lim bY/"(x) = e.

n—oo

Proof. For any x€ (0,1) and n > 1, setting

v1 () _ bun (OT2()
bn (x) Zn(x) 7
where {z,(x),n > 1} are defined in Section 2, and
X, (x) = logR,(x) — 1.
Now we check that {X,(x),n > 1} satisfies (i), (ii), (iii) in Lemma 4.

R, (x) =



290 C. Kraaikamp and J. Wu

It is clear that X,,(x) = —1 for any n > 1, thus (i) is satisfied.
Since by the algorithm of ECF,

1

by, Tex) — 1| < —————
R

)

we have

log R,(x) = —log z,(x) + O(ﬁ) (7)

with a uniform constant in O(-).
Let F,(r) be the distribution function of z,(x), by Lemma 3, we have

1

E(—logz,(x)) = Jo —logt dF,(t) = 1+ 0(").

E(logR,(x)) =14+ 0(y") + ( ( bny1(x) >>

By Lemma 2 and the Borel-Cantelli lemma, we know b,(x) — oo a.s., thus
lim EX,(x) =0, (8)

Thus

and

E Xi(x) | =o(n). 9
(2x00) = ot o)
Now we estimate E( ", X»(x))z.

EX2(x) = E(log R, (x) — 2log R,(x) + 1)

—E <log “2n(x) — 2log 2,(x)0 ( bn+11 (x) )

+0<bg+11( )> — 2log Ra(x) + 1).

Since
E(log?z,(x)) = J; log?t dF,(t) =2 + 0(y"),
E(— 210gzn(x)0<bn+1l(x) >> = O(Elogz,(x)) = O(1),
we have

EX2(x) = O(1). (10)
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Now
E(Xi(x) + Xa(x) + -+ + X, (x))°
< 2E(X1 (%) + Xo(x) + -+ + X, (0)7 + E(Xp 1 (x) + -+ + X, (x))

= 0(p?) +2 Z EX;(x) +4 ) EX(x)Xn(x)),

k=p+1 p<k<m<n

2

where p = [n'/4]. For any p <k <m < n, by Lemma 1 and (4), we have

E(X; (X)X, (x))
) )
_ ((1 g%q) <1ogb’b":—1)>A(B<b1,...,bm,bm+l>>

1 < < m+l

= ( b"“ ) (B(by,...,by))

by << by
( b1 1) MB(b1, ..., by, bmi1))
S AB(by, . ..,by))

S <1ogb2—j—1>A<B<bl,...,bm))
L <b

Z <log b1 _ 1) bu(1+y)
bm (bm+l + bmy>(bm+l +1+ bmy) 7

bm+ 1= hm

where y = % Since

Z <IOg bm+1 N 1> bm(l +y)
b (bm+1 + hm.V) (bm+1 + 1+ bmy)

bm+l = bm
b1 4b,,
< I —1
\ ( %, ) 52

bml> m m+1

I

<

Z (10g(i—|—1)—1)j4

b
Jbm < bysy < (+1)by, m+1

(log (j + >—1>%:—M1,

1

j=1
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we have
E (X (%)X (x))
b
<M ) <10g%— 1))\(B(b1,...,bm))
by < < by k
b
=M ) <1og%— 1>A(B(b1,...,bk+1))
by < < brs k
= M E(Xi(x))
1
=0(* +EO<—)
o biy1(x)
1
= 0(") + E0<—>.
) bp(x)
It follows

3 E(Xk(x)xm(x))<n2(0(»y"‘“)+0<E ! ))

p<k<m<n

For any g = 1, by Lemma 2,

L _ )\(B(bl,bz,...,bq))
E(50) 2.7 n

by < <b
< 2 Z )\(B(blubZa .. :bq>) < Z’Yq,
by << by bq +1
thus

S EX)Xu) <n?(0(y")). (11)

p<k<m<n

By (10) and (11), we have
E(X\(x) + X>(x) + - + X, (x))* = O(n). (12)

By (8) and (12), {X,,(x),n > 1} satisfies (ii), (iii) in Lemma 4. By Lemma 4, we
have for A-almost all x€ (0, 1),

lim b!/"(x) = e.

OJ

Theorem 5 has a number of corollaries, reminiscent of classical results by Lévy
and Khintchine for the regular continued fraction expansion (RCF). Khintchine
[7] showed in 1935 that for A-almost all xe(0,1), with RCF-expansion
x=1[0;a,ay,...],

0 1 Tog2
Jim (a) a3 - - "’">1/n:H<1+k(k+1)> T —2.6854... .
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An immediate corollary of Theorem 5 is the following ‘Khintchine-type’ result for
the ECF.

Theorem 6. For A\-almost all x€ (0, 1),

lim (by by - b))/ = e =1.64872... .

n—oo

In 1929 Paul Lévy [8] showed, that for A-almost all x € (0, 1) one has that

—7?

_ pn(x) _
6log2

qn(x)

1
lim — log =-23731...,

n—oon

X

where (p,(x)/qn(x)), > | is the sequence of RCF-convergents of x. For the ECF we
have a similar result for the convergent rate.

Theorem 7. For A-almost all x€ (0, 1),

Proof. By (5) and (6),

‘x . Py(x) _ ‘ Py(x) + bn (%) T (x) Pri (x) . Py(x)
Q. (x) On(x) + bn(x)Tg(x)Qn—l (x)  Oulx)
Tp(x) [Ty b;(x)

Since
1 <Th(x) < 1
x) < ,
bpri(x) +1 E byi1(x)
we have
[T bi(x) Pox) | _ T

2020 () 'x_ On(x) |~ Q(x)bysa (x)

Notice that
hn(x)Qn—l(x) < Qn(x) < an(x)Qn_l(x), (13>

we have

n+1 —1 n+1 —1
2~ (2t (Hb,-@)) < ‘x - < (Hbj(x)) .
J=1 J=1

By Theorem 6, we have for A-almost all x € (0, 1),

P,(x)
On(x)

n—oo N

R 1
lim — E log bj(x) = X
=
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thus for A-almost all x€ (0, 1),
1

>

Py (x)
On(x)

1
lim — log =

X
n—oo n2

O

In view of Theorem 5 it is natural to consider for o > 1 the sets A(«), defined
by

A(a) = {x€(0,1) : lim b)/"(x) = a}.
n—oo
In [9] and [16] similar sets A(a) were introduced for the Engel Series expansion,
and it was shown in [9] that for any « > 1, the Hausdorff dimension dimy A(«)
equals 1, thus settling a question raised by Galambos in [5]. This result can be
generalized to the ECF, i.e., for the ECF one has that

d}qu(a) =1, forany a>=1.

There are two other classical results on RCF by Lévy [8], for which similar
results hold for the ECF. Lévy showed that for A-almost all xe€ (0, 1)

2

lim 1 logg, = T
n—oon 121log?2
and
tim L log (A, () =
n—oon 6log2
where

An<x) = {yG <0a 1) S ai (y) =da (x)7 s aan(y) = an(x)}'

The following ‘Lévy-type’ theorem on ECF is a direct consequence of (13),
Theorems 5 and 6, and the fact that Qp(x) = 1.

Theorem 8. For A-almost all x€ (0, 1),

1

. 1
lim — log O, (x) = 3

n—oon

and
lim - Tog (A(Ba(x)) = —
n—oo n2 2

Here B,(x) is the abbreviation of B(by,bs,...,b,), if the ECF-expansion of x is
given by x = [[0;by, by, .. ]].

We consider again the random variables R, (x), defined by

bn+1 ()C)

Rn(x): b,,(x) 5

=1,2,... .

We have the following result.
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Theorem 9. The sequence @27:1 bgéi’;), n = 1, converges in probability to
J

1. That is to say, for any fixed € >0,
1 by (x) ‘ }
—1|>e,=0.
nlogn; bj(x)

Proof. Fix n = 1. For any 1 < k < n, define

n—oo

lim )\{xe (0,1) :

b1 (%) ie brpi(x)
Ux) = { iy F g < nlogn
0 otherwise,

0 if 210 < y1ogn
Vi(x) = bi(x)
() { 7 otherwise.

(%)

Then
1 1 bk+1(x)
A 0,1 —1|>
{xe( 1) nlogn; by (x) ¢
1 n
</\{x€(0,1) Uk(x)—1‘>5}
logn
+Mxe(0,1): ) Vilx) #0}
=1
=: MA,) + A(By).
By Lemma 1,
bit1(x) }
A xe(0,1 >nlogn
{ .1 by (x) s
= > > ABOb, - b bein)
by < < by by = nlogn-by
br(1+y)
= A(B(by,..., b)) ,
by <Z:< b bt = ognbs (brs1 + bry) (brsr + 1 + bry)
where y = % Since
bi(1 +)
bens Stoens, Ortt +0xy) (bt + 14 biy)
2by, < 1 )
< =0 )
bt Zglogn-bk b nlogn
we have
" bk+1(x) 1
AB,) < Axe(0,1): >nl =0 . 14
<Y fren: 58S s moenf —o( L0 ) a9
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Forany 1 <k <n,

b
EU(x)= Y. 3 %/\(B(bl, b beyy))
by < - < by by < biyy <nlognby K
= > AB(b, ..., b))
by < < by
brv1 bi(1+y)
b (brsr +bey) (bryr + 1+ bry)

X

by < bry < nlogn-by

Since
bri1 br(1+y)
N by b 1
~ == _
bi < biyy < nlognbg br by, by < byt < nlognby bit1

~ logn,

where f; ~ g, denotes there exist positive constants C;, C, such that
Cifi < gk < Cofy. Thus

EUi(x) = logn. (15)
We claim that
EU,
m EU,(x) =1. (16)
n—oo logn
In fact,
by
EU,(x) = > “NB(b, - b b))
by < -+ < by by < byyy <nlognb, "
= > AB(,....b)
by < <b,
« bn+1 . bn(l +y)
by < b1 < nlogn-b, b}’l (bn+1 + bn}’)(anrl + 1 + b}’ly)
Since
bn+1 . bn(l +y)
by < bysy < nlogn-b, by (bn+1 + bny)(bn+1 +1+ bny)
bn+1 bn

bn ' bn-‘rl(bn—H + 1)

b, < b,y < nlogn-b,
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+ bn+1 ( bn(l +y)
by < bus1 <nlogn-b, by (an + bny) (bn+1 +1+ bn}’)
by
byt (st + 1))
B 1
B byt + 1

bn < bn+l < "IOgn'bn

bn+1 bny
Py be()

by < by < nlogn-b, n+1
= > 1 o(1) L logn
by < bpyy < nlognb, bpi1 +1 by +1
by Lemma 2, we have
EU,(x)
n—oo logn
thus (16) holds.
Notice that 1 < k < n.
bi.
EUI%(X) = Z —;A(B(bla"wbkvbl&rl))
by < < by by < by < nlogn-by k
= AB(bi,...,by))
by < <y
% b]%“rl ) bi(1+y)
b < byt < nlognby b2 (brs1 + biy) (bt + 1+ bry)
bI%H b

A B b)) X > .
by < < by

by < by < nlognb, “k k+1

~ nlogn,

by Chebyshev’s inequality and (15), we get

n

> (Ukx) — E(Ui(x)))

k=1

)\{xe 0,1):

3 Var(ZZ:1 Uk(%>)2< E(ZZ_IUk(X))z2< nS " E(U(x))
(T E@) (X EW)) (X BUW)

logn
—0(————).
(logz(nlogrl))

2
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That is to say, ST B G0 Zk , Ux(x) converges in probability to 1. Since
k= ]
lim,, . Elngn) =1by (16), we get
li E(U =1.
nLnolc n log n Z
Thus P(A,) — 0 as n — oo. 0

Remark 10. By (15), we know ER,(x) = oo for any n > 1.
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