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Abstract. Kinetic models for chemotaxis, nonlinearly coupled to a Poisson equation for the chemo-
attractant density, are considered. Under suitable assumptions on the turning kernel (including models
introduced by Othmer, Dunbar and Alt), convergence in the macroscopic limit to a drift-diffusion model
is proven. The drift-diffusion models derived in this way include the classical Keller-Segel model.
Furthermore, sufficient conditions for kinetic models are given such that finite-time-blow-up does not
occur. Examples are given satisfying these conditions, whereas the macroscopic limit problem is known
to exhibit finite-time-blow-up. The main analytical tools are entropy techniques for the macroscopic
limit as well as results from potential theory for the control of the chemo-attractant density.
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1. Introduction

Chemotaxis is a process in which bacteria, or, more generally, cells, change
their state of movement, reacting to the presence of a chemical substance,
approaching chemically favourable environments and avoiding unfavourable ones.

Generally, the movement of bacteria is composed of two different phases, a
‘‘run’’ phase and a ‘‘tumble’’ phase. The ‘‘run’’ phase consists of a directed move-
ment in a straight line, while the ‘‘tumble’’ phase is the reorientation. In the case of
Escherichia coli, this ‘‘tumble’’ is accomplished by signal transmission between
the receptor complexes (which detect the presence of chemical substances and are
located basically in the poles of the cells) and the flagellar-motor complexes
(usually 5 to 10 complexes randomly distributed around the cell and embedded
within the cell membrane) [3].
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In fact, this increases the length of the ‘‘run’’ phase (while the ‘‘tumble’’ phase
remains essentially invariant) producing a biased random walk in the direction of
the gradient of the chemical substrate [30]. This is the general behavior for flag-
ellated bacteria [1]. On the other hand, in the case of amoebae or leukocytes, the
presence of a chemical substance changes the turning pattern, i.e., the ‘‘tumble’’
phase. See [1] and references therein. The ‘‘tumble’’ phase is in general much
shorter than the ‘‘run’’ phase [3].

It is important to stress that chemical gradients are not the only factor to influence
bacterial movement, a process called taxis. Light, pH and oxygen concentration do it
as well. In general, bacteria look for optimal conditions for growth, but they can also
move looking for aggregation. The last case has been particularly studied for the
case of the slime mold amoebae Dictyostelium discoideum (see [15]).

Chemotaxis is also important for other biological phenomena, like the embry-
ological development, where cells migrate to form complex organs [7] and in the
immunological response. In this case, leukocytes, the cells responsible for the
immune response, migrate from the bloodstream to respond to foreign antigens
[7, 27].

The mathematical study of chemotaxis started with the work of Patlak [24],
and was boosted by the papers of Keller and Segel, where they introduced a model
to study the aggregation of Dictyostelium discoideum due to an attractive chemical
substance [17] and made some further comments and studies [18, 19]. We refer to
the reference [16] for a review about the first years of research on the Keller-Segel
model.

Their model consists of an advection-diffusion system of two coupled para-
bolic equations:

@t� ¼ r � ðDr�� ��rSÞ ; ð1Þ
@tS ¼ DSDSþ ’ðS; �Þ: ð2Þ

In these equations � ¼ �ðx; tÞ5 0 is the cell density at position x and time t, and
S ¼ Sðx; tÞ5 0 is the density of the chemo-attractant. The positive constants DS

and D are the diffusivity of the chemo-attractant and of the cells, respectively, and
�5 0 is the chemotactic sensitivity.

In general the substance S does not only diffuse in the substrate, but it can also
be produced by the bacteria themselves. The role of the function ’ðS; �Þ is to
describe the interaction between both quantities. One typical example is given by

’ðS; �Þ ¼ ��� S

�S
�; �S 5 0 ; ð3Þ

which describes the production of the chemo-attractant by the bacteria at a con-
stant rate � as well as chemical decay with relaxation time �S. Since the bacterial
movement is directed toward the higher concentrations of S, the coupling is
attractive.

An important question for the above system is if its solutions blow up in finite
time (see, e.g., [4, 9, 10, 20, 23]). In [8] and references therein it is proved for the
Keller-Segel model that – when the space dimension n is equal to 3 – blow up can
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happen even for small initial conditions. Blow up never holds for n ¼ 1, and the
case n ¼ 2 with spherical symmetry is a borderline case, where blow up may occur
or not, depending on the size of the initial conditions (see also [20, 8]). Blow up
can be prevented by a modification of the Keller-Segel model, where the chemo-
tactic effect is turned off at a saturation density [12].

The transport equation (1) in the Keller-Segel model can be derived as a
macroscopic limit of a stochastic many particle system [29]. The aim of this work
is to study kinetic models of chemotaxis and their macroscopic limits. A kinetic
equation for the phase space cell density has first been introduced by Alt [1, 2],
and further been studied by Othmer, Dunbar and Alt [21]. Here a kinetic model is
considered, coupled to an equation for the chemo-attractant, and modeling
assumptions are given, such that the Keller-Segel equations (1)–(3) can be derived
rigorously as a scaling limit. In the papers [11] and [22] a formal deduction has
been presented, but no rigorous proof is available yet.

From now on we consider chemotaxis in 3 dimensions, i.e. n ¼ 3. The kinetic
or ‘‘velocity jump’’ model introduced in [21] is an equation for the phase space
cell density f ¼ f ðx; v; tÞ5 0, where x, v, and t denote, respectively, position,
velocity, and time:

@f

@t
þ v � rxf ¼

ð
V

ðT ½S�f 0 � T�½S�f Þdv0: ð4Þ

Examples for the dependence of the rate T ½S�ðx; v; v0; tÞ5 0 on the density of the
chemo-attractant S can be found in section 5. The abbreviations f 0 ¼ f ðx; v0; tÞ,
T�½S� ¼ T ½S�ðx; v0; v; tÞ are used in (4). In this model it is assumed that the tumble
(the reorientation) is a Poisson process with rate

�½S� ¼
ð
V

T�½S�dv0 ;

and that T�½S�=�½S� is the probability density for a change in velocity from v to v0,
given that a reorientation occurs for a cell at position x, velocity v, and time t.

The set of admissible velocities is denoted by V and assumed to be compact.
We restrict our attention to spherically symmetric V , with balls, spheres, or spher-
ical shells (with the center in the origin) as typical examples. When V is a sphere,
dv has to be understood as the surface measure.

In [21], birth-death processes are also considered, adding�
@f

@t

�
bd

¼ rð�Þf

to the right hand side of (4), where rð�Þ is a function of the cell position density,

�ðx; tÞ ¼
ð
V

f ðx; v; tÞdv : ð5Þ

In this paper we do not consider birth-death processes. This puts a limitation on
our model, which is valid only in intervals of time where cell-division is not
important.
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Equation (4) is an example of a Boltzmann-type integro-differential equation
which has originally been introduced for the study of moderately rarefied gases.
Macroscopic (or fluid) models, where the velocity distribution is described by a
finite set of space-time dependent quantities, can be derived from kinetic models
by a classical procedure, the Hilbert expansion. An introduction to the mathemat-
ical aspects of Boltzmann-type equations and their diffusion limit can be found in
[5].

In [11] and [22], Othmer and Hillen studied the diffusion limit of Eq. (4),
without and with chemotactic effects, respectively. Their analysis is based on
the assumption that the chemotactic influence on the tumbling can be seen as a
perturbation of a dominating isotropic, i.e., ‘‘aimless’’, reorientation. We make this
assumption specific by postulating a relation �0 ¼ "�1, where �0 and �1 are typical
times between aimless and chemotactically oriented turning processes, respec-
tively. The dimensionless parameter "> 0 is small. Now we perform a nondimen-
sionalization of the system (2), (3), (4). We scale velocity in the kinetic equation
by the maximal speed v0 occurring in V . According to the above assumption, the
turning kernel is written in the form

T ½S� ¼ T"½S=S0�
�0v

d
0

;

with an appropriately chosen reference value S0 for the chemo-attractant density
and the dimension d ¼ 2 or d ¼ 3 of the velocity set V . For time and length we use
a diffusion scaling with reference values t0 ¼ �0="

2 and x0 ¼ v0�0=", respectively.
Finally, we introduce the reference values �0 ¼ S0DS=ð�x2

0Þ for the macroscopic
cell density as well as f0 ¼ �0=v

d
0 for the distribution function. The nondimensional

version of (2), (3), (4) then becomes

�
@S"
@t

¼ DS" þ �" � �
t0

�S
S" ; ð6Þ

"2 @f"
@t

þ "v � rxf" ¼ �T"½S"�ðf"Þ ; ð7Þ

with

T"½S�ðf Þ ¼
ð
V

ðT�" ½S�f � T"½S�f 0Þdv0 ;

and with the dimensionless parameter � ¼ v2
0�0=DS. Partially, the same symbols

are used for scaled quantities as for their dimensional counterparts.
Our main scaling assumption is the smallness of ". We also assume that the

relaxation time �S of the chemo-attractant is at least of the order of magnitude of
the diffusive time scale t0. The parameter � measures the strength of the diffusivity
of the cells compared to the diffusivity of the chemo-attractant. We assume that �
is small and set � ¼ 0 as an approximation:

�DS" ¼ �" ¼
ð
V

f" dv : ð8Þ
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Finally, we assume that the environment for the cells is large compared to the
reference length x0. As an approximation we consider the whole space problem for
(7), (8) subject to the initial conditions

f"ðx; v; 0Þ ¼ f 0ðx; vÞ x2R3; v2V : ð9Þ
The behaviour of S" at infinity is fixed by using the Newtonian potential solution of
(8):

S" ¼ �"�
1

4�jxj ; i:e:; S"ðx; tÞ ¼
1

4�

ð
R3

�"ðy; tÞ
jx� yj dy : ð10Þ

We point out that the last two approximations (� ¼ 0, whole space problem) do not
make an essential difference from the mathematical point of view. For the problem
with � > 0 and=or a bounded domain with appropriate boundary conditions, the map
�" 7! S" would be more regular. All our results can be extended to this case with an
adaptation of the proof which takes into account the additional difficulties related to
the heat equation.

Assuming that S" is given, smooth enough, and "-independent, Othmer and
Hillen [22] derived the linear chemotaxis model (1) from (7) formally by the
Hilbert expansion procedure in the limit "! 0.

In this paper, we find conditions which guarantee that the coupled nonlinear
problem (7)–(10) has Keller-Segel type equations as its macroscopic drift-diffu-
sion limit. Note that the nonlinear coupling is due to the dependence of the turning
kernel T" on the substrate density S". From a mathematical point of view, this part
of our work is closely related to [26], where the macroscopic limit of the Vlasov-
Poisson-Fokker-Planck system is derived. We also show that for suitable turning
kernels, blow up can be prevented on the kinetic level, although blow up is known
to occur for the corresponding macroscopic limit.

The rest of this paper is organized as follows: In Section 2 the macroscopic
equations are derived by formal asymptotic methods. In Section 3 we show that,
under appropriate assumptions on the dependence of the turning rates on the
chemo-attractant, the kinetic model (with fixed "> 0) has a global solution and
blow up in finite time does not occur. In Section 4 the diffusion limit is carried out
rigorously for short enough time intervals. Note that this is the best result to be
expected, since blow up occurs in the macroscopic limit problem. Two classes of
modeling examples are presented in Section 5. Both examples satisfy the assump-
tions of the convergence result and one of them the global existence theorem.

2. Drift-Diffusion Limit: Formal Computations

In this section the limit "! 0 is carried out formally in (7), (10). The resulting
macroscopic model depends on the properties of the turning operator T"½S�. A first
basic property is conservation of cells: The integral of T"½S�ðf Þ with respect to
velocity vanishes, leading to the macroscopic conservation equation

@�"
@t

þr � J" ¼ 0 ; ð11Þ
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with the flux density

J"ðx; tÞ :¼
1

"

ð
V

vf"ðx; v; tÞdv :

The following analysis is based on the assumption that the turning kernel has
an asymptotic expansion of the form

T"½S� ¼ T0½S� þ "T1½S� þ Oð"2Þ : ð12Þ

Then the turning operator can be expanded analogously with coefficients

Tk½S�ðf Þ ¼
ð
V

ðT�k ½S�f � Tk½S�f 0Þdv0 :

Our aim is the derivation of equations for the leading order terms in the expansions

f" ¼ f0 þ "f1 þ Oð"2Þ; S" ¼ S0 þ "S1 þ Oð"2Þ :

Substitution into (7), (10) gives the leading order equations

T0½S0�ðf0Þ ¼ 0 S0 ¼ �0 �
1

4�jxj with �0 ¼
ð
V

f0 dv : ð13Þ

Comparing coefficients of " in (7) gives

v � rxf0 ¼ �T0½S0�ðf1Þ �T1½S0�ðf0Þ �T0S½S0; S1�ðf0Þ ; ð14Þ

where T0S½S0; S1� is a turning operator whose kernel is the Frechet derivative of T0

with respect to S, evaluated at S0 in the direction S1.
Before proceeding further, we need assumptions on the leading order turning

operator:

(A0) There exists a bounded velocity distribution FðvÞ> 0, independent of x, t,
and S, such that the detailed balance T�0 ½S�F ¼ T0½S�F0 holds. The flow produced
by this equilibrium distribution vanishes, and F is normalized:

ð
V

vFðvÞ dv ¼ 0 ;

ð
V

FðvÞ dv ¼ 1 : ð15Þ

The turning rate T0½S� is bounded, and there exists a constant � > 0 such that
T0½S�=F5 �, 8 ðv; v0Þ2V �V , x2R3, t> 0.

Remark 1. It is a generalization of earlier work [22] that a general equilibrium
distribution is allowed instead of only constants with respect to velocity.

The aimlessness of the leading order turning processes mentioned above is
reflected in the fact that the flux density and, thus, the mean velocity of the
equilibrium distribution is zero.

Before the assumption is used, we state a useful formula.
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Lemma 1. Let 	 : R ! R, g : V ! R, and let


S"½S� ¼
T"½S�F0 þ T�" ½S�F

2
;


A" ½S� ¼
T"½S�F0 � T�" ½S�F

2
;

denote the symmetric and, respectively, antisymmetric parts of T"½S�F0. Thenð
V

T"½S�ðFgÞ	ðgÞdv ¼
1

2

ð
V

ð
V


S"½S�ðg� g0Þð	ðgÞ � 	ðg0ÞÞdv0 dv

� 1

2

ð
V

ð
V


A" ½S�ðgþ g0Þð	ðgÞ � 	ðg0ÞÞdv0 dv : ð16Þ

The same holds for Tk½S� with analogous definitions of 
Sk ½S� and 
Ak ½S�.
Proof. The proof is a straightforward computation. First the left hand side is

rewritten by interchanging v and v0 in the double integral. Then the arithmetic
mean of both representations is taken, and the (anti)symmetry properties of 
S"½S�
and 
A" ½S� are used.

Note that assuming the expansion (12) and the assumption (A0), the symmetric
and antisymmetric terms introduced above have the asymptotic expansions


S"½S� ¼ T0½S�F0 þ Oð"Þ ;


A" ½S� ¼ "
T1½S�F0 � T�1 ½S�F

2
þ Oð"2Þ : ð17Þ

This shows that for monotone 	 the leading order contribution to the right hand
side of (16) has a sign. This observation is the basis of entropy arguments in the
convergence proof in Section 4 and in the following classical result. We give a
proof for the sake of completeness.

Lemma 2. Let (A0) hold. Then, the entropy equalityð
V

T0½S�ðf Þ
f

F
dv ¼ 1

2

ð
V

ð
V


S0½S�
�

f

F
� f 0

F0

�2

dv0 dv5 0

holds. For g2L2ðV; dv=FÞ, the equation T0½S�ðf Þ ¼ g has a unique solution
f 2L2ðV ; dv=FÞ satisfying

Ð
V
f dv ¼ 0 if and only if

Ð
V
g dv ¼ 0.

Proof. The entropy equality is an application of the previous lemma with
g ¼ f=F and 	 ¼id. The detailed balance assumption in (A0) is equivalent to

A0 ½S� ¼ 0. It is a direct consequence of cell conservation that

Ð
V
g dv ¼ 0 is a

necessary condition for solvability of T0½S�ðf Þ ¼ g. For
Ð
V
f dv ¼ 0, the entropy

equality and assumption (A0) lead to the estimate

ð
V

T0½S�ðf Þ
f

F
dv5

�

2

ð
V

ð
V

FF0
�

f

F
� f 0

F0

�2

dv0 dv ¼ �

ð
V

f 2

F
dv ; ð18Þ

since 
S0½S�5 �FF0 holds. The statement of the lemma is now a consequence of the
Lax-Milgram lemma.
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It is a consequence of the entropy equality that the kernel of T0½S� is spanned
by the distribution F. Thus, we deduce from the leading order Eq. (13) that

f0ðx; v; tÞ ¼ �0ðx; tÞFðvÞ ;
with �0 (to be determined) being the macroscopic cell density corresponding to f0
(by the normalization of F). Since the equilibrium distribution is independent of S,
the term T0S½S0; S1�ðf0Þ vanishes (by linearization of the detailed balance equa-
tion) and the Oð"Þ-equation (14) reads:

T0½S0�ðf1Þ ¼ �vF � r�0 � �0T1½S0�ðFÞ : ð19Þ
When this is seen as an equation for f1, the first term on the right hand side satisfies
the solvability condition from Lemma 2 by assumption (A0), and the second term
by cell conservation. The solution can be written as

f1ðx; v; tÞ ¼ � �ðx; v; tÞ � r�0ðx; tÞ
�Yðx; v; tÞ�0ðx; tÞ þ �1ðx; tÞFðvÞ; ð20Þ

where � ¼ �½S0� and � ¼ �½S0� are the solutions of

T0½S0�ð�Þ ¼ vF ; ð21Þ
T0½S0�ðYÞ ¼ T1½S0�ðFÞ ; ð22Þ

and �1, the macroscopic density of f1, is a new unknown.
The last step in the asymptotic procedure is passing to the limit "! 0 in the

conservation equation (11). For the flux density, we obtain the asymptotic expansion

J" ¼
ð
V

vf1 dvþ Oð"Þ ;

such that the limit of (11) can be written as the convection-diffusion equation

@t�0 �r � ðD½S0�r�0 � G½S0��0Þ ¼ 0 ; ð23Þ
where the diffusivity tensor and the convection field are given by

D½S0�ðx; tÞ ¼
ð
V

v� �½S0�ðx; v; tÞdv ;

G½S0�ðx; tÞ ¼ �
ð
V

vY½S0�ðx; v; tÞdv :

Thus, the formal limit of (7), (10) is (23) coupled to the Newtonian potential
equation for S0 in (13).

Remark 2. It is a standard result in the theory of diffusion limits that the matrix
D is symmetric and positive definite. In order to see this, consider 	2R3. From
(18) we find

ðD	Þ � 	 ¼
ð
V

ðv � 	Þð� � 	Þdv ¼
ð
V

T0½S0�ð� � 	Þ� � 	
F

dv

5 �½S0�
ð
V

ð� � 	Þ2

F
dv : ð24Þ
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If � � 	 were identically equal to zero for a 	 6¼ 0, then (by taking the scalar product
of (21) with 	) also v � 	 would be zero for all v2V , which is impossible by the
spherical symmetry of V . Thus, the right hand side of (24) is positive for each
	 6¼ 0. The symmetry of D is an immediate consequence of the fact that T0½S� is
selfadjoint with respect to the scalar product in L2ðV; dv=FÞ.

Remark 3. A natural additional assumption is rotational invariance of the
leading order turning operator. This means that the turning kernel T0½S� depends
on v and v0 only through jvj, jv0j, and v � v0, and, thus, is invariant under simulta-
neous rotations of v and v0. Then, it can be easily shown that the equilibrium
distribution is isotropic, i.e., F ¼ FðjvjÞ, and that the diffusivity tensor is also
isotropic, i.e., a multiple of the identity. This is a consequence of the fact that
�ðx; v; tÞ ¼ �ðx; jvj; tÞv with a scalar function �. Sufficient conditions for the iso-
tropy of the diffusivity have also been given in [11].

3. Global Existence

In this section we show that the solutions of the coupled kinetic system (7)–
(10) do not blow up if the turning kernel satisfies a certain structure condition.
Without loss of generality, let us set " ¼ 1.

Theorem 1. (Global boundedness) Assume f 0 2L1
þ \ L1ðR3 �VÞ, and

assume:

(A1) There exists C> 0 such that 8x2R3, v; v0 2V , t2Rþ and S2W1;1ðR3Þ
04T ½S�ðx; v; v0; tÞ4Cð1 þ Sðxþ v; tÞ þ Sðx� v0; tÞÞ:

Then there exists a global solution f 2L1ðð0;1Þ; L1
þ \ L1ðR3 �VÞÞ,

S2L1ðð0;1Þ; LpðR3ÞÞ for all 24 p4 þ1 of the nonlinear system (7)–(10)
(with " ¼ 1).

Remark 4. The condition on the turning kernel excludes its dependence on the
gradient of the concentration of the chemo-attractant. It also provides a dispersion
effect by the occurrence of the velocity variable in the arguments of S. No global
existence result is available for a turning kernel with dependence on the gradient of
S, actually not even for models satisfying only

04T ½S�ðx; v; v0; tÞ4C
�

1 þ kSð�; tÞk�
L1ðR3Þ

�
;

with �5 1. A global existence result can be shown for �< 1. These remarks are
valid for three-dimensional problems considered here.

In [13] and [14] one-dimensional discrete velocity models have been treated. It
is shown that boundedness of the turning rates in terms of the W1;1-norm of the
chemo-attractant is sufficient for global existence.

Proof. A local-in-time existence proof of mild solutions can be obtained by
using standard methods for nonlinear evolution equations (nonlinear perturbations
of C0-semigroups, cf. [25]). To obtain a global existence result it is enough to
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derive the a priori bounds announced in the Theorem (which imply that the local
solutions can be extended up to t ¼ 1).

To do so, we decompose S into long and short range parts

S ¼ SL þ SS;

SL ¼ � �
�

1

4�jxj Ijxj5 1

�
;

SS ¼ � �
�

1

4�jxj Ijxj4 1

�
;

where IA denotes the characteristic function of the set A. From the mass
conservation

k�ð�; tÞkL1ðR3Þ ¼ kf ð�; �; tÞkL1ðR3 �VÞ ¼ kf 0kL1ðR3 �VÞ ð25Þ

and the Young inequality we have

kSLð�; tÞkL1ðR3Þ 4
1

4�
kt0kL1ðR3 �VÞ:

Therefore, changing the constant C, we may replace S by SS in (A1).
In order to estimate f , we now use that

@tf ðx; v; tÞ þ v � rxf ðx; v; tÞ4
ð
V

T ½S�ðx; v; v0; tÞf ðx; v0; tÞdv0;

and, thus, using assumption (A1),

f ðx;v; tÞ4 f 0ðx�vt;vÞþC

ðt
0

�ðx� vs; t� sÞdsþCf 1ðx;v; tÞþCf 2ðx;v; tÞ; ð26Þ

with

@tf
1ðx; v; tÞ þ v � rxf

1ðx; v; tÞ ¼
ð
V

SSðxþ v; tÞf ðx; v0; tÞdv0;

@tf
2ðx; v; tÞ þ v � rxf

2ðx; v; tÞ ¼
ð
V

SSðx� v0; tÞf ðx; v0; tÞdv0;

and

f 1ðt ¼ 0Þ ¼ 0; f 2ðt ¼ 0Þ ¼ 0:

We estimate these two terms separately. From

f 1ðx; v; tÞ ¼
ðt

0

SSðx� vsþ v; t � sÞ�ðx� vs; t � sÞds

we conclude that

kf 1ð�; �; tÞkLpðR3 �VÞ 4 sup
0< s< t

kSSð�; sÞkLpðR3Þ

ðt
0

k�ð�; t � sÞkLpðR3Þds:
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For f 2 we write

f 2ðx; v; tÞ ¼
ðt

0

ð
V

SSðx� vs� v0; t � sÞf ðx� vs; v0; t � sÞdv0 ds:

Note that the integrand is a convolution (setting f ðx; v0; tÞ ¼ 0 for v0 2=V). The
Young inequality

kg � hkLr 4 kgkLpkhkLq ;
1

p
þ 1

q
¼ 1 þ 1

r
;

(see, e.g., [6]) thus implies

jSSð�; t � sÞ � f ðx� vs; �; t � sÞðx� vsÞj
4 kSSð�; t � sÞ � f ðx� vs; �; t � sÞkL1ðR3Þ

4 sup
0< s< t

kSSð�; sÞkLpðR3Þkf ðx� vs; �; t � sÞkLp0 ðVÞ;

where p and p0 are conjugate exponents, i.e., p0 ¼ p=ðp� 1Þ. If p5 2, then p0 4 p
and, from mass conservation (25),

kf ðx� vs; �; t � sÞkLp0 ðVÞ 4 c0kf ðx� vs; �; t � sÞkLpðVÞ;

for a constant c0 ¼ c0ðVÞ. Finally,

kf 2ð�; �; tÞkLpðR3 �VÞ 4 c0 sup
0< s< t

kSSð�; sÞkLpðR3Þ

ðt
0

kf ð�; �; t � sÞkLpðR3 �VÞds:

Coming back to Eq. (26) and using

k�ð�; tÞkLpðR3 �VÞ 4CðVÞkf ð�; �; tÞkLpðR3 �VÞ;

we deduce

kf ð�;�;tÞkLpðR3�VÞ4kf 0ð�;�ÞkLpðR3�VÞ

þCðVÞ
�

1þ sup
0<s<t

kSSð�;sÞkLpðR3Þ

�ðt
0

kf ð�;�;sÞkLpðR3�VÞds; 8p52:

ð27Þ
We conclude in two steps. Firstly, we choose 24 p< 3 such that

1

jxj Ijxj4 1 2LpðR3Þ:

Then, from the Young inequality,

kSSð�; tÞkLpðR3Þ 4 ckf 0kL1ðR3 �VÞ:

Using the Gronwall inequality in (27), we conclude the existence of a bound for
kf ð�; �; tÞkLpðR3 �VÞ, p2 ½2; 3Þ only depending on f 0, p and t.
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Secondly, still from the Young inequality,

kSSð�; tÞkL1ðR3Þ 4Ckf ð�; �; tÞkL2ðRn �VÞ 4CðtÞ;

with C2L1locð½0;1ÞÞ. We now set p ¼ 1 in (27) and apply again the Gronwall
inequality.

4. Drift-Diffusion Limit: Convergence Proof

In this section the formal results of Section 2 are rigorously justified. We shall
use the following result from potential theory (see [28]).

Lemma 3. Assume

S ¼ � � 1

4�jxj with �2L1
þðR3Þ \ LqðR3Þ; q> 3:

Then S2Lp \ C1;�ðR3Þ for every �< q�3
q

, 3< p41 and there exists c> 0 such
that

kSkLpðR3Þ þ kSkC1;�ðR3Þ 4 c
�
k�kL1ðR3Þ þ k�kLqðR3Þ

�
:

Our aim is the derivation of estimates uniform in " as "! 0. As a first step, we
multiply the transport equation (7) by gq�1, with g ¼ f"=F and q5 1, and integrate
with respect to v and x. With (16), we obtain

1

q

d

dt

ð
R3

ð
V

f q"
Fq�1

dv dxþ 1

2"2

ð
R3

ð
V

ð
V


S"½S"�ðg� g0Þðgq�1 � ðg0Þq�1Þdv0 dv dx

¼ 1

2"2

ð
R3

ð
V

ð
V


A" ½S"�ðgþ g0Þðgq�1 � ðg0Þq�1Þdv0 dv dx:

The antisymmetric part is now estimated by

j
A" ½S"�ðgþ g0Þðgq�1 � ðg0Þq�1Þj4 1

2

S"½S"�ðg� g0Þðgq�1 � ðg0Þq�1Þ

þ 
A" ½S"�
2

2
S"½S"�
ðgþ g0Þ2ðgq�1 � ðg0Þq�1Þ

g� g0
:

For the last term we use the inequality

ðgþ g0Þ2ðgq�1 � ðg0Þq�1Þ
g� g0

4 cqðgq þ ðg0ÞqÞ;

and obtain

1

q

d

dt

ð
R3

ð
V

f q"
Fq�1

dv dxþ 1

4"2

ð
R3

ð
V

ð
V


S"½S"�ðg� g0Þðgq�1 � ðg0Þq�1Þdv0 dv dx

4
cq

2"2

ð
R3

ð
V

ð
V


A" ½S"�
2

F
S"½S"�
f q"

Fq�1
dv0 dv dx: ð28Þ

This inequality motivates the assumptions of the following result.
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Theorem 2. Let F2L1ðVÞ be a positive velocity distribution satisfying (15)
and let 
S"½S� and 
A" ½S� be defined as in Lemma 1. Assume that there exist q> 3,
� > 0, and a non-decreasing function L2L1locð½0;1ÞÞ, such that

f 0 2�q :¼ L1
þðR3 �VÞ \ Lq

�
R3 �V ;

dx dv

Fq�1

�
; ð29Þ


S"½S�5 �ð1 � "LðkSkW1;1ðR3ÞÞÞFF0; ð30Þ

ð
V


A" ½S�
2

F
S"½S�
dv0 4 "2LðkSkW1;1ðR3ÞÞ: ð31Þ

Then there exists t�> 0, independent of ", such that the existence time of the local
mild solution of (7)–(10) is bigger than t�, and the solution satisfies, uniformly in
",

f"2L1ðð0; t�Þ; �qÞ;

S"2L1ðð0; t�Þ; Lp \ C1;�ðR3ÞÞ; �<
q� 3

q
; 3< p<1 ð32Þ

r" ¼
f" � �"F

"
2L2

�
R3 �V �ð0; t�Þ; dx dv dt

F

�
:

Remark 5. The assumptions (30) and (31) correspond to the structural assump-
tions (12) and (A0) (see also (17)), describing the separation between the leading
order turning processes and the chemotactically oriented contributions. In partic-
ular, the constant � has the same role as in Section 2.

Proof. As in the proof of Theorem 1, existence up to time t ¼ t� will follow,
from the boundedness claimed in the theorem. Cell conservation implies

kf"ð�; �; tÞkL1ðR3 �VÞ ¼ kf 0kL1ðR3 �VÞ

for all t> 0.
Using assumption (31) in (28) we obtain

d

dt

ð
R3

ð
V

f q"
Fq�1

dv dx4
qcq

2
LðkS"ð�; tÞkW1;1ðR3ÞÞ

ð
R3

ð
V

f q"
Fq�1

dv dx: ð33Þ

The next step is to estimate S". Cell conservation and Lemma 3 imply

kS"ð�; tÞkC1;�ðR3Þ 4Cð1 þ k�"ð�; tÞkLqðR3ÞÞ:

By H€oolder inequality and the normalization of F,

k�"ð�; tÞkLqðR3Þ 4
�ð

R3

ð
V

f q"
Fq�1

dv dx

�1=q

:
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Combining the last two estimates with (33) gives a differential inequality of the
form

dP

dt
4 ~LLðPÞ; P ¼

ð
R3

ð
V

f q"
Fq�1

dv dx;

with ~LL2L1locð½0;1ÞÞ (precisely ~LLðPÞ ¼ qcq
2
LðCð1 þ P1=qÞÞP). This completes the

proof of the first two statements in (32).
By interpolation between L1ðR3 �V; F dx dvÞ and LqðR3 �V ; F dx dvÞ the

norm of f"ð�; �; tÞ=F in L2ðR3 �V ; F dx dvÞ is bounded uniformly for t2ð0; t�Þ.
Thus, setting q ¼ 2 in (28) and integration with respect to t givesðt�

0

ð
R3

ð
V

ð
V


S"½S"�
�
f"

F
� f 0"
F0

�2

dv0 dv dx dt4 "2c:

With assumption (30), this leads to

�

ðt�
0

ð
R3

ð
V

ð
V

FF0
�
r"

F
� r0"
F0

�2

dv0 dv dx dt4 c:

Using
Ð
V
r"dv ¼ 0, we now deduce the last statement in (32):

ðt�
0

ð
R3

ð
V

r2
"

F
dv dx dt4

c

2�
:

Theorem 3. Let the assumptions of Theorem 2 hold. Assume further that for
families S", uniformly bounded (as "! 0) in L1locð½0;1Þ; C1;�ðR3ÞÞ for some
0<�4 1, such that S" and rS" converge to S0 and rS0, respectively, in
L
p
locðR3 � ½0;1ÞÞ for some p> 3=2, we have the convergence

T"½S"� ! T0½S0� in L
p
locðR3 �V �V � ½0;1ÞÞ;

T"½S"�ðFÞ
"

¼ 2

"

ð
V


A" ½S"�dv0 ! T1½S0�ðFÞ in L
p
locðR3 �V � ½0;1ÞÞ: ð34Þ

Then solutions of (7)–(10) satisfy (possibly after extracting subsequences)

f" ! �0F in L1ðð0; t�Þ; �qÞ weak�;
S" ! S0 in L

p
locðR3 �ð0; t�ÞÞ; 3< p<1;

rS" ! rS0 in L
p
locðR3 �ð0; t�ÞÞ; 3

2
< p<1:

The limits are weak solutions of (23), (13) subject to the initial condition

�0ðt ¼ 0Þ ¼
ð
V

f 0 dv:

Proof. The weak convergence of f" follows from Theorem 2. For S" and rS"
we still need some compactness in time. For the flux density J" in the cell con-
servation equation

@t�" þ divJ" ¼ 0; ð35Þ
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we have

J" ¼
1

"

ð
V

vf"dv ¼
ð
V

vr"dv2L2ðð0; t�Þ; L2ðR3ÞÞ;

uniformly in ", by the estimate

jJ"j2 4
ð
V

r2
"

F
dv

ð
V

jvj2F dv;

Theorem 2, the boundedness of F, and the compactness of V . The gradient of the
convolution of (35) with the Newtonian potential 1=ð4�jxjÞ is

@tðrS"Þ þ rðr � SJ;"Þ ¼ 0;

with SJ;" ¼ J" � 1=ð4�jxjÞ. By elliptic regularization we have SJ;"2L2ðð0; t�Þ;
H2

locðR3ÞÞ and, thus,

@tðrS"Þ2L2ðð0; t�Þ; L2
locðR3ÞÞ:

The derivative of S" with respect to time is estimated analogously. The strong
convergence now follows combining the above with the elliptic regularity for
the convolutions defining S" and rS" from �".

After dividing by ", the kinetic equation (7) can be written as

"
@f"
@t

þ v � rxf" ¼ ��"
T"½S"�ðFÞ

"
�T"½S"�ðr"Þ: ð36Þ

Theorem 2 implies weak convergence of �" and r" to �0 and r0. The boundedness
of r" also implies f0 ¼ �0F. With the assumptions (34), we can pass to the limit in
(36) and obtain

T0½S0�ðr0Þ ¼ �vF � r�0 � �0T1½S0�ðFÞ:
This equation can be solved for r0 as (19). The limit of the cell conservation
equation is

@t�0 þr � J0 ¼ 0;

with the flux J0 ¼
Ð
V
vr0 dv.

5. Examples

In this section we discuss two specific models for turning kernels and compute
explicit formulas for the macroscopic transport coefficients. We also state rigorous
results for these models which are applications of the more general results of the
previous sections. For additional models and their biological relevance we refer to
the work of Othmer and Hillen [22].

The main obstacle to the explicit computation of transport coefficients is the
solution of the integral equation (19). This task is straightforward for the relaxa-
tion time model

T0½S�ðx; v; v0; tÞ ¼ �½S�ðx; tÞFðvÞ; �½S�> 0; ð37Þ
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which is common to both examples below. In this case, the leading order turning
operator becomes

T0½S�ðf Þ ¼ �½S�ðf � �FÞ;

and the solution of the problem T0½S�ðf Þ ¼ g,
Ð
V
f dv ¼ 0, with

Ð
V
g dv ¼ 0, is

given by f ¼ g=�½S�. So, in particular, we obtain

� ¼ vF

�½S0�
; Y ¼ T1½S0�ðFÞ

�½S0�
;

for the solutions of (21), (22). Consequently, the macroscopic diffusivity and
convection field are given by

D½S0� ¼
1

�½S0�

ð
V

v� vF dv; �½S0� ¼ � 1

�½S0�

ð
V

vT1½S0�ðFÞdv:

Furthermore we shall assume rotational invariance of the equilibrium distribution,
i.e., F ¼ FðjvjÞ, with the consequence

D½S0� ¼
1

3�½S0�

ð
V

jvj2F dv I:

Model 1. A group of models considered in [23] is of the form

T"½S� ¼ T0½S� þ "T1½S�; ð38Þ

where T0½S� is of the form (37), and T1½S� depends on pointwise values of S and
rS. We assume rotational invariance, i.e., �½S�ðx; tÞ ¼ �ðSðx; tÞ; jrSðx; tÞjÞ in (37).
In T1 the dependence on the vectors v, v0, and rS is only through their Euclidean
norms and through the angles between them:

T1½S�ðx;v;v0;tÞ¼T1ðSðx;tÞ;jvj;jv0j;jrSðx;tÞj;v �v0;v �rSðx;tÞ;v0 �rSðx;tÞÞ: ð39Þ
Then rotational invariance is inherited also by T1½S0�ðFÞ which can be written in
the form

T1½S0�ðFÞ ¼ HðS0; jvj; jrS0j; v � rS0Þ:
A symmetry argument shows that the macroscopic convection field is proportional
to rS0:

�½S0� ¼ �ðS0; jrS0jÞrS0; ð40Þ
with

� ¼ � 1

�½S0�jrS0j

ð
V

v1HðS0; jvj; jrS0j; v1jrS0jÞdv;

where v1 denotes the first (or any) coordinate of v. More specifically, a model of
the form

T1 ¼ aðSÞv � rS� bðSÞv0 � rS; a; b5 0; ð41Þ
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represents the desire of the cell to change both to a favourable direction (by the
first term) and away from an unfavorable direction (by the second term). A
straightforward computation gives (40) with the chemotactic sensitivity

� ¼ 1

3�½S0�

�
bðS0ÞðVÞ

ð
V

jvj2F dvþ aðS0Þ
ð
V

jvj2dv
�
:

The rigorous convergence analysis of Section 4 can be applied to this class of
models. It is easily seen that the assumptions of Theorems 2 and 3 are satisfied
under mild conditions.

Note that the macroscopic models obtained include the classical Keller-Segel
model exhibiting blow up in finite time. Therefore nothing better than the local-in-
time result above can be expected. In general, we also expect blow up in finite time
for the kinetic model. However, there is no proof available yet. For the second
class of models, on the other hand, global existence for the kinetic model can be
proven as well as local-in-time convergence to a Keller-Segel type macroscopic
model.

Model 2. Let  ðS; ~SSÞ be a smooth, positive, non-decreasing (in the second
argument) function defined on a Rþ �Rþ such that

0< min 4 ðS; ~SSÞ4�1
~SSþ �2;

for real, positive constants �1;2.
Let the turning kernel be given by

T"½S�ðx; v; v0; tÞ ¼ �þ ðSðx; tÞ; Sðxþ "v; tÞÞ þ �� ðSðx; tÞ; Sðx� "v0; tÞÞ; ð42Þ

where �� are positive constants. This means that the cell is able to measure the
chemo-attractant concentration up to a distance "vmax away from its position,
where vmax is the maximal speed in V . Similarly to the model (41) the turning
probability is higher for a change to a favorable direction and away from an
unfavorable direction.

Expansion of T" gives

T0½S� ¼ ð�þ þ ��Þ ðS; SÞ;

T1½S� ¼
@ 

@~SS
ðS; SÞð�þv� ��v

0Þ � rS:

Thus, we find that F ¼ 1=ðVÞ and

D½S0� ¼
1

3ð�þ þ ��Þ ðS0; S0ÞðVÞ2

ð
V

jvj2dvI;

�½S0� ¼
@ =@~SSðS0; S0Þ
3 ðS0; S0ÞðVÞ

ð
V

jvj2dvI;

where I is the 3� 3 identity matrix and �½S� ¼ �½S�rS. The model (42) obviously
satisfies the assumptions of the global existence Theorem 1.
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In order to check the assumptions of Theorems 2 and 3 we compute


A" ½S�ðx; v; v0; tÞ ¼ "
ðv� v0Þ
ðVÞ � rSð~xx; tÞð�þ 2ðSðx; tÞ; Sð~xx; tÞÞ

� �� 2ðSðx; tÞ; Sð~xx; tÞÞÞ;

where ~xx lies between x� "v0 and xþ "v. Thus, the assumptions of Theorems 2 and
3 are satisfied.

If we choose  ðS; ~SSÞ ¼ Cð~SS� SÞ, �þ ¼ 1, �� ¼ 0 with a strictly positive,
increasing C then we reproduce the classical Keller-Segel model with constant
macroscopic transport coefficients D½S� and �½S�. As long as C is at most linear,
we have global existence for the kinetic model.

On the other hand, if we choose  ðS; ~SSÞ ¼ CðSÞ ~CCð~SSÞ, with positive C and ~CC
we can, at least formally, reproduce arbitrary macroscopic transport coefficient
D½S� and �½S� (assuming �þ ¼ 1 and �� ¼ 0) by setting:

~CCðSÞ ¼ exp

�
3

ðVÞÐ
V
jvj2dv

ðS
S0

�½S0�dS0
�
;

CðSÞ ¼
Ð
V
jvj2dv

3ðVÞ2 ~CCðSÞD½S�
;

for a certain reference value S0. If 0<Cmin < ~CCðSÞ4�1Sþ �2 and CðSÞ is
bounded (which is true if �5�min > 0 and D5Dmin > 0, or if �5�0=
ðSþ S0Þ and D5Dmin > 0, for constant and positive �0, S0), then we have global
existence for the solutions of the kinetic model.
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