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Abstract. We study adiabatic decoupling for Dirac equation with some scaling which yields that the
mass appears with a coefficient "� where " is the semi-classical parameter and �> 0. Therefore, the
system presents an avoided crossing. The scale � ¼ 1=2 is critical: adiabatic decoupling holds for
�2 ð0; 1=2Þ while for �5 1=2, there is energy transfer at leading order between the two modes. We
describe this transfer in terms of two-scale Wigner measures by means of Landau-Zener formula which
takes into account the change of polarization of the measures after the crossing.
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1. Introduction

Let us consider the Dirac equation�X3

�¼0

��ði�h@� þ e~AA�Þ �Mc

�
� ¼ 0; ð1Þ

where � denotes the ‘‘spinorfield’’, � ¼ �ðyÞ2C4, y ¼ ðy0; y
0Þ 2R4 with y0 the

time variable and y0 ¼ ðy1; y2; y3Þ the space variable and where ��, 04�4 3, are
the 4� 4 Dirac matrices which satisfy

ð�0Þ� ¼ �0; ð�kÞ� ¼ ��k; ð�0�kÞ� ¼ �0�k; 14 k4 3 ð2Þ

���� þ ���� ¼ 0; � 6¼ �; ð�0Þ2 ¼ Id; ð�kÞ2 ¼ �Id: ð3Þ

We use the standard representation of Dirac matrix: the Dirac-Pauli one (see [32]
p. 36). In this representation, the 4� 4 matrices �� are functions of the 2� 2 Pauli
matrices �k, 14 k4 3. More precisely, we have

�1 ¼
�

0 1

1 0

�
; �2 ¼

�
0 �i

i 0

�
; �3 ¼

�
1 0

0 �1

�
; ð4Þ



and

�0 ¼
�

1 0

0 �1

�
; �k ¼

�
0 �k

��k 0

�
; �5 ¼

�
0 1

1 0

�
: ð5Þ

The functions ~AA� ¼ ~AA�ðyÞ for 04�4 3 are the components of the electro-
magnetic potential, in particular ~AA0 is the electric potential and ~AA ¼ ð~AA1; ~AA2; ~AA3Þ is
the magnetic potential vector. Hence the electric field is E ¼ @y0

~AA�ry0
~AA0 and the

magnetic field B ¼ curly0 ~AA. The physical constants M and e are the electron’s rest
mass and its charge, c is the velocity of light and �h the Planck constant. The
matrix

P ¼
X3

�¼1

�0��ð�h� � e~AA�Þ þ �0Mc

has two eigenvalues l� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2c2 þ j�h� � e~AA�j2

q
which are of multiplicity 2.

Our aim is to study adiabatic decoupling for this equation in some special
situation which is slightly different than the usual one. Several works have been
devoted to the study of Dirac equation with slowly varying external potentials. One
supposes that ~AA ¼ Að"yÞ and one studies � on the macroscopic scale, i.e. one
studies the evolution as " goes to 0 of  "ðt; xÞ ¼ �ðyÞ. Thus, one analyzes the
system

i�h"@t 
" ¼

X3

1

�0��
�
�h"

i
@� � eA�ðt; xÞ

�
 " � eA0ðt; xÞ " þ �0Mc ":

Any solution of this system can be decomposed on the two modes associa-
ted to each eigenvalue l� and these two components evolve independently.
Such a phenomenon is called adiabatic decoupling (from ‘‘adiabatos’’¼
impassable). The reader can refer to [31] where he will find a presentation of
adiabatic theory and its application to Dirac equation with slowly variable
coefficients or to [14] where adiabatic decoupling is proved in terms of Wigner
measures.

We focus here also on the case of slowly varying potentials but we scale the
size of the electromagnetic fields. More precisely, we set

~AAðyÞ ¼ �Að"0yÞ; "0y ¼ ðt; xÞ ¼ ðt; x1; x2; x3Þ2R�R3;

and we suppose that jAj � 1, "0 � 1 and �5 1. We study � on the macroscopic
scale: we set  ðt; xÞ ¼ �ðyÞ. Then,  satisfies

i
�h"0

�
@t ¼

X3

1

�0��
�
�h"0

i�
@� � eA�ðt; xÞ

�
 � eA0ðt; xÞ þ �0 cM

�
 :

We set " ¼ �h"0

e�, thus "� 1. We suppose that Mc
e
� 1 and we set

Mc

e�
¼ m"�; �> 0; m � 1:
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We study the asymptotic behavior as " goes to 0. In particular, the electromagnetic
vector field is of size "0� � "�2 � "1�2�. If � ¼ 0, we are in the same context
as in [30], [32] and [14]. High values of the electromagnetic vector field corre-
sponds to �5 1=2. The reader can refer to [26] and [27] for results on Dirac
equation in high electromagnetic fields. We prove, with Wigner measures
approach, that the adiabatic decoupling becomes false as soon as �5 1=2, i.e.
for high electromagnetic vector fields. Roughly speaking, if �5 1=2, the mass is
not big enough so that the adiabatic Theorem applies and there happens some
Landau-Zener type’s transition specific to avoided crossings that we describe in
terms of two-scale Wigner measures. In the following, we focus on the system

i"@t 
" ¼ P"ðt; x; "DxÞ ";

 "jt¼0 ¼  "0

�
ð6Þ

where P" is the matrix-valued symbol

P"ðt; x; �Þ ¼
X3

k¼1

�0�kð�k � Akðt; xÞÞ þ Vðt; xÞ þ "�m�0 ð7Þ

with �> 0, m> 0, A ¼ ðA1;A2;A3Þ a C1 vector field (the magnetic potential
vector) and V a C1 function (the electric potential).

The Wigner measures approach is of interest because the limit of physically
meaningful quantities can be simply expressed in terms of Wigner measures. For
example, in [14] (see also [30] and [2]), the authors calculate the weak limit of the
relativistic current density Jk, 14 k4 3,

J"kðt; xÞ ¼ �0�k "ðt; xÞ �  "ðt; xÞ
and of the relativistic position density n

n"ðt; xÞ ¼ j "ðt; xÞj2:
Indeed, a Wigner measure � of the family ð "Þ is a positive matrix-valued measure
on T�R4 which satisfy – up to some subsequence – that, for all the observable
a2C1

0 ðR8;C4;4Þ,

ðop"ðaÞ "j "Þ�!
"!0

trha; �i :¼ tr

�ð
aðx; �Þ d�ðx; �Þ

�
;

where op"ðaÞ denotes the semi-classical pseudo-differential operator of symbol a;
the kernel of op"ðaÞ is, with Weyl quantification,

kðx; yÞ ¼
ð
a

�
xþ y

2
; �

�
e
iðx�yÞ��

"
d�

ð2	"Þ4
:

Let us assume that ð "0Þ satisfies some assumption called "-oscillation which
implies that, roughly speaking, the oscillations of ð "0Þ are not greater than 1

",
(see [13]), namely

lim sup
"!0

ð
j�j5R="

jb  "0ð�Þj2 d� �!
R!þ1

0:
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Then, the weak limits of n" and J"k can be expressed as

w � lim
"!0

n"ðt; xÞ dt dx ¼ tr

�ð

;�

�ðt; x; d
; d�Þ
�
;

w � lim
"!0

J"kðt; xÞ dt dx ¼ tr

�ð

;�

�0�k�ðt; x; d
; d�Þ
�
:

In [14], G�eerard et al. describe the Wigner measures of ð "Þ in the case � ¼ 0. The
fact that � 6¼ 0 induces serious difficulties that our contribution aims to deal with.
Actually, the analysis performed in [14] crucially uses the fact that as � ¼ 0, the
eigenvalues of the matrix P",

��" ðt; x; �Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j� � Aðt; xÞj2 þ "2�m2

q
þ Vðt; xÞ; ð8Þ

do not depend on ", are distinct and of constant multiplicity 2.
For � 6¼ 0,

lim
"!0

�þ" ðt; x;Aðt; xÞÞ ¼ lim
"!0

��" ðt; x;Aðt; xÞÞ:

The eigenvalues are still distinct for all ðt; xÞ but they cross asymptotically as
" goes to 0. One said that the system (6) displays an avoided crossing, by con-
trast with a ‘‘real’’ crossing for which there should exist ðt0; x0Þ such that
�þ" ðt0; x0Þ ¼ ��" ðt0; x0Þ. Crossings are usually characterized by the codimension
of the singular set. The crossing here is of codimension 3 since

ðt; x; 
; �Þ 7! � � Aðt; xÞ
is of rank 3.

The works of Hagedorn and Joye ([16]–[19], [21]) and those of Colin de
Verdi�eere et al. [5] show that avoided crossings yield transfer of energy at leading
order between the two modes and thus, that there is no adiabatic decoupling. This
so-called Landau-Zener phenomenon has been first described independently and
simultaneously by Landau and Zener in the 30’s (see [22] and [33]). We shall
discuss this transfer of energy in terms of Wigner measures in the same spirit than
the works of G�eerard and the author for ‘‘real’’ crossings (see [7]–[12]) in the sense
explained above. Our purpose here is to apply to this avoided crossing the method
introduced in [11] for eigenvalue of multiplicity one with the developments per-
formed in [8] for higher multiplicity.

1.1. Wigner measures for Dirac equation. Let us first introduce some nota-
tions. We endow T�R4 with the symplectic form

� ¼ d
 ^ dt þ d� ^ dx;

and we denote by ff ; gg the Poisson bracket of functions f and g,

ff ; gg ¼ r
;� f � rt;xg�rt;x f � r
;�g:

The vector field Hf is the Hamiltonian vector field associated with the function f ,
thus we have

dgHf ¼ ff ; gg ¼ �ðHf ;HgÞ:
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We set

pð�Þ ¼
X3

k¼1

�k�k ¼
�

�3 �1 � i�2

�1 þ i�2 ��3

�
; 0 ¼

�
0 0

0 0

�
; 1 ¼

�
1 0

0 1

�
;

so that we have

P" ¼
�

"�m1 pð� � Aðt; xÞÞ
pð� � Aðt; xÞÞ "�m1

�
þ Vðt; xÞ:

We will abusively denote by m"� the matrix m"�1 when there will not be any
ambiguity on the fact that m"� is a 2� 2 matrix. With this convention, the spectral
projectors ��

" associated with ��" write

��
" ðt; x; �Þ ¼

1

2

 
Id � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

"2�m2 þ j� � Aj2
q �

"�m pð� � Aðt; xÞÞ
pð� � Aðt; xÞÞ "�m

�!
:

As " goes to 0, ��
" tends to ��

0 which is smooth outside f� ¼ Aðt; xÞg.
According to [14] and [15], any Wigner measure � of ð "Þ satisfies outside

f� ¼ Aðt; xÞg

� ¼ �þ þ ��; with �� ¼ ����
0 ¼ ��

0 �
�;

Supp �� � f
 þ V � j� � Aj ¼ 0g: ð9Þ

We set

S ¼ f� ¼ A; 
 þ V ¼ 0g:
This set S is the intersection of the set f� ¼ Aðt; xÞg above mentioned and of the
characteristic set � of the system studied,

� ¼ fj� � Aj2 ¼ ð
 þ VÞ2g:

By [14] and [15], measures �þ and �� satisfy the transport equations,

f
 þ V � j� � Aj; ��g ¼ ½��;F�	 outside S;

with

F� ¼ ½��
0 ; f
 þ V � j� � Aj;��

0 g	 þ j� � Aj��
0 f�



0 ;�



0 g��

0

¼ i

2j� � Aj �5

X3

k¼1

�0�k
�
� � A

j� � Aj �
�
E 
 B� � � A

j� � Aj

��
k

� i

2j� � Aj

�
� � A

j� � Aj � B
�
��

0 : ð10Þ

This latter formula comes from [30] (see also [15]) by tedious but straightforward
computation.
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Outside S, measures �� propagate along the classical trajectories associated with
the Hamiltonian 
 þ ��0 ¼ 
 þ V � j� � Aj. Let us denote by ��s ¼ ðt�s ; x�s ;

�s ; �

�
s Þ, these Hamiltonian curves passing at ðs ¼ 0; � ¼ �0Þ,

_���s ¼ H��
0
ð��s Þ; ��js¼0 ¼ �0:

The problems arise as such trajectories reach the singular set S. Consider trajec-
tories which arrive in (or arise from) S in �0 transversally to S; by this, we mean
that in �0 we have

lim
s!0�

H��ð�sÞ 2= TS�0
ðor lim

s!0þ
H��ð�sÞ 2= TS�0

Þ:

A simple calculation proves that, if this occurs, necessarily, there exist r> 0, ! and
!0 in S2 such that

r! ¼ Eð�0Þ þ Bð�0Þ�!; r!0 ¼ Eð�0Þ � Bð�0Þ�!0: ð11Þ
These equations have a unique solution ðr; !; !0Þ if and only if in �0,

E � B 6¼ 0 or ðE � B ¼ 0 and jEj> jBjÞ:
In particular, if E � B ¼ 0,

! ¼ r

jEj2
E � E�B

jEj2
; !0 ¼ r

jEj2
E þ E�B

jEj2
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEj2 � jBj2

q
: ð12Þ

Consider

� ¼ fE � B 6¼ 0 or ðE � B ¼ 0 and jEj> jBjÞg:
According to Proposition 1 in [11], the existence of a unique ðr; !; !0Þ satisfying
(11), is enough to prove that there exists a unique classical trajectory of 
 þ ��0
passing through the point �0 2S \ �. Moreover, the curves ð��s Þs< 0 are smoothly
continued by ð�
s Þs> 0.

The existence of such trajectories yield that the transport equations outside S
stated above are not enough to determine the Wigner measure �. Besides, we
prove in the Appendix that

�ðS \ �Þ ¼ 0:

Therefore, � does not concentrate on the crossing set S: the mass of � carried out by
the ingoing trajectories ð��s Þs< 0 parts between the outgoing trajectories ð�þs Þs> 0

and ð��s Þs< 0. We want to describe the branching of � above the crossing set. We
prove that it depends on � and that it is determined by the way ð "Þ concentrates at
the scale

ffiffiffi
"

p
on the set consisting in all the classical trajectories entering in S.

Consider �0 2� \ S and V some neighborhood of �0 in �. Let us denote by J�; in

(resp. J�; out) the sets of all curves ��s coming into (resp. out of) some point � in
S \V. The connection between ð��s Þs< 0 and ð�
s Þs> 0 at s ¼ 0 yields that the sets

J ¼ Jþ; in [ J�; out and J0 ¼ J�; in [ Jþ; out

are smooth codimension 3 submanifolds of T�R4. Moreover, according to Propo-
sition 3 in [11], there exist two smooth vector-valued functions u, u0 2C1ðR8; S2Þ
such that

J ¼ f� ¼ Aþ ð
 þ VÞug; J 0 ¼ f� ¼ Aþ ð
 þ VÞu0g;
with ujS ¼ ! and u0jS ¼ �!0.
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If E � B ¼ 0 in V, J and J0 are involutive submanifolds of T�R4 (we shortly
recall the definition of involutive submanifolds in the next section). The situation is
different in the case where E � B 6¼ 0. These facts are proved in [10] in a general
context and in [7] for Dirac equation but in the case of constant electromagnetic
vector fields. In this paper, we focus on the case where E � B ¼ 0 near some �0 2S,
so that we are in the geometric setting of [10]. Our aim is to study the concentra-
tion of ð "Þ above J and J0 at the scale

ffiffiffi
"

p
by means of two-scale Wigner measure

for involutive submanifolds which have been introduced by Miller in [25] and
developed in [9].

1.2. Two-scale Wigner measures. We consider for a while a more general
setting and recall results of [9]. Let I be a codimension m submanifold of
the cotangent space T�RD. If �2 I, �ð�Þ is a symplectic form on the vectorial
space TðT�RDÞ� and TIj� is a vectorial subspace of TðT�RDÞj�. The vectorial
subspace

TI?j� ¼ f��2TðT�RDÞj�; 8��0 2TIj�; �ð�Þð��; ��0Þ ¼ 0g

is the orthogonal of TIj� for the symplectic structure induced by �. The submani-
fold I is said to be involutive if and only if

8�2 I; TI?j� � TIj�:

In coordinates, if I is an involutive submanifold and �0 2 I, there exist local
symplectic coordinates ðx; �Þ near �0 such that I ¼ fx1 ¼ � � � ¼ xm ¼ 0g.

We suppose that I is an involutive submanifold given by some system of
equations f ¼ 0 where f ¼ ðf1; . . . ; fmÞ2C1ðR2D;RmÞ, Rankðdf Þ ¼ m on f ¼ 0
and ffj; fkg ¼ 0. Let us denote by Rm, the ball obtained by adding a sphere
at infinity to Rm. We consider the set A of symbols a ¼ aðz; ; �Þ2
C1ðRD �RD �RmÞ which are uniformly compactly supported in the variables
ðz; Þ with respect to � and which can be extended as a function of
C1ðRD �RD �RmÞ by

aðz; ;1!Þ ¼ lim
R!þ1

aðz; ;R!Þ; in e1; 8!2Sm�1:

We extend this definition to smooth matrix-valued function a by setting a2A if
and only if all the coefficients of the matrix a are symbols of A. With any matrix-
valued symbol a2A, we associate the two-scaled pseudo-differential operator,

op"
IðaÞ :¼ oph

�
a

�
z; ;

f ðz; Þffiffiffi
"

p
��

:

By Calderon-Vaillancourt’s Theorem, the family of operators op"
IðaÞ is a bounded

family of bounded operators in L2ðRDÞ. Let ð�"Þ be a bounded family in
L2ðRD;CNÞ, N 2N, we study the evolution as " goes to 0 of

K"ðaÞ :¼ ðop"
IðaÞ�"j�"Þ:

The limit of K" is described by a positive Radon measure on NðIÞ, the com-
pactified normal bundle to I.
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Let us explain which is the bundle NðIÞ. We associate with I its tangent bundle
TI. Taking the quotient of the tangent space TðT�RDÞj� above some point � of I by
TIj�, we obtain the fiber above � of NðIÞ, the normal bundle to I. Then, NðIÞj� is
the closed m-dimensional ball obtained by adding a sphere at infinity to NðIÞj�.
The choice of the equation f yields local coordinates on NðIÞj� given by the
continuation � of the isomorphism �,

� : ½��	 2NðIÞj� 7! � ¼ df ð�Þ��2Rm:

If � is a measure on NðIÞ, we denote by �f the measure on Rm which is the image
of � by �. Let us come back to the limit of K"ðaÞ.

There exists a sequence "k �!
k!þ1

0, a matrix-valued positive measure � on NðIÞ
such that for all matrix-valued symbol a2A,

K"kðaÞ �!
k!þ1

tr

�ð
Rm

a d�f

�
þ tr

�ð
f 6¼0

a

�
z; ;

f ðz; Þ
jf ðz; Þj1

�
d�

�
;

where � is a Wigner measure of ð�"Þ.
We point out that � determines � above I by

�1I ¼
ð
I

�ðz; ; d�Þ:

These measures correspond to a second micro-localization in the spirit of [1], [23]
(see also [6]): we add to the microlocal variables ðz; Þ a new variable � which
belongs to Rm. This additional coordinate is used for measuring the distance from
points in T�RD to the submanifold I versus the scale

ffiffiffi
h

p
. Some Wigner trans-

form’s approach of two-scale Wigner measures can be performed as in [12].
Consider W", the usual Wigner transform of ð�"Þ,

W"ðz; Þ ¼
ð

eiy��"
�
z� "

2
y

�
� �"

�
zþ "

2
y

�
dy:

The two-scale Wigner transform of ð�"Þ is the distribution

W"
2�

"ðz; ; �Þ ¼ W"�"ðz; Þ � �

�
� � f ðz; Þffiffiffi

h
p

�
;

If one studies the action of the distribution W"
2 on the class of test functions A,

two-scale Wigner measures appear as the limits points of W"
2 .

Our aim in the following is to calculate two-scale Wigner measures associated
with a family ð "Þ solution to (6), and with the involutive submanifolds J and J0.

1.3. The branching of the energy: matrix-valued Landau-Zener formula.
We denote by � (resp. �0) the measures associated with ð "Þ and J (resp. J0). We
denote by �þ, ��, _JJ�; in and _JJ�; out the sets

�� ¼ f��0 ¼ 0g; _JJ�; in ¼ J�; innS; _JJ�; out ¼ J�; outnS:
We consider the bundles above ��, N��ð _JJ�; inÞ and N��ð _JJ�; outÞ obtained respec-
tively by adding a sphere at infinity to the fibers of T��=Tð _JJ�; inÞ and of
T��=Tð _JJ�; outÞ. Because of the properties of localization of Wigner measures,
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there exist scalar positive Radon measures ��; in and ��; out supported on
N��ð _JJ�; inÞ and N��ð _JJ�; outÞ respectively such that

� ¼ �þ; in þ ��; out; �0 ¼ ��; in þ �þ; out;

�� ��;in�� ¼ ��; in; �� ��; out�� ¼ ��; out:

Moreover, if L�; inðH��Þ (resp. L�; outðH��Þ) is the linearized Hamiltonian flow of

 þ ��0 transversally to _JJ�; in (resp. _JJ�; out), in ��, the measures ��; in (resp. ��; out)
satisfy

L�; inðH��Þ��; in ¼ ½��; in;F�	 on _JJ�; in;

L�; outðH��Þ��; out ¼ ½��; out;F�	 on _JJ�; out:

These propagation properties result from [14], [15] and [9]. Using (10), (11), the
equations of J and J0 and the fact that j� � Aj ¼ 
ð
 þ VÞ on J�; in and J�; out, we
obtain that

F�
j _JJ�; in ¼ Oð1Þ; F�

j _JJ�; out ¼ Oð1Þ near S:

Therefore, the fact that the Hamiltonian flows are transverse to S yields that, in the
set of distributions, measures ��; in and ��; out have traces on S that we denote by
��; inS and by ��; out

S . These four traces can be identified to measures on one set in
which we can study the existing link between ��; out

S and ��; inS .

Lemma 1. For �0 2S, the map

� : TðT�ðR4ÞÞj�0
! R3

�� 7! dð
 þ VÞ ��Bþ dð� � AÞ ���E

induces some isomorphism between the limits of the fibres of N��ð _JJ�; inÞ and
N��ð _JJ�; outÞ above some point � which goes to �0 and the hyperplane normal to
E for the Euclidian structure of R3.

This lemma is proved in the Appendix.
We extend the map � to the limits of the fibres of N��ð _JJ�; inÞ and of

N��ð _JJ�; outÞ. Provided this identification, the connection between ��; inS and

��; out
S near the point �0 is described by the following Theorem.

Theorem 1. We assume that �þ; inS and ��; inS are mutually singular.

1) The adiabatic regime: �2 	0; 1
2
½,

�þ; out
S ¼ jEj2

jEj2 � jBj2
Ra�

þ; in
S R�

a ; ��; out
S ¼ jEj2

jEj2 � jBj2
Ra�

�; in
S R�

a ;

with

Ra ¼
 

1 �p
�

E�B

jEj2
�

p
�

E�B

jEj2
�

�1

!
:
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2) The non-adiabatic regime: �5 1
2
,

�þ; out
S ¼ T��; inS þ ð1 � TÞR�þ; inS R�

��; out
S ¼ T�þ; inS þ ð1 � TÞR��; inS R�; ð13Þ

where, if � ¼ 1=2,

T ¼ exp

�
� 	

ðjEj2 � jBj2Þ3=2
�ð�;mÞ2

�
;

R ¼ jEj
�ð�;mÞ ðRnað�Þ þ mRaÞ;

and, if �> 1=2,

T ¼ exp

�
� 	

ðjEj2 � jBj2Þ3=2
�ð�; 0Þ2

�
;

R ¼ jEj
�ð�; 0ÞRnað�Þ;

and

�ð�;mÞ ¼
�
j�j2 �

�
E�B

jEj2
� �
�2

þ ðjEj2 � jBj2Þm2

�1=2

;

Rnað�Þ ¼
 

0 p
�
��E

jEj2
�

p
�
�� �

jEj2
�

0

!
þ i� � E�B

jEj3

 
p
�

E
jEj

�
0

0 p
�

E
jEj

�!:
Remarks. 1) The matrix R describes the change of polarization at the

crossing. Observe that if B ¼ 0, the transfer coefficient T and the polarization
matrix R are rather simple. In that case, we are reduce to the situation studied
in [8].

2) The existence of different regimes in avoided crossings has already been
noticed in [5] and in [18] where the same critical scale

ffiffiffi
"

p
appears (the latter

reference has been completed recently by [29]). If �2 	0; 1
2
½, the mass "�m is big

enough so that the measure is propagated as if there were no crossing (� ¼ 0). If
�> 1

2
, the mass is so small that we have the same result as if m ¼ 0, i.e. as if we

had a true crossing as studied in [11]–[8]. Finally, in the critical case � ¼ 1
2
, the

Landau-Zener formula depend on m. Observe too that the part of the measure
localized on fj�j ¼ þ1g always propagates adiabatically.

3) It is likely that the adiabatic regime could be studied directly on the semi-
classical scale and that the introduction of two-scale Wigner measure is not neces-
sary to calculate the evolution of Wigner measures: the reflection of Wigner
measure could be obtained by the same method as in Section 3 below.
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4) In the case E � B 6¼ 0, the two-scale Wigner measures which have to be
considered are more complicated (see [7]) but similar results may be expected.

5) In the proofs below, we do not use the fact that � � A is a linear function of
� with x; �2R3. Thus Theorem 1 can be generalized to systems of the same form
that (6) where we turn � � A into some function l ¼ lðt; x; �Þ, x; �2Rd, d5 2 and
where V may depend on � with the conditions of [11]: dl of rank 3 on fl ¼ 0g and
E � B ¼ 0, with

E ¼ f
 þ V ; lg; B ¼ ðfl3; l2g; fl1; l3g; fl2; l1gÞ:
We will proceed as follows. Section 2 is devoted to the reduction of system (6)

to a model system, via a Fourier integral operator and a canonical transform. Then,
in Section 3, we reduce Theorem 1 to some equivalent statement on the solution of
the model system. In Section 4 and 5, we treat separately the ‘‘adiabatic’’ cases –
namely �2ð0; 1=2Þ and (�5 1=2, j�j ¼ þ1) – and the ‘‘non-adiabatic’’ ones:
�5 1=2 and j�j<þ1. Finally, in the Appendix, we prove the restitution of the
energy by the crossing and the geometric Lemma 1.

2. Reduction to a Model Problem

Let us describe first the Fourier integral operators we use. If � is a canonical
transform of T�R4, there exists some semi-classical Fourier integral operator K
that we call associated with �, which satisfies

8f 2L2ðR4Þ;8a2C1
0 ðR8Þ;K�ophðaÞKf ¼ ophða � �Þf þ Oðh2ÞkfkL2 ; in L2ðR4Þ:

ð14Þ
The reader can refer to [28] for a complete study on Fourier Integral Operator or to
[9] where this claim is proved.

This section is devoted to the proof of the following Proposition.

Proposition 1. Consider �0 2S such that jEð�0Þj> jBð�0Þj. There exist some
local canonical transform � from a neighborhood of �0 into a neighborhood � of 0,

� : ðt; x; 
; �Þ 7! ðs; z; �; Þ; �ð�0Þ ¼ 0;

a matrix C and a Fourier integral operator K associated with � such that
v" ¼ Kop"ðCÞ " satisfies for all a2C1

0 ð�Þ,

op"ðaÞop"

�
��þ s pðm";�~Þ
pðm";�~Þ ��� s

�
v" ¼ Oð"Þ in L2ðR4Þ; ð15Þ

where ~ ¼ ð1; 2Þ, m" ¼ kðs; z; �; Þm"� with

kjS ¼ ðjEj2 � jBj2Þ�1=4; ð16Þ
and where the 2� 2 matrix-valued function � ¼ �ðs; z; �; Þ is smooth with
detð�Þ 6¼ 0 in �. Moreover in the coordinates ðs; z; �; Þ,

J�; in ¼ f�
 s ¼ 0; ~ ¼ 0; s< 0g; J�; out ¼ f�� s ¼ 0; ~ ¼ 0; s> 0g; ð17Þ
J [ J0 ¼ f~ ¼ 0g \ � ¼ f�2 ¼ s2g \ f~ ¼ 0g:
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The proof of Proposition 1 follows the same schedule than the proof of
Theorem 2 in [11] through modifications required by the presence of m"�. We
proceed in two steps: first we transform the matrix P" by algebraic operations so
that the equations of J and J0 appear, then we define the canonical transform and
conclude the proof.

2.1. An algebraic lemma. Let us first introduce some notations. We shall use
the following matrices:

M1 ¼ 1ffiffiffi
2

p
�
1 �1

1 1

�
; M2 ¼

1 0 0 0

0 0 0 1

0 0 �1 0

0 1 0 0

0BB@
1CCA;

which have the following properties:

M�
1 ¼ M�1

1 M2 ¼ M�1
2 ¼ M�

2 ð18Þ

M1

�
m pð�Þ
pð�Þ �m

�
M�

1 ¼
�
�pð�Þ m

m pð�Þ

�
; ð19Þ

M2

�
�pð�Þ m

m pð�Þ

�
M2 ¼ �

�
�3 pð�1; �2;mÞ

pð�1; �2;mÞ ��3

�
: ð20Þ

We denote by L the submanifold of T�R4 defined by

L ¼ fð� � A� ð
 þ VÞuÞ� ðu� u0Þ ¼ 0g:

Then, by a simple computation, we have J [ J0 ¼ � \ L. Moreover, we set

e1 ¼ e1ðt; x; 
; �Þ :¼
u� u0

ju� u0j ;

so that

ðe1ÞjS ¼
E

jEj : ð21Þ

We choose some smooth functions ðe2; e3Þ so that ðe1; e2; e3Þ is a direct orthonor-
mal basis of R3 with moreover

ðe2ÞjS ¼
B�E

jEj jBj ; ðe3ÞjS ¼
B

jBj ; if B 6¼ 0: ð22Þ

Consider now the complex valued function � ¼ �ðt; x; 
; �Þ defined by

� ¼ u � e2 þ iu � e3:

Note that near �0, j�j< 1. Actually, in view of ujS ¼ ! and of (12) we obtain

�jS2R; and �jS ¼
jBj
jEj < 1: ð23Þ
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Lemma 2. There exists some smooth invertible matrix C1 ¼ C1ðt; x; 
; �Þ such
that


 þ P" ¼ C�1 H1C1

with

H1 ¼ 
 þ V þ Y � g�
ð��AÞ�e1ffiffiffiffiffiffiffiffiffiffi

1�j�j2
p pðg; ~mm"Þ

pðg; ~mm"Þ � ð��AÞ�e1ffiffiffiffiffiffiffiffiffiffi
1�j�j2

p

0@ 1A; ð24Þ

where ~mm" ¼ ~kkðs; z; �; Þm"� and where g ¼ ðg1; g2Þ is an equation of L satisfying

dg1jS ¼ jEj2
r2 d½ð� � A� ð
 þ VÞuÞ � e2	;

dg2jS ¼ jEj
r

d½ð� � A� ð
 þ VÞuÞ � e3	:

(
ð25Þ

The smooth complex-valued vector Y ¼ Yðt; x; 
; �Þ ¼ ðY1; Y2Þ satisfies

Y1jS ¼ � jBj
jEj ;

Y2jS ¼ 0:

�
ð26Þ

The smooth real-valued function ~kk satisfies

~kkjS ¼
jEjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jEj2 � jBj2
q : ð27Þ

Proof of Lemma 2. We first use the quaternion structure of matrix pðvÞ. By
Lemma 2 of [11], there exists a smooth unitary matrix U ¼ Uðt; x; 
; �Þ such that

UpðvÞU� ¼ pðv � e2; v � e3; v � e1Þ: ð28Þ

Therefore, if U 0 ¼
�
U 0

0 U

�
M1, we have

U0
�

m"� pð��AÞ
pð��AÞ �m"�

�
U 0�

¼
��pðð��AÞ�e2;ð��AÞ�e3;ð��AÞ�e1Þ m"�

m"� pðð��AÞ�e2;ð��AÞ�e3;ð��AÞ�e1Þ

�
:

We aim now to introduce the equations of L given by the vector-valued function f ,

f ¼ ðð� � A� ð
 þ VÞuÞ � e2; ð� � A� ð
 þ VÞuÞ � e3Þ
¼ ðð� � AÞ � e2 � ð
 þ VÞ�1; ð� � AÞ � e3 � ð
 þ VÞ�2Þ:

We set Sð�Þ ¼
�

1 �1 � i�2

�1 þ i�2 1

�
and we get:

U0ð
 þ P"ÞU0� ¼ ð
 þ VÞ
�
Sð��Þ 0

0 Sð�Þ

�
þ
��pð f ; ð� � AÞ � e1Þ m"�

m"� pð f ; ð� � AÞ � e1Þ

�
: ð29Þ
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Let us denote by N the set of 2� 2 matrices

N ¼
�
SðzÞ ¼

�
1 �zz
z 1

�
; z2C

	
:

Lemma 3. Let S ¼ SðzÞ2N. Then for all v ¼ ðv1; v2; v3Þ ¼ ðv0; v3Þ2R3,

SðzÞpðv0; v3ÞSðzÞ ¼ zv0 þ �zzv0 þ pðv0 þ z2v0; ð1 � jzj2Þv3Þ;
The proof is straightforward.
We use matrices

ffiffiffiffiffiffiffiffiffi
Sð�Þ

p �1
and

ffiffiffiffiffiffiffiffiffiffiffiffi
Sð��Þ

p �1
to get rid of the matrix-valued

coefficient of ð
 þ kÞ in (29). Notice that

Sð�Þ�1 ¼ Sð��Þ
1 � j�j2

;
ffiffiffiffiffiffiffiffiffi
Sð�Þ

p �1 ¼ aSð�b�Þ;

with

a ¼ 1

2



1 � j�j2

��1=2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ j�j
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � j�j

p �
;

b ¼ 1

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � j�j2

q :

Define

C1 ¼ M2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð��Þ

p
0

0
ffiffiffiffiffiffiffiffiffi
Sð�Þ

p �
U0: ð30Þ

Then, if H1 ¼ ðC�1 Þ
�1ð
 þ P"ÞC�1

1 , Lemma 3 and (29) yield

H1 ¼M2

�

þk�a2bð��ff þ f ���Þþm"�a2ð1�b2j�j2Þ

�
0 1

1 0

�
þa2 � � ��

�pðf þb2�2�ff ;ð1�b2j�j2Þð��AÞ �e1Þ 0

0 pðf þb2�2�ff ;ð1�b2j�j2Þð��AÞ �e1Þ

�
� � �
�
M2:

We set ~kk ¼ a2ð1 � b2j�j2Þ and we check that ~kk ¼ 1ffiffiffiffiffiffiffiffiffiffi
1�j�j2

p .

Let g ¼ ðg1; g2Þ be such that g1 þ ig2 ¼ a2ð f þ b2�2�ff Þ: Then we get (24)
through straightforward computations.

Moreover, we have dgjS ¼ dfjS þ b2�2d�ffjS and in view of a2ð1 þ b2�2Þ ¼
ð1 � j�j2Þ�1

, we obtain

dg1jS ¼ a2ð1 þ b2�2ÞjSdf1jS ¼
1

1 � j�j2jS
df1jS;

dg2jS ¼ a2ð1 � b2�2ÞjSdf2jS ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � j�j2
q

jS

df2jS;
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whence (25). Moreover, if Y1g1 þ Y2g2 ¼ �a2bð��ff þ ���f Þ ¼ �2a2bReð��ff Þ, then

ðY1dg1 þ Y2dg2ÞjS ¼ �2a2b�d�ffjS:

Therefore, ðY2ÞjS ¼ 0 and ðY1ÞjS ¼ �2ð1 � j�j2Þa2b� above S, whence (26). &

2.2. The canonical transform. Observe that


 þ V þ Y � g; ð� � AÞ � e1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � j�j2

q
8><>:

9>=>; ¼ jEj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEj2 � jBj2

q > 0:

Therefore, arguing as for Proposition 4 in [11], we get the following Proposition.

Proposition 2. There exist some function �, �> 0 near �0, and some local
canonical transform �,

� : ðt; x; 
; �Þ 7! ðs; z; �; Þ;
�ð�0Þ ¼ 0;

such that

� ¼ �ð
 þ V þ Y1g1 þ Y2g2Þ;

s ¼ �
ð� � AÞ � e1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � j�j2
q ;

�gðt; x; 
; �Þ ¼ ð	��1ðs; z; �; Þ � ~; 	��2ðs; z; �; Þ � ~Þ þ ð�2 � s2Þ�;
where ~ ¼ ð1; 2Þ and where � ¼ ð�1; �2Þ, 	��1 and 	��2 are smooth functions valued
in R2 with detð	��1; 	��2Þ 6¼ 0. Moreover,

�2
jS ¼ jEj�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEj2 � jBj2

q
: ð31Þ

Let us identify J and J0 in these new coordinates. Remark that, if �2L,
gð�Þ ¼ 0, thus

�2j
 þ Vj2 ¼ �2; �2j� � Aj2 ¼ s2ð1 � j�j2Þ þ �2j�j2:
Therefore, L \ fs2 ¼ �2g ¼ L \ fj� � Aj2 ¼ ð
 þ VÞ2g ¼ J [ J0. We study now
the sign of � which is sgnð
 þ VÞ i.e. 
 on J�; in [ J�; out, and the sign of s which
is sgnðð� � AÞ � e1Þ i.e. þsgnð
 þ VÞ on J and �sgnð
 þ VÞ on J0 (since u�
e1 > 0 and u0 � e1 < 0). For example, we obtain J ¼ f� ¼ sg \ fg ¼ 0g and
Jþ; in � fs< 0; �< 0g. Hence the equations of J, J0, J�; in and J�; out stated in
Proposition 1.

Let us conclude now the proof of Proposition 1. We set

C ¼ ��1=2C1: ð32Þ
In the following calculations, we shall denote by Oð"Þ either a family ðR"Þ of
operators or a family ðr"Þ of functions such that, for every �2C1

0 ,

1

"
½kop"ð�ÞR"kLðL2Þ þ jop"ð�Þr"jL2 	 is bounded:
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We have

op"ð�H1Þ ¼ op"ðC��1Þop"ð
 þ P"Þop"ðC�1Þ þ Oð"Þ:
Consider now some Fourier integral operator K associated with � and

v" ¼ Kop"ðCÞ ":
Then we have

op"

�
��

�
s pð~ff ;m"Þ

pð~ff ;m"Þ �s

��
~vv" ¼ Kop"ð�H1Þ~vv"

¼ Kop"ðC��1Þop"ð
 þ P"Þ " þ Oð"Þ
¼ Oð"Þ;

where we have used (14) and (6) and where m" ¼ �~mm" and

~ff ¼ ð	��1 � ~; 	��2 � ~Þ þ ð�2 � s2Þ�:
We rewrite this equation as

op"ðD� DBDÞv" ¼ op"ðFÞv" þ Oð"Þ; ð33Þ
with

D ¼
�
�� s 0

0 �þ s

�
; B ¼

�
0 pð0; �Þ

pð0; �Þ 0

�
;

F ¼
�

0 pð	��1 � ~; 	��2 � 2;m"Þ
pð	��1 � ~; 	��2 � 2;m"Þ 0

�
:

Since DBF ¼ BFD and BjS ¼ 0, FjS ¼ 0, we can argue as in [11] at the end of the
proof of Theorem 2 (Section 3.3) and we get that there exists a matrix P such that
PjS ¼ 1 and

op"ðDÞv" ¼ op"ðPÞop"ðFÞv" þ Oð"Þ:
Hence Proposition 1 with

�jS~ ¼ ðð	��1ÞjS � ~ þ ð	��2ÞjS � ~Þ: ð34Þ
Therefore matrix � is invertible near S. &

3. Consequences of the Reduction to System (15)

Proposition 1 has two important consequences. The first one is that it states that
there exists some involutive submanifold of T�Rdþ1, I ¼ f~ ¼ 0g, such that

J [ J0 ¼ � \ I;

with transverse intersection. Thus, if � is the two-scale Wigner measure of ð "Þ for
I, we can identify measures �, (resp. �0) with � above NðIÞjJ (resp. NðIÞjJ0).
Actually, if N�ðJÞ is the bundle above � obtained by adding a sphere at infinity
of the fibers of T�=TJ, the canonical isomorphism from T�=TJ onto
TðT�Rdþ1

jJ Þ=TJJ extends in some isomorphism

��;I : N�ðJÞ ! NðIÞ;
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that we use for identifying � and � 1NðIÞjJ
. The reader can refer to Lemma 4 in [9]

for a proof of this fact. Because of this identification, we shall focus in calculating
the two-scale Wigner measure of ð "Þ for I.

The second consequence is that because of the invariance of two-scale Wigner
measure through canonical transform (see Lemma 2 in [9]), it is equivalent to
study the two-scale Wigner measure of ðv"Þ for I, or of ð "Þ for the same set.
Indeed, the two-scale Wigner measures ~�� of ðv"Þ and � of ð "Þ are linked by

8a2A; ha; ~��i ¼ ha � Nð�Þ; C�C�i; ð35Þ
where for ð�; �Þ 2 NðIÞ, Nð�Þð�; �Þ ¼ ð�ð�Þ; �Þ. We set

~���
0 ¼ 1

2

 
1 
 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ j�~j2
q �

s pð�~; 0Þ
pð�~; 0Þ �s

�!
: ð36Þ

We decompose ~�� as ~�� ¼ ~��þ þ ~��� with the commutation’s relations:

~���
0 ~��

� ~���
0 ¼ ~���; ð37Þ

and the localization property: ~��� is supported on f�� jsjg ¼ J�; in [ J�; out. Let us
denote by ~���; inS (resp. ~���; out

S ) the traces of ~��� on s ¼ 0� (resp. s ¼ 0þ). In view of
(35), we have

~���; out
S � Nð�Þ�1 ¼ CjS �

�; out
S C�jS; ~���; inS � Nð�Þ�1 ¼ CjS �

�; in
S C�jS: ð38Þ

In the coordinates ðs; z; �; Þ we choose the equations of I, ~ ¼ 0. Let �2S, this
equation generates coordinates ~��2R4 on NðIÞj�. In these coordinates the branch-
ing of the energy is described by the following theorem.

Theorem 2. Assume that ~��þ; in and ~���; in are mutually singular, then we have

~��þ; out
S ¼ ~TT ~���; inS þ ð1 � ~TTÞ ~RR ~��þ; inS

~RR

~���; out
S ¼ ~TT ~��þ; inS þ ð1 � ~TTÞ ~RR ~���; inS

~RR ð39Þ
with

1) If �2 	0; 1
2
½,

~TT ¼ 0; ~RR ¼
�

0 pð0; 0; 1Þ
pð0; 0; 1Þ 0

�
:

2) If � ¼ 1
2
,

~TT ¼ exp½�	ðj�jS~��j2 þ k2
jSm

2Þ	;

~RR ¼ ðj�jS~��j2 þ k2
jSm

2Þ�1=2

�
0 pð�jS~��; kjSmÞ

pð�jS~��; kjSmÞ 0

�
:

3) If �> 1
2
,

~TT ¼ exp½�	j�jS~��j2	; ~RR ¼ 1

j�jS~��j

�
0 pð�jS~��; 0Þ

pð�jS~��; 0Þ 0

�
:

Semi-Classical Analysis of a Dirac Equation without Adiabatic Decoupling 297



Let us explain now why this theorem implies Theorem 1.

Proof of Theorem 1. We focus on the case � ¼ 1=2. Because of (38), we have

T ¼ ~TT � Nð�Þ�1; R ¼ ðC�1
jS

~RRCjSÞ � Nð�Þ�1:

The first observation consists in studying the link between ~�� and the function �
defined in the introduction. In view of (34) and of Proposition 2, we have

�jS d~ ¼ � dgjS:

Moreover,

� ¼ ½dð� � AÞ��� dð
 þ VÞ�� u	 �E:

Using (25), (27) and (11), we obtain

�jS d~�� ¼
�
�
�jSjEj
r2

� � e3;
�jS
r
� � e2

�
: ð40Þ

Hence, by (27), (12), (31) and (22), we get

j�jS d~��j2 þ k2
jSm

2 ¼ ðjEj2 � jBj2Þ�3=2�ð�;mÞ2:

This yields the value of T stated in Theorem 1.
It remains to calculate C�1

jS
~RRCjS. Notice that

~RR ¼ �ð�;mÞ�1ðjEj2 � jBj2Þ3=4

�
0 pð�jS~��;mkjSÞ

pð�jS~��;mkjSÞ 0

�
:

Moreover, because of (32), we have

C�1
jS

~RRCjS ¼ C1
�1
jS

~RRC1jS:

We shall use the following lemma.

Lemma 4. For any v ¼ ðv1; v2; v3Þ2R3,

ðC1Þ�1
jS

�
0 pðvÞ

pðvÞ 0

�
ðC1ÞjS

¼ � v3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � �2

p
1 �p



E�B

jEj2
�

p


E�B

jEj2
�

�1

0@ 1Aþ i
� v2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � �2

p
p



E
jEj
�

0

0 p



E
jEj
� !

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � �2

p
0 U�pð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � j�j2

q
v1; v2; 0ÞU

U�pð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � j�j2

q
v1; v2;0ÞU 0

0B@
1CA:

Proof. This lemma comes from simple computations and the use offfiffiffiffiffiffiffiffiffiffiffiffi
Sð�jSÞ

q
pðv0; 0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð��jSÞ

q
¼ p

�
v1;

v2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � �2

p ; 0

�
þ i�jSpð0; 0; 1Þ;

U�pð�jSÞU ¼ �p

�
E�B

jEj2
�
; U�pð0; 0; 1ÞU ¼ p

�
E

jEj

�
:

298 C. Fermanian Kammerer



These latter equations are consequences of the definition of U (see (28)), of (22)
and (12). &

By definition of �ð�;mÞ, we have

R ¼ jEj
�ð�;mÞ ðjEj

2 � jBj2Þ1=4
C�1

1

�
0 pðvÞ

pðvÞ 0

�
C1;

with v ¼ ð�jS�jS~��;mkjSÞ. By (40), we obtain

v3 ¼ ðjEj2 � jBj2Þ�1=4
m;

�v2 ¼ �ðjEj2 � jBj2Þ�1=4� � E�B

jEj3
;� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � j�j2
q

v1; v2

�
¼ ðjEj2 � jBj2Þ�1=4

��
E

jEj2
� �

�
� e2;

�
E

jEj2
� �

�
� e3;�

E

jEj2
� �

�
� e1

�
:

In view of (28), we get the expression of R stated in Theorem 1. &

In the following sections, we drop the~on ~�� and we focus on proving Theorem 2,
for �2ð0; 1=2Þ or (�5 1=2 and j�j ¼ 1) first, then for (�5 1=2 and �<þ1).

Before closing this section, let us state a last result concerning system (15). The
dependance on the variable � of the function �1 and �2 does not prevent from
dealing with system (15) as with a system of evolution equations. Actually,
arguing as in [11], Proposition 5, we can prove the following hyperbolic estimate.

Proposition 3. Consider ðv"Þ a bounded family in L2ðR4
s;z;C

4Þ satisfying (15),
consider �2C1

0 ðR3Þ such that �ð0Þ ¼ 1, then there exists � > 0 and "0 > 0 such

that the family


�

 ðs;"Dz1

;"Dz2
Þ

�

�
v"
�
"> "0

is bounded in L1ðRs; L
2ðR3

z ÞÞ.
Therefore, arguing as in [11] and [9], we can estimate ðop"ðaÞv" j v"Þ for

a2C1
0 ðKÞ where K is some compact subset of fj~j2 þ s2 4 �g, for � small

enough; by Proposition 3 and Schur’s lemma, we have

jðop"ðaÞv"jv"Þj4C

ðþ1

�1
sup

kþj�j4N

sup
ðz;�;Þ 2R7

j@k� @�z aðs; z; �; Þj ds; ð41Þ

uniformly with respect to K.

4. The Adiabatic Cases: ðj�j ¼ þ1; �5 1=2Þ or �2ð0; 1=2Þ
In this section, we prove Equations (39) for �2ð0; 1=2Þ and for (�5 1=2;

j�j ¼ þ1), i.e.

~��þ; out ¼ ~RR ~��þ; in ~RR; ~���; out ¼ ~RR ~���; in ~RR: ð42Þ
In view of the definition of ~��� (see (36)), we have

~��þ ¼
�
1 0

0 0

�
above Jþ; in; ~��þ ¼

�
0 0

0 1

�
above Jþ; out; ð43Þ

Semi-Classical Analysis of a Dirac Equation without Adiabatic Decoupling 299



~��� ¼
�
0 0

0 1

�
above J�; in; ~��� ¼

�
1 0

0 0

�
above J�; out: ð44Þ

Therefore, the polarization of ~���; in is not the same than the one of ~���; out. This
explains the presence of the matrix ~RR in (42).

We follow the method initiated in [9]–[11] and developed in [8] for eigenval-
ues of multiplicity higher than 1. We shall focus on the plus mode, the proof for the
minus mode is similar. We proceed in two steps. First, we reduce (42) to some
statement on the family ðv"Þ by use of suitably chosen symbols. Then, in a second
step, we prove this statement by Weyl-H€oormander pseudo-differential calculus.

4.1. An equivalent statement to (42). Here again, we proceed in two steps.
Equation (42) link the traces on S of ~���. The first step consists in translating (42)
into some result on ~��� itself and not only on its traces. Then, it is easy to obtain an
equivalent statement on ðv"Þ, simply by using the definition of two-scale Wigner
measure. Let us introduce first some notations.

Consider the vector-valued function X1
! ¼ X1

! ðs; z; �; ; �Þ defined by

for �> 1=2,

X1
! ¼

�
p

�
��

j��j ; 0
�
!; ð0; 0Þ

�
if s> 0; X1

! ¼ ðð0; 0Þ; !Þ if s< 0;

for � ¼ 1=2,

X1
! ¼

�
p

�
ð��;mkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j��j2 þ m2k2

q �
!; ð0; 0Þ

�
if s> 0; X1

! ¼ ðð0; 0Þ; !Þ if s< 0;

for �2ð0; 1=2Þ,
X1
! ¼ ðpð0; 0; 1Þ!; ð0; 0ÞÞ if s> 0; X1

! ¼ ðð0; 0Þ; !Þ if s< 0;

and the matrix-valued function �1
!;!0 ¼ �1

!;!0 ðs; z; �; ; �Þ defined by

�1
!;!0 :¼ X1

! � X1
!0 ¼:

�in
!;!0 if s< 0

�out
!;!0 if s> 0:

�
Lemma 5. Consider now �2C1

0 ðRÞ, �ð0Þ 1.

1) If �5 1=2, Equation (42) for j�j ¼ þ1 is equivalent to

8a0 2C1
0 ðR7 �S1Þ; lim

"!0
tr

 *
1

"
�0

 
s

"

!
a0

 
z; �; ;

�

j�j

!
�1
!;!0 ;

~��þ1j�j¼1

+
¼ 0: ð45Þ

2) If �2ð0; 1=2Þ, Equation (42) is equivalent to

8a0 2A; lim
"!0

tr

 *
1

"
�0

 
s

"

!
a0ðz; �; ; �Þ�1

!;!0 ; ~��þ

+
¼ 0: ð46Þ
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Proof. 1) We crucially use that the matrix ~��þ satisfies the commutation’s
relations (37). We write the 4� 4 matrix ~��þ by blocks of 2� 2 matrices

~��� ¼
�
Aþ Bþ

Cþ Dþ

�
:

By (43) and (44), ~��þ is of the form

~��þ ¼
�
Aþ 0

0 0

�
above Jþ; in;

~��þ ¼
�
0 0

0 Dþ

�
above Jþ; out:

Besides, the 2� 2 matrix Aþ is utterly determined by the knowledge of
trðAþ!� !0Þ for any !, !0 in S1. The same fact holds for Dþ. Moreover, above Jþ; in

trðAþ!� !0Þ ¼ tr

�
~��þ
� !�

0

0

��
�
� !0�

0

0

���
;

and above Jþ; out;

trðDþ!� !0Þ ¼ tr

�
~��þ
�� 0

0

�
!

�
�
�� 0

0

�
!0

��
:

Therefore, by the definition of ~��in
!;!0 , Equation (42) is equivalent to the fact that for

any choice of ! and !0,

trð~��þ; out �in
!;!0 Þ ¼ trð ~RR ~��þ; in ~RR�in

!;!0 Þ:

In view of

trð ~RR ~��þ; in ~RR �out
!;!0 Þ ¼ trð~��þ; in ~RR �out

!;!0 ~RRÞ and ~RR�out
!;!0 ~RR ¼ �in

!;!0 ;

Equation (42) is equivalent to the fact that for any choice of ! and !0, on
j�j ¼ þ1,

trð~��þ; out �out
!;!0 Þ ¼ trð~��þ; in �in

!;!0 Þ;
i.e. to (45).

The proof of 2) is similar. &

For the second step, we need more notations. We set

�" ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ m2

" þ j�~j2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ m2k2"2� þ j�~j2

q
;

A" ¼
�

s pð�~;m"Þ
pð�~;m"Þ �s

�
;

and we denote by ðf "Þ the family such that, locally near 0,

"

i
@sv

" ¼ op"ðA"Þv" þ "f ";

Semi-Classical Analysis of a Dirac Equation without Adiabatic Decoupling 301



with ðop"ð�Þf "Þ bounded in L2
s;z for any � compactly supported in a neighborhood

of 0 small enough.
Then, for !2S1, we denote by X"! ¼ X"!ðs; �; z; Þ the norm 1 eigenvector

of A" for the eigenvalue �" defined for s 6¼ 0 or ~ 6¼ 0 by

X"! ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�"ð�" � sÞ

p ðpð�~;m"Þ!; ð�" � sÞ!Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�"ð�" � sÞ

p ð�" þ A"Þ
�

0

!

�
:

For !, !0 2S1, we consider the matrix

�"
!;!0 ¼ �"

!;!0 ðs; z; �; Þ :¼ X"! � X
"
!0 :

The function �"
!;!0 depends on ", thus, for a2A, the function

q : ðs; z; �; ; �Þ 7! aðs; z; �; ; �Þ�"
!;!0 ðs; z; �; Þ

is not in A. However, this function is smooth and one can consider the family of
operators op"ðqðs; z; �; ; ffiffi"p ÞÞ that we will denote by op"

Iða�"
!;!0 Þ.

Lemma 6. Consider the scalar symbol a2A compactly supported outside
s ¼ 0 and in the ball fs2 þ j~j2 <�2g, for � > 0 as in Proposition 3. Then we
have,

ðop"
Iða�"

!;!0 Þv"jv"Þ�!
"!0

tr
�
a�1

!;!0 ; ~��þ

:

Proof. Let us suppose that s> 0 on SuppðaÞ, the proof is similar in the other
cases. We have

X"! ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffi

�" þ s
p ffiffiffiffiffiffiffi

2�"
p p

 
ð�~;m"Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�~j2 þ m2

"

q !
!;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�" � s

p ffiffiffiffiffiffiffi
2�"

p !

!
:

The functions ðs; z; �; Þ 7!
ffiffiffiffiffiffiffiffi
�"þs

p ffiffiffiffiffi
2�"

p and ðs; z; �; Þ 7!
ffiffiffiffiffiffiffiffi
�"�s

p ffiffiffiffiffi
2�"

p are smooth functions on

SuppðaÞ. They go respectively to 1 and 0 as " goes to 0. Therefore, we get

ðop"
Iða�"

!;!0 Þv"jv"Þ ¼ ðop"
Iða�1

!;!0 Þv"; v"Þ þ oð1Þ;

where we used (41). Hence the result. &

In order to prove (45) and (46), we use Lemma 6 as follows.

� In the non adiabatic case �5 1=2, we consider a0, � and �0 as before, and for
R> 0, we define a as

aðs; z; �; ; �Þ ¼ �

�
s

�0

�
a0

�
z; �; ;

�

j�j

�
�

�
j~j2

�

��
1 � �

�
j�j
R

��
:

The function a is in A and for q" ¼ a�"
!;!0, the operator op"ðq"Þ satisfies

j@��;z;3
@�
s;~

q"j4C�;�ð�0; �Þ
�

1

R
ffiffiffi
"

p
�j�j

;

where we implicitly assumed R
ffiffiffi
"

p
4 1.
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If we consider the Weyl-H€oormander metric

g" ¼ dz2 þ ds2

R2"
þ "2ðd�2 þ d2

3Þ þ "
d~2

R2
;

we have, with H€oormander’s notations, g"
g�"

4

 ffiffi

"
p

R

�2
; thus the gain of this symbolic

calculus is
ffiffi
"

p

R
. Equation (45) is equivalent to

lim
�0!0

lim
R!1

lim
�!0

lim
"!0

ðop"
Ið@sa�"

!;!0 Þv"jv"Þ ¼ 0: ð47Þ

� In the adiabatic case: �2ð0; 1=2Þ, for a0 as before, �0> 0, � < �0 (where �0 is
defined in Proposition 3), we define a as

aðs; z; �; ; �Þ ¼ �

�
s

�0

�
a0ðz; �; ; �Þ�

�
j~j2

�

�
:

We get that if q" ¼ a�"
!;!0 ,

j@��;z;3
@�
s;~

q"j4C�;�ð�0; �Þ
�

1

"�

�j�j
:

This estimate allows us to use Weyl-H€oormandes symbolic calculus for which we
refer to Sections 18.4, 18.5 and 18.6 in [20]. The symbol q" belongs to the class
Sð1; g"Þ where g" is the metric

g" ¼ dz2 þ ds2

"2�
þ "2ðd�2 þ d2

3Þ þ "2ð1��Þd~2:

Since g"
g�"

4 "2ð1�2�Þ, the gain of this symbolic calculus is "1�2� which goes to 0 as "
goes to 0. Then (46) is equivalent to

lim
�0!0

lim
�!0

lim
"!0

ðop"
Ið@sa�"

!;!0 Þv"jv"Þ ¼ 0; ð48Þ

and the proof of (47) will apply too to (48).

4.2. Proof of (47) and (48). For short, we focus on the case �5 1=2. We
crucially use Weyl-H€oormander metric g" defined above and Corollary 41. We set

L ¼ ðop"
Ið@sa�"

!;!0 Þv"jv"Þ;

and we decompose L into L ¼ L1 þ L2 þ L3 with

L1 ¼ i

"

��
op"

Iða�"
!;!0 Þ; op"

�
s pð�~;m"Þ

pð�~;m"Þ� �s

��
v"jv"

�
;

L2 ¼ ðop"
Iða@s�"

!;!0 Þv"jv"Þ;
L3 ¼ iðop"

Iða�"
!;!0 Þf "jv"Þ � iðop"

Iða�"
!;!0 Þv"jf "Þ:

Then, we prove the convergence to 0 of L1, L2 and L3. For b ¼ bðs; z; �; ; �Þ2C1,
we set

b["ðs; z; �; Þ ¼ b

�
s; z; �; ;

~ffiffiffi
"

p
�
;

b]"ðs; z; �; Þ ¼ bðs; z; "�; ";
ffiffiffi
"

p
~Þ;
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so that we have for b2A,

op"
IðbÞ ¼ op"ðb["Þ ¼ op1ðb]"Þ:

� We begin with L3. By the Weyl-H€oormander symbolic calculus, if �2C1
0 ð�Þ

with � ¼ 1 near the support of a, we have

op"
Iða�"

!;!0 Þ ¼ op"
Iða��"

!;!0 Þ ¼ op"
Iða�"

!;!0 Þop"ð�Þ þ op1

�
S

� ffiffiffi
"

p

R

�N

; g"

�
;

for all N 2N. On the other hand, we can apply Corollary 41 to the symbol
b" ¼ a["�

"
!;!0 . Using the explicit expressions of a and of �"

!;!0 , we get

jL3j4C

ðþ1

�1

������ s

�0

�����dsþ O

�� ffiffiffi
"

p

R

�N�
:

� Let us consider now L1. Note that A]"2Sð�]"; g"Þ, therefore by symbolic
calculus, we obtain

L1 ¼ 1

2
ðop"ðfa["�"

!;!0 ;Ag � fA; a["�"
!;!0 gÞv"jv"Þ þ O

�
1

R2

�
:

We set

b" ¼ fa["�"
!;!0 ;Ag � fA; a["�"

!;!0g: ð49Þ

Observe that �"
!;!0 ¼ Uðs; �";�~;m"Þ where U ¼ Uðr; t;X;mÞ is homogeneous of

degree 0. Therefore, @s�
"
!;!0 and r~�

"
!;!0 are homogeneous of degree �1 in the

variables s, �", ~ and m". However, @��
"
!;!0 and rz�

"
!;!0 have a better degree of

homogeneity, they are homogeneous function of degree 0 in �", s and ~. Note that,
in (49), the derivatives @s�

"
!;!0 and r~�

"
!;!0 appear with some factor ~, which

compensates the �1 degree of homogeneity of these functions. Therefore, apply-
ing Corollary 41, we obtain the estimate

jðop"ðb"Þv"; v"Þj4C

ðþ1

�1
�

�
s

�0

�
ds ¼ Oð�0Þ:

Thus

lim sup
ð�0;�Þ!ð0;0Þ

lim sup
R!þ1

lim sup
"!0

jL1j ¼ 0:

� Finally, let us deal with the remainder term L2. We shall use the following
properties of X! and �"

!;!0 .

Lemma 7. 1) There exists some matrix-valued function �, homogeneous of
degree 0 in s, "� and ~, such that if ð!; !0Þ is some orthonormal basis of R2,

@sX
"
! ¼ 1

2�"
ð@sA" � @s�

"ÞX"! þ ð�! � !0ÞX"!0 :
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2) If ð!; !0Þ is some orthonormal basis of R2,

@s�
"
!;! ¼

�
A";

A"

2ð�"Þ2
@s�

"
!;!

�
� ð�! � !Þð�"

!0;! þ�"
!;!0 Þ;

@s�
"
!;!0 ¼

�
A";

A"

2ð�"Þ2
@s�

"
!;!0

�
� ð�! � !0Þð�"

!;! þ�"
!0;!0 Þ: ð50Þ

We postpone the proof of this Lemma at the end of the section.
Let us conclude for L2. The homogeneity of � and �"

!;!0 in s, �" and ~ yields that

lim sup
ð�0;�Þ!ð0;0Þ

lim sup
R!þ1

lim sup
"!0

jðop"
Iðað�! � !0Þ�"

!;!0 Þv"jv"Þj ¼ 0:

Moreover, we transform the bracket part of @s�
"
!;!0 as in [11] so that we can reuse

the equation. In the metric g", since ð�"Þ]"5C
ffiffiffi
"

p
R on Suppða]"Þ

ðað�"Þ�2
A"Þ]"@s�"

!;!0 2S

�
1

"R2
; g"

�
:

We obtain

op"
I

��
A"; a

A"

2ð�"Þ2
@s�

"
!;!

��
2 1

2
op"ðA"Þop"

Iðað�"Þ�2
A"@s�

"
!;!0 Þ

� 1

2
op"

Iðað�"Þ�2
A"@s�

"
!;!0 Þop"ðA"Þ

þ op1

�
S

�
1

R2
; g"

��
:

Therefore, we can use again the equation and we get�
op"

I

��
A"; a

A"

2ð�"Þ2
@s�

"
!;!

��
v"jv"

�
¼ O

�
1

R2

�
þ Oð"Þ � "

2i
ðop"

Ið@sðað�"Þ�2
A"@s�

"
!;!0 ÞÞv"jv"Þ:

Since j@��;z@sðað�"Þ
�2
A"@s�

"
!;!0 Þ["j4 C

ðs2þ"R2Þ3=2, as " goes to 0,�
op"

I

��
A"; a

A"

2ð�"Þ2
@s�

"
!;!

��
v"jv"

�
¼ O

�
1

R2

�
þ oð1Þ þ C"

ðþ1

�1

ds

ðs2 þ "R2Þ3=2
¼ oð1Þ þ O

�
1

R2

�
:

Hence, lim supR!þ1 lim sup"!0 L
2 ¼ 0: It remains to prove Lemma 7 to complete

the proof of (47) for �5 1=2. Similar proof applies in the case �2ð0; 1=2Þ where,
roughly speaking "1��=2 plays the rule of 1=R2. &

Proof of Lemma 7. 1) Consider !, !0 2S1 such that ! � !0 ¼ 0. The vectors X!
and X!0 form a orthonormal basis of the subspace of all the eigenvectors of A" for
the eigenvalue �". Moreover, using that X! � X!0 ¼ 0, we obtain that

@sX! � X!0 ¼ 1

2�"ð�" � sÞ

�
ð�" þ A"Þð@s�" þ @sA

"Þ
�

0

!

��
�
�

0

!0

�
:
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We get, through straightforward computation,

@sX! � X!0 ¼ 1

2�"ð�" � sÞ ðpð�
~;m"Þ�pð@s�~;m"Þ! � !0Þ:

We set

�ðs; z; �; Þ ¼ 1

2�"ð�" � sÞ pð�
~;m"Þ�pð@s�~;m"Þ: ð51Þ

Since jX!j ¼ 1, we also have @sX! � X! ¼ 0. Thus, the vector @sX! is of the form

@sX! ¼ ð�! � !0ÞX!0 þ Y ;

where Y is an eigenvector of A" for the eigenvalue ��". The derivation in the
variable s of the relation A"X! ¼ �"X! yields

ð@s�" � @sA
"ÞX! ¼ ðA" � �"Þ@sX! ¼ �2�"Y ¼ �2�"ð@sX! � ð�! � !0ÞX!0 Þ;

whence 1).
2) Because of 1), if M ¼ 1

2�" ðð@sA" � @s�
"ÞÞ, we have for ! � !0 ¼ 0,

@s�
"
!;!0 ¼ M�"

!;!0 þ�"
!;!0M þ ð�! � !0Þð�"

!;! þ�"
!0;!0 Þ

@s�
"
!;! ¼ M�"

!;! þ �"
!;!M þ ð�! � !Þð�"

!0;! þ�"
!;!0 Þ:

Observe that since

@sððA"Þ2Þ ¼ @sðð�"Þ2Þ ¼ A"@sA
" þ A"@sA

" ¼ 2�"@s�
";

we have A"M þMA" ¼ 2@s�
" ~��

�
" . Therefore, using

A"�"
!;!0 ¼ �"

!;!0A
" ¼ �"�"

!;!0 ; A"�"
!;! ¼ �"

!;!A
" ¼ �"�"

!;!;

we obtain

A"@s�
"
!;!0A

" ¼ �ð�"Þ2@s�
"
!;!0 þ 2ð�"Þ2ð�! � !0Þð�"

!;! þ�"
!0;!0 Þ;

A"@s�
"
!;!A

" ¼ �ð�"Þ2@s�
"
!;! þ 2ð�"Þ2ð�! � !Þð�"

!;!0 þ�"
!0;!Þ:

Hence 2). &

5. The Non-adiabatic Case: �5 1=2 and j�j<þ1
In this section, we aim at proving Landau-Zener formula (39) in fj�j<þ1g

for �5 1=2. We proceed in two steps. We begin by stating a normal form which
holds in any ball B � R2

�. Then, we are reduced to deal with some abstract scatter-
ing problem which can be solved explicitly. This allows to obtain Landau-Zener
formula for measure ~��, thus for �.

5.1. A normal form at finite distance.

Proposition 4. For any ball B � R2
�, there exists a matrix C2C1

0 ðR10
s;z;�;;�Þ

such that if u" ¼ ð1 þ ffiffiffi
"

p
op"

IðCÞÞv", then, in L2ðR4Þ,

8a2C1
0 ðR8 �BÞ; op"

IðaÞop"

�
��þ s pð�jS ~;m"jSÞ

pð�jS~;m"jSÞ ��� s

�
u" ¼ Oð"Þ:
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Remark 1. Notice that ðu"Þ and ðv"Þ have the same two-scale Wigner measure
for I.

Proof. We set J ¼
�
1 0

0 �1

�
2R4;4, ~HH2 ¼

� ��þ s pð�~;m"Þ
pð�~;m"Þ ��� s

�
,

�0 ¼ �ðs; z; 0; Þ; �00 ¼ �ð0; z; 0; Þ;

m0
" ¼ "�mkðs; z; 0; Þ; m00

" ¼ "�mkð0; z; 0; Þ;

~HH0
2 ¼

�
��þ s pð�0~;m0

"Þ
pð�0~;m0

"Þ ��� s

�
; ~HH00

2 ¼
�

��þ s pð�00~;m00
" Þ

pð�00~;m00
" Þ ��� s

�
:

We prove the following lemma.

Lemma 8. There exist four smooth matrices Cj ¼ Cjðs; z; �; ; �Þ, ~CCj ¼ ~CCj

ðs; z; �; ; �Þ, j2f1; 2g, Cj, ~CCj2C1
0 ðR10Þ such that for all a2C1

0 ðR10 �BÞ,

jjop"
IðaÞ½ð1 þ

ffiffiffi
"

p
op"

IðJðC1 þ "��1=2~CC1ÞJÞÞop"ð~HH2Þ
� op"ð~HH0

2Þð1 þ
ffiffiffi
"

p
op"

IðC1 þ "��1=2~CC1ÞÞ	jjLðL2Þ ¼ Oð"Þ; ð52Þ

jjop"
IðaÞ½ð1 þ

ffiffiffi
"

p
op"

IðC2 þ "��1=2~CC2ÞÞop"ð~HH0
2Þ

� op"ð~HH00
2 Þð1 þ

ffiffiffi
"

p
op"

IðC2 þ "��1=2~CC2ÞÞ	jjLðL2Þ ¼ Oð"Þ: ð53Þ

This lemma yields Proposition 4. Actually, if a is compactly supported in all
the variables s, z, �, , �, then, we have in LðL2Þ,

op"
IðaÞop"ðjbÞ ¼

ffiffiffi
"

p
op"

Iða�jbÞ þ Oð
ffiffiffi
"

p
Þ:

Hence

jjop"
IðaÞop"ðjbÞjjLðL2Þ ¼ Oð

ffiffiffi
"

p
Þ; ð54Þ

for j2f0; 1; 2; 3g and b2C1
0 ðR10Þ. Therefore, writing

�~ ¼ �jS~ þ Oðjj2Þ; m00
" ¼ m"jS þ "�Oðj~jÞ;

and using that �5 1=2, we obtain that, for any a compactly supported in all the
variables,

jjop"
IðaÞop"ðpð�00 ~;m00

" ÞÞ � op"
IðaÞop"ðpð�jS~;m"jSÞÞjjLðL2Þ ¼ Oð"Þ:

Therefore, Equations (52) and (53) yield Proposition 4. &

Proof of Lemma 8. Set C"
1 ¼ C1 þ "��1=2~CC1, Equation (52) is equivalent to

jjop"
IðaÞ½ð1þ

ffiffiffi
"

p
op"

IðC"
1ÞÞop"ðJ ~HH2Þ� op"ðJ ~HH0

2Þð1þ
ffiffiffi
"

p
op"

IðC"
1ÞÞ	jjLðL2Þ ¼Oð"Þ:

Note that J ~HH2 ¼
� ��þ s pð�~;m"Þ
�pð�~;m"Þ �þ s

:
�

We use symbolic calculus to expand

in power of " the left hand side. Because of (54), we obtain that C"
1 must satisfy,

�½J;C"
1	 ¼

�
0 pðð�0 � �Þ�; "��1=2mðk0 � kÞÞ

�pðð�0 � �Þ�; "��1=2mðk0 � kÞÞ 0

�
:
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Therefore, we get

C1 ¼ 1

2�

�
0 pðð�0 � �Þ�; 0Þ

pðð�0 � �Þ�; 0Þ 0

�
�ð�Þ;

~CC1 ¼ 1

2�

�
0 pð0;mðk0 � kÞÞ

pð0;mðk0 � kÞÞ 0

�
�ð�Þ;

for some function �2C1
0 ðR4

�Þ identically equal to 1 on B.
A similar proof determines C2 and ~CC2, whence Lemma 8. &

5.2. Landau-Zener formula. Because of Proposition 4, once given some ball
B � R2

�, we are reduced to the study of the traces on s ¼ 0þ and s ¼ 0� of the two-
scale Wigner measure of a family ðu"Þ satisfying

8a2C1
0 ðR8 �BÞ; op"

IðaÞop"

� ��þ s pð�jS ~;m"jSÞ
pð�jS ~;m"jSÞ ��� s

�
u"

¼ Oð"Þ in L2ðR4Þ:
Moreover, by applying a cut-off function, we may suppose that � and k are
compactly supported and turn �jS, kjS into �ð�Þ�jS and �ð�ÞkjS with � compactly
supported and identically equal to 1 on B. This way, our system is micro-localized
in the ball B; which is enough to calculate the two-scale Wigner measures in B. We
are left with a system of the form

"

i
@su

" ¼ op"
I

�
s �ð�Þpð�jS ~;m"jSÞ

�ð�Þpð�jS ~;m"jSÞ �s

�
u" þ "f ";

where ðop"
IðaÞf "Þ is uniformly bounded in L2

s;z for symbols a compactly supported
in R8 �B. However, f " does not contribute to the description of the traces on
s ¼ 0þ, s ¼ 0� of the two-scale Wigner measure of ðu"Þ. Actually, if S"ðs; s0Þ
denotes the evolution operator associated with the free system

"

i
@su

" ¼ op"
I

�
s �ð�Þpð�jS ~;m"jSÞ

�ð�Þpð�jS ~;m"jSÞ �s

�
u"; u"js¼0 ¼ u"js¼0;

then we have

u" ¼ u" þ i

ðs
0

S"ð0; tÞf "ðtÞdt:

Hence, u" ¼ u" þ Oð
ffiffiffiffiffi
jsj

p
Þ in L2ðR3

z Þ. Therefore, the traces of the two-scale
Wigner measures of ðu"Þ and ðu"Þ on s ¼ 0� are the same. Let us denote by G
the compact operator

G ¼ op"
Ið�ð�Þpð�jS �; "

��1=2mkjSÞÞ:
The family ðu"Þ satisfies

"

i
@su

" ¼
�

s
ffiffiffi
"

p
Gffiffiffi

"
p

G� �s

�
:
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As a consequence of Proposition 7 in [11], we have the following Lemma.

Lemma 9. There exist �"j ¼ �jðzÞ, !"j ¼ !"j ðzÞ, j2f1; 2g, such that, as " goes
to 0, for any �2C1

0 ðRÞ, �ðGG�Þ�"1, �ðG�GÞ�"2, �ðGG�Þ!"1 and �ðG�GÞ!"2 are
bounded families in L2ðR3

z ;R
2Þ and as " goes to 0

for s< 0,

�ðGG�Þ
�
u"1ðs; zÞ
u"2ðs; zÞ

�
¼ �ðGG�Þeis

2

2"

���� sffiffiffi
"

p
����iGG

�
2

�"1 þ oð1Þ;

�ðG�GÞ
�
u"3ðs; zÞ
u"4ðs; zÞ

�
¼ �ðG�GÞe�is

2

2"

���� sffiffiffi
"

p
�����iG

�G
2

�"2 þ oð1Þ;

for s> 0,

�ðGG�Þ
�
u"1ðs; zÞ
u"2ðs; zÞ

�
¼ �ðGG�Þeis

2

2"

���� sffiffiffi
"

p
����iGG

�
2

!"1 þ oð1Þ;

�ðG�GÞ
�
u"3ðs; zÞ
u"4ðs; zÞ

�
¼ �ðG�GÞe�is

2

2"

���� sffiffiffi
"

p
�����iG

�G
2

!"2 þ oð1Þ;

Moreover �
!"1
!"2

�
¼ S"

�
�"1
�"2

�
ð55Þ

with

S" ¼
�

aðGG�Þ �bðGG�ÞG
bðG�GÞG� aðG�GÞ

�
;

with að�Þ ¼ e�	
�
2, bð�Þ ¼ 2ie

i	
4

�
ffiffi
	

p 2�i�=2e�	
�
4 �ð1 þ i �

2
Þ shð	�

2
Þ; að�Þ2 ¼ 1 � �jbð�Þj2:

These formula allow to calculate two-scale Wigner measures thanks to Lemma
8 in [11] which states that for �2C1

0 ðRÞ and for � ¼ 1=2,

op"
I

�
�

������� �R
�����2ðj�jS�j2 þ m2jkjSj2Þ

��
¼ �ðGG�Þ þ oð1Þ

¼ �ðG�GÞ þ oð1Þ; ð56Þ
for �> 1=2,

op"
I

�
�

������� �R
�
�jS�

����2�� ¼ �ðGG�Þ þ oð1Þ ¼ �ðG�GÞ þ oð1Þ: ð57Þ

In view of

~��þ
0 ¼

�
0 0

0 1

�
on Jþ; out; ~���

0 ¼
�
1 0

0 0

�
on J�; out;

~��þ
0 ¼

�
1 0

0 0

�
on Jþ; in; ~���

0 ¼
�
0 0

0 1

�
on J�; in;
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we obtain that ~��þ 1s< 0 (resp. ~��� 1s< 0) is the two-scale Wigner measure of the family

ei
s2

2"

�� sffiffi
"

p
��iGG�2 ð�"1; 0Þ (resp. e�is

2

2"

�� sffiffi
"

p
���iG

�G
2 ð0; �"2Þ). Similarly, ~��þ 1s> 0 (resp. ~��� 1s> 0) is

the two-scale Wigner measure of e�is
2

2"

�� sffiffi
"

p
���iG

�G
2 ð0; !"2Þ (resp. ei

s2

2"

�� sffiffi
"

p
��iGG�2 ð!"1; 0Þ). We

use Lemma 9 in [11]: for every �2C1
0 ðR10ÞÞ, we have in LðL2Þ,���� sffiffiffi

"
p
�����iGG

�
2

op"
Ið�Þ

���� sffiffiffi
"

p
����iGG

�
2

¼
���� sffiffiffi

"
p
����iG

�G
2

op"
Ið�Þ

���� sffiffiffi
"

p
�����iG

�G
2

þ oð1Þ ¼ op"
Ið�Þ þ oð1Þ:

Therefore, ~��þ; out (resp. ~���; out) is the two-scale Wigner measure of the family
ð�"1; 0Þ (resp. ð0; �"2Þ). Similarly, ~��þ; in (resp. ~���; in) is the two-scale Wigner mea-
sure of the family ð0; !"2Þ (resp. ð!"1; 0Þ). Observe that Equation (55) yields, !"1ðzÞ�

0

0

�! ¼ aðGG�Þ
 �"1ðzÞ�

0

0

�!� bðGG�Þ
�

0 G

G� 0

� � 0

0

�
�"2ðzÞ

!
;

 � 0

0

�
!"2ðzÞ

!
¼ aðG�GÞ

 � 0

0

�
�"2ðzÞ

!
þ bðG�GÞ

�
0 G

G� 0

��
�"1ðzÞ

0

�
:

These relations yield (39) via (56) and (57), which completes the proof of Theorem 1.
&

6. Appendix

6.1. Restitution of the energy by the crossing. We denote by � the set

� ¼ fE � B 6¼ 0 or ðE � B ¼ 0 and jEj> jBjÞg:

Proposition 5. If ð "Þ is a family of solutions to (6) and � a Wigner measure of
ð "Þ, then we have

�ðS \ �Þ ¼ 0:

Proof of Proposition 5. We set

Q0 ¼
�

0 pð� � AÞ
pð� � AÞ 0

�
:

We have
P"ðx; �Þ ¼ Q0 þ "�m�0 þ Vðt; xÞ:

Observe that ð
 þ V � "�m� Q0Þð
 þ V þ "�mþ Q0Þ ¼ ð
 þ VÞ2 � j� � Aj2�
"2�m2. Therefore, if

Q :¼ op"ð
 þ V � "�m� Q0Þop"ð
 þ V þ "�mþ Q0Þ;
we have

Q ¼ op"ðð
 þ VÞ2 � j� � Aj2 � "2�m2Þ

þ "

2i
op"ðf
 þ V � Q0; 
 þ V þ Q0gÞ þ oð"Þ ð58Þ
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in LðL2Þ. Let us denote by R the matrix

R :¼ 1

2
f
 þ V � Q0; 
 þ V þ Q0g ¼

�
ipðBÞ pðEÞ
pðEÞ ipðBÞ

�
:

Since i@t 
" ¼ op"ðP"Þ ", for any matrix-valued symbol a2C1

0 ðR8
t;x;
;�Þ we have

1

"
ðop"ðaÞQ "j "Þ �

1

"
ðop"ðaÞ "jQ "Þ ¼ 0:

Using (58), we obtain

1

"
½op"ðaÞ; op"ðð
 þ VÞ2 � j� � Aj2Þ	

þ 1

i
ððop"ðaÞop"ðRÞ þ op"ðR�Þop"ðaÞÞ "j "Þ ¼ oð1Þ;

whence f�; ð
 þ VÞ2 � j� � Aj2g ¼ �R�þ R�: Consider �2C1
0 ðR3Þ such that

04�4 1 with �ð0Þ ¼ 1. Using test functions of the form �

 ��Aðt;xÞ

�

�
for some

positive �, then letting � which go to 0, we get

R1�¼Aðt;xÞ�þ 1�¼Aðt;xÞ�R
� ¼ 0:

Consider � ¼ �ðt; x; 
; �Þ a scalar test function and M ¼ h�, �1ff�¼Ag\�gi. The
matrix M is a positive hermitian matrix satisfying MR�þ RM ¼ 0. Let us prove
that M ¼ 0. Observe that

R2 ¼
�
jEj2 � jBj2 2iB � E

2iB � E jEj2 � jBj2
�
:

Since we have RMR�¼ �R2M; the matrix �R2M is hermitian and positive. Thus,
in the case E � B ¼ 0, it is obvious that the fact that jEj> jBj yields M ¼ 0. We
focus now on the case E � B 6¼ 0. Matrix M can be decomposed in 2� 2 blocks

M ¼
�

A C

C� D

�
;

whereA andD are 2� 2 hermitian positive matrices. Moreover, if�R2M is hermitian
positive, we obtain that we must have ðE � BÞðAþ DÞ ¼ 0: Therefore, necessarily,
A ¼ D ¼ 0, which yields C ¼ 0 and M ¼ 0. This comes from the fact that the non-
diagonal coefficient �i;j of measure-valued matrix � is a measure absolutely contin-
uous with respect to the diagonal measure-valued coefficients �i;i and �j;j. &

6.2. Proof of Lemma 1. Let us study the limits of the fibers of N��ð _JJ�; inÞ and
N��ð _JJ�; outÞ above some point � which tends to S. Consider H and H0 the limits of
the two Hamiltonian vector fields along J and J 0 above S, we have

lim
s!0�

H�þð�þs Þ ¼ lim
s!0þ

H��ð��s Þ ¼ H
þVð�0Þ � ! � H��Að�0Þ :¼ H;

lim
s!0þ

H�þð�þs Þ ¼ lim
s!0�

H��ð��s Þ ¼ H
þVð�0Þ þ !0 � H��Að�0Þ :¼ H0:

Let H? and ðH0Þ? be the orthogonal of H and H0 respectively for the symplectic
form on TðT�R4Þ. The measures �þ; inS and ��; out

S are measures on the
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compactification of H?=TJ, and similarly, the measures ��; inS and �þ; out
S live on the

compactification of ðH0Þ?=TJ0. Note that TJ ¼ TS� RH and TJ0 ¼ TS� RH0,
therefore if we set

F ¼ TJ þ TJ0 ¼ TS� RH � RH0;

the planes H?=TJ and ðH0Þ?=TJ0 can be identified to TðT�R4Þ=F.
Consider ��2TðT�RdÞj�, �2S. We decompose �� as

�� ¼ lH þ l0H0 þ �sþ �~��;

with l, l0 2R and �s2TSj�. The class of �� modulo F is characterized by the class
of �~�� modulo J, i.e. by dð� � AÞ �~��� dð
 þ VÞ �~��u (because � � A ¼ ð
 þ VÞu is
an equation of J). Observe that

dð� � AÞH � dð
 þ VÞHu ¼ 0; dð� � AÞ �s� dð
 þ VÞ �su ¼ 0;

dð� � AÞH0 � dð
 þ VÞH0u ¼ �2r
E

jEj2
:

Therefore, the class of �� modulo F is utterly determined by the knowledge of

� ¼ ðdð� � AÞ ��� dð
 þ VÞ ��uÞ ^ E

¼ dð� � AÞ �� ^ E þ dð
 þ VÞ ��B;
where we have used (11). This concludes the proof of Lemma 1. &
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