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Abstract. We study adiabatic decoupling for Dirac equation with some scaling which yields that the
mass appears with a coefficient e* where ¢ is the semi-classical parameter and « > 0. Therefore, the
system presents an avoided crossing. The scale o = 1/2 is critical: adiabatic decoupling holds for
a €(0,1/2) while for o > 1/2, there is energy transfer at leading order between the two modes. We
describe this transfer in terms of two-scale Wigner measures by means of Landau-Zener formula which
takes into account the change of polarization of the measures after the crossing.
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1. Introduction

Let us consider the Dirac equation

(iv”(ihﬁﬂ—i—e;lu)—Mc)gb:O, (1)

pu=0

where ¢ denotes the “spinorfield”, ¢ = ¢(y) € C*, y = (yo,y') €R* with y, the
time variable and y' = (y1, y2, y3) the space variable and where 4, 0 < p < 3, are
the 4 x 4 Dirac matrices which satisfy

=1% (N == ("N =" 1<k<3 (2)

YA AN =0, pFtr, (V) =1 () =-1d (3)

We use the standard representation of Dirac matrix: the Dirac-Pauli one (see [32]
p- 36). In this representation, the 4 x 4 matrices 4* are functions of the 2 x 2 Pauli
matrices oy, 1 < k < 3. More precisely, we have

) N () N (A N
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() (5 ) () e

The functions A# =A u(y) for 0 < pu < 3 are the components of the electro-
magnetic potential, in partlcular Ag is the electrlc potential and A = (A1 ,Az,A’;) is
the magnetic potential vector. Hence the electric field is E = (9)0A VyAg and the
magnetic field B = curl, /A. The physical constants M and e are the electron s rest
mass and its charge, c¢ is the velocity of light and % the Planck constant. The
matrix

and

3
P= Z Oy (e — eA,) +~*Me
n=1

has two eigenvalues [* = :l:\/ M?c? + |rE — eA#| which are of multiplicity 2.

Our aim is to study adiabatic decoupling for this equation in some special
situation which is slightly different than the usual one. Several works have been
devoted to the study of Dirac equation with slowly varying external potentials. One
supposes that A = A(ey) and one studies ¢ on the macroscopic scale, i.e. one
studies the evolution as £ goes to 0 of ¢*(t,x) = ¢(y). Thus, one analyzes the
system

3
ihedp)” = Z A0t (?8;; —eA,(t, x)> U — eAo(t,x)Y° ++"McyF.
T

Any solution of this system can be decomposed on the two modes associa-
ted to each eigenvalue /= and these two components evolve independently.
Such a phenomenon is called adiabatic decoupling (from ‘“adiabatos” =
impassable). The reader can refer to [31] where he will find a presentation of
adiabatic theory and its application to Dirac equation with slowly variable
coefficients or to [14] where adiabatic decoupling is proved in terms of Wigner
measures.

We focus here also on the case of slowly varying potentials but we scale the
size of the electromagnetic fields. More precisely, we set

A(y) = )‘A(‘E/y)y Ely = (Z,X) = (t7x17x27x3) ER X R37

and we suppose that |[A| ~ 1, ¢’ < 1 and A > 1. We study ¢ on the macroscopic
scale: we set ¥(t,x) = ¢(y). Then, v satisfies

&w Z’y’y <—8 At x))1/1—eA0(t X)) 4 ° i‘\/l

We set ¢ = 7’—5 thus ¢ < 1. We suppose that M" ~ 1 and we set

Mc
— = me"“, a>0, m~1.
e
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We study the asymptotic behavior as € goes to 0. In particular, the electromagnetic
vector field is of size &\ ~ X2 ~e!=2% If o = 0, we are in the same context
as in [30], [32] and [14]. High values of the electromagnetic vector field corre-
sponds to a > 1/2. The reader can refer to [26] and [27] for results on Dirac
equation in high electromagnetic fields. We prove, with Wigner measures
approach, that the adiabatic decoupling becomes false as soon as o > 1/2, i.e.
for high electromagnetic vector fields. Roughly speaking, if o > 1/2, the mass is
not big enough so that the adiabatic Theorem applies and there happens some
Landau-Zener type’s transition specific to avoided crossings that we describe in
terms of two-scale Wigner measures. In the following, we focus on the system

i€at7/1€ = Ps(ty X, 8Dx)w53
{ Vim0 = %5 ©

where P, is the matrix-valued symbol
(t,x,6) = Z’y (& — Ap(t,x)) + V(t,x) + €*mA° (7)

with >0, m>0, A = (A1,A2,A3) a > vector field (the magnetic potential
vector) and V a € function (the electric potential).

The Wigner measures approach is of interest because the limit of physically
meaningful quantities can be simply expressed in terms of Wigner measures. For
example, in [14] (see also [30] and [2]), the authors calculate the weak limit of the
relativistic current density Ji, 1 <k < 3,

TE(t,x) = A"k (2, x) - 4 (1,x)

and of the relativistic position density n

n(,x) = [¢° (1, 0) .
Indeed, a Wigner measure p of the family (¢°) is a positive matrix-valued measure

on T*R* which satisfy — up to some subsequence — that, for all the observable
ac Gy (RE, CH),

(op-@)y71v7) —s e =t [atx ) 0utr ).

where op_(a) denotes the semi-classical pseudo-differential operator of symbol a;
the kernel of op.(a) is, with Weyl quantification,

) = o 52, )

Let us assume that (¢f) satisfies some assumption called e-oscillation which
implies that, roughly speaking, the oscillations of (1) are not greater than é,
(see [13]), namely

timswp | GO g, — 0.
€l > R/e

e—0 R—+o00
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Then, the weak limits of »n° and J; can be expressed as

w — lim n°(7,x) dtdx = tr(J w(t,x,dr, df)),
(3

e—0

w— })im Ji(t,x)drdx = tr(J Oy (e, x, dr, d{)) :

£— €
In [14], Gérard et al. describe the Wigner measures of (¢.) in the case & = 0. The
fact that « # 0 induces serious difficulties that our contribution aims to deal with.
Actually, the analysis performed in [14] crucially uses the fact that as o = 0, the

eigenvalues of the matrix P.,

XE(,%,8) = £/ 1€ — A 0)P + 20m2 1V (1,x), (8)

do not depend on ¢, are distinct and of constant multiplicity 2.
For o # 0,

li_{% A (1, x,A(1,x)) = ll_r% A (1, x,A(t,x)).

The eigenvalues are still distinct for all (¢,x) but they cross asymptotically as
€ goes to 0. One said that the system (6) displays an avoided crossing, by con-
trast with a “real” crossing for which there should exist (fy,xp) such that
AL (t0,x0) = AZ (fo,x0). Crossings are usually characterized by the codimension
of the singular set. The crossing here is of codimension 3 since

(taxv T, 5) '_)f _A(tPX)
is of rank 3.

The works of Hagedorn and Joye ([16]-[19], [21]) and those of Colin de
Verdiére et al. [5] show that avoided crossings yield transfer of energy at leading
order between the two modes and thus, that there is no adiabatic decoupling. This
so-called Landau-Zener phenomenon has been first described independently and
simultaneously by Landau and Zener in the 30’s (see [22] and [33]). We shall
discuss this transfer of energy in terms of Wigner measures in the same spirit than
the works of Gérard and the author for “‘real” crossings (see [7]—[12]) in the sense
explained above. Our purpose here is to apply to this avoided crossing the method
introduced in [11] for eigenvalue of multiplicity one with the developments per-
formed in [8] for higher multiplicity.

1.1. Wigner measures for Dirac equation. Let us first introduce some nota-
tions. We endow T*R* with the symplectic form

o =dr Adt + d€ A dx,
and we denote by {f, g} the Poisson bracket of functions f and g,
{fa g} = V'r,ff . Vt,xg - vt,xf ' v7'.,£g'

The vector field Hy is the Hamiltonian vector field associated with the function f,
thus we have

dng = {fvg} = O<Hf7Hg)'
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3 —i 0 0 10
ro=Yme= (g e ") 0=(00) 1=(0 1)

so that we have

_ e*ml p(E—A(t,x))
P~ (e Thy ") Ve

We will abusively denote by me® the matrix me“1 when there will not be any
ambiguity on the fact that me® is a 2 x 2 matrix. With this convention, the spectral
projectors 11 associated with AX write

X, 1 e*m p(€ —A(t,x))
I (t,x,€) = (Idi\/gzamz+|§_A|2(P(€—A(fvx)) o ))

As € goes to 0, IIF tends to II§ which is smooth outside {¢ = A(t,x)}.
According to [14] and [15], any Wigner measure p of (¢°) satisfies outside

{E=A(x)}

p=pt+pm, with p* = TG = TG,

Supp pt Cc {1+ V£|E—A| =0} (9)
We set
S={6=AT7+V=0}

This set S is the intersection of the set {{ = A(#,x)} above mentioned and of the
characteristic set > of the system studied,

= {le— Al = (r+ V).
By [14] and [15], measures " and p~ satisfy the transport equations,
{r+VE|¢—A|, "} = [, FF] outside S,
with

= [Hét, {T+ V|- ALTGH + |€ - ATIG{ILF, I }I5

é’_
=3 AM“E:” (m A <E$Bx|s M))

i E—A
‘zm—A|Q5—AMB>H5 (10)

This latter formula comes from [30] (see also [15]) by tedious but straightforward
computation.
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Outside S, measures p* propagate along the classical trajectories associated with
the Hamiltonian 7+ Af =7+ V £|¢ —A|. Let us denote by pf = (rf,xF,
7, &), these Hamiltonian curves passing at (s = 0, p = po),

oy =Hy (7)) Plimo = Po.
The problems arise as such trajectories reach the singular set S. Consider trajec-

tories which arrive in (or arise from) S in pg transversally to S; by this, we mean
that in pp we have

Sl_i,%lf Hy:(ps) ¢TS,, (or Sl_i,%i Hy:(ps) ¢TS,,).

A simple calculation proves that, if this occurs, necessarily, there exist » > 0, w and
& in S? such that

rw=E(py) + B(po) X w, rw' =E(py) —B(po) X . (11)
These equations have a unique solution (r,w,«’) if and only if in po,
E-B#0 or (E-B=0 and |E|>|B|).
In particular, if E-B =0,

r ExB , r EXB 2 2
w=" g 22 g T g B R BE (12)
|E| |E| |E] |E|

Consider

Q={E-B#0 or (E-B=0 and |E|>|B])}.
According to Proposition 1 in [11], the existence of a unique (r,w,w’) satisfying
(11), is enough to prove that there exists a unique classical trajectory of 7+ A&
passing through the point pg € S N . Moreover, the curves (p7), < are smoothly
continued by (pJ),-

The existence of such trajectories yield that the transport equations outside S
stated above are not enough to determine the Wigner measure u. Besides, we
prove in the Appendix that

uw(SNQR)=0.
Therefore, 1« does not concentrate on the crossing set S: the mass of y carried out by
the ingoing trajectories (py),_, parts between the outgoing trajectories (o).
and (p; ), .o We want to describe the branching of 1 above the crossing set. We
prove that it depends on « and that it is determined by the way (¢)°) concentrates at
the scale /¢ on the set consisting in all the classical trajectories entering in S.
Consider pp € 2N S and ¥~ some neighborhood of py in 2. Let us denote by J* "
(resp. JE°") the sets of all curves pF coming into (resp. out of) some point p in
SN . The connection between (p¥), _, and (p] ), at s = 0 yields that the sets

J= J+,in UJ—,out and J/ — J—,in U]-‘r,out

are smooth codimension 3 submanifolds of 7*R*. Moreover, according to Propo-
sition 3 in [11], there exist two smooth vector-valued functions u, u' € ¢ X(Rg, Sz)
such that

J={({=A+ (14 V)u}, J={=A+(r+V)d},

with ug = w and uTS =—u.
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If E-B=01in ¥, J and J' are involutive submanifolds of T*R* (we shortly
recall the definition of involutive submanifolds in the next section). The situation is
different in the case where E - B # 0. These facts are proved in [10] in a general
context and in [7] for Dirac equation but in the case of constant electromagnetic
vector fields. In this paper, we focus on the case where E - B = 0 near some pgy € S,
so that we are in the geometric setting of [10]. Our aim is to study the concentra-
tion of (1)°) above J and J' at the scale /¢ by means of two-scale Wigner measure
for involutive submanifolds which have been introduced by Miller in [25] and
developed in [9].

1.2. Two-scale Wigner measures. We consider for a while a more general
setting and recall results of [9]. Let I be a codimension m submanifold of
the cotangent space T*RP. If p€1, o(p) is a symplectic form on the vectorial
space T(T*RP) , and TI), is a vectorial subspace of T(T*RP ),- The vectorial
subspace

TIL = {Spe T(T*RP),,, Vop €T, a(p)(5p,00') = 0}

is the orthogonal of 71|, for the symplectic structure induced by o. The submani-
fold I is said to be involutive if and only if

Vpel, T, C T,

In coordinates, if 7 is an involutive submanifold and py €/, there exist local
symplectic coordinates (x, ) near py such that I = {x; = --- = x,, = 0}.

We suppose that / is an involutive submanifold given by some system of
equations f = 0 where f = (f1,...,f,) € € (R*’,R™), Rank(df) =m on f =0
and {fj,fx} =0. Let us denote by R", the ball obtained by adding a sphere
at infinity to R™. We consider the set ./ of symbols a=a(z,(,n)€
%> (RP x RP x R™) which are uniformly compactly supported in the variables
(z,¢) with respect to 7 and which can be extended as a function of
%>~ (R” x R? x R™) by

a(z, ¢, oow) = RETOC a(z,¢,Rw), in €™, YweS™ !

We extend this definition to smooth matrix-valued function a by setting a € .o/ if
and only if all the coefficients of the matrix a are symbols of .«/. With any matrix-
valued symbol a € .7, we associate the two-scaled pseudo-differential operator,

op.'(a) := op, (a (z, C,f(\z/’go ) ) :

By Calderon-Vaillancourt’s Theorem, the family of operators op./(a) is a bounded
family of bounded operators in L?>(RP). Let (¢°) be a bounded family in
L2(RD , cV ), N €N, we study the evolution as ¢ goes to 0 of

K-(a) := (op.'(a)"|¢%).

The limit of K. is described by a positive Radon measure on N(I), the com-
pactified normal bundle to 1.
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Let us explain which is the bundle N(I). We associate with I its tangent bundle
TI. Taking the quotient of the tangent space T(T*RP) , above some point p of I by
TlI),, we obtain the fiber above p of N(I), the normal bundle to I. Then, N(/ )|, i
the closed m-dimensional ball obtained by adding a sphere at infinity to N(/ "
The choice of the equation f yields local coordinates on N (1)‘ 0 given by the
continuation  of the isomorphism Y,

X : [6p]€N(I),—n = df (p)op ER™.

If v is a measure on N(I), we denote by v the measure on R” which is the image
of v by X. Let us come back to the limit of K.(a).

There exists a sequence €y . 0, a matrix-valued positive measure v on N(I)

— =00
such that for all matrix-valued symbol a € .o/,

s tr( J_m ¢ dyf) " tr( Jf;eo “ (Z’ ¢ ﬁ; g | oo) dﬂ) ’

where 1 is a Wigner measure of (¢°).

We point out that v determines p above I by

pl; = JI v(z, ¢, dn).

These measures correspond to a second micro-localization in the spirit of [1], [23]
(see also [6]): we add to the microlocal variables (z,() a new variable n which
belongs to R™. This additional coordinate is used for measuring the distance from
points in T*RP to the submanifold  versus the scale \/E Some Wigner trans-
form’s approach of two-scale Wigner measures can be performed as in [12].
Consider W¢, the usual Wigner transform of (¢°),

We(z,¢) = Je’ﬂqbg (z — %y) ®<l>5<z+§y> dy.

The two-scale Wigner transform of (¢°) is the distribution

. [z0)
Wc CZ,, :WEEZ’ ®6< _ ST\ ,
297, G ) P () @é(n 7
If one studies the action of the distribution W5 on the class of test functions o7,

two-scale Wigner measures appear as the limits points of W3.
Our aim in the following is to calculate two-scale Wigner measures associated

with a family (¢°) solution to (6), and with the involutive submanifolds J and J'.
1.3. The branching of the energy: matrix-valued Landau-Zener formula.

€

We denote by 7 (resp. 7') the measures associated with () and J (resp. J'). We
denote by X+, ¥, J= " and J& U the sets

Z:t — {)\E)t _ 0}7 J':t,in — ]:I:,in\S’ j:l:,out _ Ji,out\s.

We consider the bundles above $*, Ny (/=) and Ny (J+°") obtained respec-
tively by adding a sphere at infinity to the fibers of TS*/T(J=™) and of
TS*/T(J*°"). Because of the properties of localization of Wigner measures,
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+,in —+, out

there exist scalar positive Radon measures v and v

Ny:(J*™) and Ny (J5°U) respectively such that

supported on

- _ ,,+,in —,out —/ __ _ —,in +, out
v=v— ' +v ', V=V +v ,

Hi i,inHi_ +,in Hi i,outHi_ i,out
= , =

Moreover, if £+ "(H =) (resp. & + U(H )\i)) is the linearized Hamiltonian flow of
7+ Af transversally to J& ™ (resp. J&°U), in XF, the measures 5™ (resp. o)
satlsfy

gi’in(H)\i)Vi"in — [l/i’in,Fi] on ji,in’
gi,out(H)\i)U:t,out — [V:l:, out’ F:t] on j:t,out.

These propagation properties result from [14], [15] and [9]. Using (10), (11), the
equations of J and J’ and the fact that |¢ — A| = F(7 + V) on J& " and J= U, we
obtain that

Fj:

e = O(1), Fjeon = O(1) near S.

Therefore, the fact that the Hamiltonian flows are transverse to S yields that, in the
set of distributions, measures =™ and v+ °' have traces on S that we denote by
:|: in =+, out . .

and by vg"™. These four traces can be identified to measures on one set in
Wthh we can study the existing link between v and g™

Lemma 1. For py €S, the map
n:T(T* (R4))‘p0 — R}
op—d(T+V)épB+d({ —A)dp X E

induces some isomorphism between the limits of the fibres of Ny- (ji'i“) and
Ny (J5°U) above some point p which goes to py and the hyperplane normal to
E for the Euclidian structure of R>.

This lemma is proved in the Appendix.

We extend the map 7 to the limits of the fibres of Ny:(J*™) and of

Ny« (J&°). Provided this identification, the connection between vg'™

Si " near the point py is described by the following Theorem.

and

+,1in

Theorem 1. We assume that vy’ and VS_’i" are mutually singular.

1) The adiabatic regime: o €10,1],

2 2
+,out __ |E| T + mQ* —,out __ |E| —,in %
N - 2 2 Hals N - 2 2 <rars ’
EI” — [B] E|” — |B| ’
with
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2) The non-adiabatic regime: o > 1,

V;»,oul _ Ty;,in + (1 _ T)%U;’in.@*

Vg = Tvd ™ + (1 — T) vy ™2, (13)
where, if a =1/2,
™ 2
T = exXp <—(I) n,m )7
CRETRE
R = |E| (ggna<77> + mg?a)’
®(n,m)
and, if > 1/2,
™ 2
T = exp (——‘I’ 1,0 >,
(a7 sy
|E|
!@ — 7‘%}1(1 /r] )
3(,0) 7"
and
EXxB 2

() = |1 ( -77)2 8P - P

E

Pna(1) = < ( ’ p<n;'f)> in 27 (p(l%> " )

nxn 3 E
p ) 0 |E| 0 P(‘E|)

|E

Remarks. 1) The matrix # describes the change of polarization at the
crossing. Observe that if B =0, the transfer coefficient 7' and the polarization
matrix # are rather simple. In that case, we are reduce to the situation studied
in [8].

2) The existence of different regimes in avoided crossings has already been
noticed in [5] and in [18] where the same critical scale /¢ appears (the latter
reference has been completed recently by [29]). If a €]0, % [, the mass e®m is big
enough so that the measure is propagated as if there were no crossing (o = 0). If
a> % the mass is so small that we have the same result as if m = 0, i.e. as if we
had a true crossing as studied in [11]—[8]. Finally, in the critical case o = %, the
Landau-Zener formula depend on m. Observe too that the part of the measure
localized on {|n| = 400} always propagates adiabatically.

3) It is likely that the adiabatic regime could be studied directly on the semi-
classical scale and that the introduction of two-scale Wigner measure is not neces-
sary to calculate the evolution of Wigner measures: the reflection of Wigner
measure could be obtained by the same method as in Section 3 below.
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4) In the case E - B # 0, the two-scale Wigner measures which have to be
considered are more complicated (see [7]) but similar results may be expected.

5) In the proofs below, we do not use the fact that £ — A is a linear function of
¢ with x, £ €R>. Thus Theorem 1 can be generalized to systems of the same form
that (6) where we turn £ — A into some function [ = I(z,x,£), x, € €R?, d > 2 and
where V may depend on £ with the conditions of [11]: d/ of rank 3 on {/ = 0} and
E-B =0, with

E={r4+V,I}, B = ({l3,b},{L,},{b,11}).

We will proceed as follows. Section 2 is devoted to the reduction of system (6)
to a model system, via a Fourier integral operator and a canonical transform. Then,
in Section 3, we reduce Theorem 1 to some equivalent statement on the solution of
the model system. In Section 4 and 5, we treat separately the ‘“‘adiabatic’ cases —
namely a€(0,1/2) and (o > 1/2, |n| = 4+00) — and the “non-adiabatic” ones:
a = 1/2 and |n| < +oo. Finally, in the Appendix, we prove the restitution of the
energy by the crossing and the geometric Lemma 1.

2. Reduction to a Model Problem

Let us describe first the Fourier integral operators we use. If  is a canonical
transform of T*R*, there exists some semi-classical Fourier integral operator K
that we call associated with k, which satisfies

vf € L*(RY),Ya € 65°(R), K *op,(a)Kf = opy(a o &)f + O(K)||f| 2, in L*(R*).
(14)

The reader can refer to [28] for a complete study on Fourier Integral Operator or to
[9] where this claim is proved.
This section is devoted to the proof of the following Proposition.

Proposition 1. Consider py €S such that |E(po)| > |B(po)|. There exist some
local canonical transform k from a neighborhood of pg into a neighborhood ) of 0,

K (t,x, 7 5) = (S,Z, g, C)) H(Po) =0,
a matrix C and a Fourier integral operator K associated with k such that
v° = Kop,(C)y* satisfies for all ac (),

op.(@op. (oo vs PN — o m®), 09

where ( = (¢1,¢2), me = k(s,z,0,0)me® with
ks = (E]* - [B)™"*, (16)

and where the 2 x 2 matrix-valued function T =T(s,z,0,() is smooth with
det(T") # 0 in Q. Moreover in the coordinates (s,z,0,(),

JEM = loF5=0,(=0,5<0}, JE"={o+£s=0,{=0,s>0}, (17)
JUJ ={{=0nT={c* =s}n{{=0}
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The proof of Proposition 1 follows the same schedule than the proof of
Theorem 2 in [11] through modifications required by the presence of me®. We
proceed in two steps: first we transform the matrix P. by algebraic operations so
that the equations of J and J' appear, then we define the canonical transform and
conclude the proof.

2.1. An algebraic lemma. Let us first introduce some notations. We shall use
the following matrices:

1 0 0 O
S R
01 0 O
which have the following properties:
MP=M"  My,=M;"=M; (18)
(ol T (00 ) o

(T o = (e "E™)

We denote by L the submanifold of 7*R* defined by
L={(-A—(1+V)u)x (u—u) =0}
Then, by a simple computation, we have J U J' = ¥ N L. Moreover, we set
u—u
€1 = 61(t7x, Tvé-) = M>

so that
(21)

We choose some smooth functions (e, e3) so that (e;, ez, e3) is a direct orthonor-
mal basis of R® with moreover

BXxE B
62) e e3 =, lfB#O (22)
s =mEr @ =g

(31)|s:|§|-

Consider now the complex valued function 6 = 6(z, x, 7, &) defined by
O=u-er+iu-e;s.

Note that near pg, || < 1. Actually, in view of u;s = w and of (12) we obtain

H‘SER, and 6|S =—<1. (23)
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Lemma 2. There exists some smooth invertible matrix C; = C,(t,x,7,£) such

that
T+ P.=C{H C,
with
(€-A)er .
== p(g,m:)
\/1-16?
H=7+V+Y-g— A P (24)

p(g,m.) VI_IoE

where in. = k(s,z,0,()me® and where g = (g1,82) is an equation of L satisfying

{dgm =84~ A~ (r+ V) - e,

dgos = Hd[(E—A— (7 +V)u) - e3]. (25)
The smooth complex-valued vector Y = Y(t,x,1,&) = (Y1, Y>) satisfies
_ _ I8
{ Yijs = =15
Y5 =0. (26)
The smooth real-valued function k satisfies
~ E

VIEF —|B?

Proof of Lemma 2. We first use the quaternion structure of matrix p(v). By
Lemma 2 of [11], there exists a smooth unitary matrix U = U(¢, x, 7, ) such that

Up(0)U* =p(v-es,v-e3,0- ). (28)

Therefore, if U’ = (({ g)Ml, we have
U/< me® p(g_A)>U/>k
pE—A) —mee
:(—P((f—A)'627(€—A)'637(5—1‘\)'61) me® )
me® p(§—A)-e2,(E—-A)-e3,(E—A)-e1))

We aim now to introduce the equations of L given by the vector-valued function f,

f=(E-A-(T+V)u)-e2,(§—A— (T4 V)u) - e3)
= ((5—14)-62—<T+V)91,(§—A)-€3—<T+V)92).

We set S(60) = <91 + 6, 192> and we get'
S(—
U'(r+P)U™ = ( )

+< e o p<f,<5m—€1>-e1>)' @)
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Let us denote by .4 the set of 2 x 2 matrices

W= {S(z) — (i f) zeC}.

Lemma 3. Let S = S(z) €. Then for all v = (v1,v5,03) = (v, v3) €ER’,
S2)p(W,v3)S(z) = 2/ + 2 4+ p(t' + 22V, (1 — |2]P)v3),

The proof is stralghtforwgrd
We use matrices /S and /S to get rid of the matrix-valued
coefficient of (7 + k) in (29) Notice that

-1 SE0) 1 _ s
SO =T VSO = astb),
with
a= 11 0P) (VIE + VT,
[P —
1+4/1—10f
Define
_ S(—@) 0 !
(VT 0 Yy a0

Then, if H; = (C)~' (7 4+ P.)C;', Lemma 3 and (29) yield
o 01
H =M, [T+k—a2b(9f+f9)+m5“a2(l —b2|0) <1 0) +a* -

(—p(f+b292f,( —010]")(E~A)-er) 0 )
0 pUf +00F (1= D?0) (6~ A)-e1)

] My,

We set k = a®(1 — b*|A|*) and we check thatk——
(1) e

Let g = (g1,82) be such that g, +igy = a*(f + b*6*f). Then we get (24)
through straightforward computations.

Moreover we have dgis = dfis + b*0°dfis and in view of a?(1+ b?0*) =
(1—16*)"", we obtain

dgijs = (1 + b°6%) i dfis = dfiys,

165
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whence (25). Moreover, if Y gy + Yags = —a?b(6f + 0f) = —2a’bRe(6f), then
(Yidg1 + Yadga) g = —2a°b0dfs.
Therefore, (Y2)g =0 and (Y1) = —2(1 - 10]*)a®bl above S, whence (26). []

2.2. The canonical transform. Observe that

—A)- E)?
7'—5—V—|—Y~g,(5 ) e = E] >0.

-’ EP —|BJ?

Therefore, arguing as for Proposition 4 in [11], we get the following Proposition.
Proposition 2. There exist some function \, A >0 near pg, and some local
canonical transform k,
K (t,x,1,8) — (s,2,0,0),
#(po) =0,
such that
o =1+ V+Yig + Vrg),

S:)\(g_A)'el7

10
)\g(t7‘x7 7_7 g) - (;?l (S7Z7 0-7 C) : 57 ;)/IZ(S7Z7 0-7 C) : 5) + (0-2 - s2)187

where = (C1,G) and where 8 = (31, 82), 41 and 7, are smooth functions valued
in R? with det(§,,%,) # 0. Moreover,

s = [EI 7V IEP — |BI. (31)

Let us identify J and J' in these new coordinates. Remark that, if pe€L,
g(p) =0, thus
NIr+ VP =02 Ne—AP =521 10]°) + o2l0).
Therefore, LN {s> = 0>} = LN{|¢ — A" = (1 + V)’} =JUJ. We study now
the sign of o which is sgn(7 + V) i.e. F on J= 1 U J5° and the sign of s which
is sgn((§ —A)-e;) ie. +sgn(r+V) on J and —sgn(7+ V) on J' (since u-
e1>0 and u'-e; <0). For example, we obtain J = {o=s}N{g=0} and
JHin c {s<0, o<0}. Hence the equations of J, J/, J&" and J*° stated in
Proposition 1.
Let us conclude now the proof of Proposition 1. We set
C =\, (32)

In the following calculations, we shall denote by O(e) either a family (R.) of
operators or a family (r.) of functions such that, for every ¢ € C5°,

1 .
Zllop=(#)Rell 1) + lope(¢)re] o] is bounded.
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We have
op.(AH1) = 0p(C*op. (7 + P-)op.(C™") + O(e).
Consider now some Fourier integral operator K associated with s and
" = Kop. (C).
Then we have
op5<a— < 2 p(f,m5)>>l~)€ = Kop.(\H, )"
p(fyme)  —s
= Kop.(C*op. (7 + P-)y" + O(e)
= 0(e),
where we have used (14) and (6) and where m. = Am. and
F=G 470+ =58

We rewrite this equation as

Ops(D - DBD)UE = OPE(F)U6 + 0(5)7 (33)
with
D:<“‘S 0 ) B:( 0 p(o,m)
0 o+s p(0.8) 0
F:( 0 p(ﬁl-w-@,mE)).
p('?l : 67’72 ! (27m5) 0

Since DBF = BFD and Bjs = 0, F|s = 0, we can argue as in [11] at the end of the
proof of Theorem 2 (Section 3.3) and we get that there exists a matrix P such that
Ps =1 and

op.(D)v" = op_(P)op.(F)v" + O(e).

Hence Proposition 1 with

IisC = ()5 - ¢+ ()5 - €)- (34)

Therefore matrix I' is invertible near S. O

3. Consequences of the Reduction to System (15)

Proposition 1 has two important consequences. The first one is that it states that
there exists some involutive submanifold of 7*R?™!, I = {¢ = 0}, such that

JuJ =3nlI,
with transverse intersection. Thus, if v is the two-scale Wigner measure of (_1/15) for
I, we can identify measures 7, (resp. ') with v above N (I)| ; (resp. N (I)l )
Actually, if Nx(J) is the bundle above 3 obtained by adding a sphere at infinity

of the fibers of TX/TJ, the canonical isomorphism from T7X/TJ onto
T(T*R‘dfl) /TJ; extends in some isomorphism

9211 : Nz}(]) — N(I),
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that we use for identifying 7 and v IN(I)‘,- The reader can refer to Lemma 4 in [9]

for a proof of this fact. Because of this identification, we shall focus in calculating
the two-scale Wigner measure of (¢°) for I.

The second consequence is that because of the invariance of two-scale Wigner
measure through canonical transform (see Lemma 2 in [9]), it is equivalent to
study the two-scale Wigner measure of (v°) for I, or of () for the same set.
Indeed, the two-scale Wigner measures o of (v°) and v of (¢°) are linked by

VYac.o/, (a, V)= {(aoN(k), CvC*), (35)
where for (p,n) € N(I), N(k)(p,n) = (k(p),n)-

~ 1 1 c
H§:§<1$ F“*f( (€. p@9®>>. (36)
SZ + |1“<|2 p Cv s
We decompose U as 7 = 0" + 0~ with the commutation’s relations:
0T = o, (37)

and the locahzatlon property: U is supported on {o &+ |s|} = JEMUJEOU, Let us
denote by v VS " (resp. V;E ") the traces of 7* on s = 0~ (resp. s = 01). In view of

(35), we have
vy oN(k) = Csrg ™ Cl, g MoN(r) T = Csrg M Cl. (38)

We set

In the coordinates (s,z,0,() we choose the equations of /, ¢ =0. Let peS, this
equation generates coordinates 7€ R* on N (7 )‘ . In these coordinates the branch-
ing of the energy is described by the following theorem.

Theorem 2. Assume that 7™ and 0™ are mutually singular, then we have

Z};,out — Tﬂ;’in + (1 . T)g*? ﬂ;,in@ (39)
with

D) If a€]0,1],

o - 0 r(0,0,1)

r=0, g_<p(0,071) 0 )
2) Ifa =14

T = exp[—(|Tsii|* + kfgm®)],
_ 0 p(Ls7, kjsm)
I 2 1/2 A Is%7> %] .
= (IUjsiif” + kigm®) (p(an, kjsm) 0

3) Ifa>}4,

. " _ 0 p(s7,0)
T =exp[—7|['s7|’], 2= [T sl (p(Fs@ 0) 0 .
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Let us explain now why this theorem implies Theorem 1.
Proof of Theorem 1. We focus on the case o = 1/2. Because of (38), we have
T=ToN(r) "', #=(Cs'%Cs)oN(r)"
The first observation consists in studying the link between 7 and the function 7
defined in the introduction. In view of (34) and of Proposition 2, we have
Tsd¢ = Adgs.
Moreover,
=[d(§—A)ép—d(T+ V)bpu] X E.

Using (25), (27) and (11), we obtain

3 Asl|E| A
Fsdn=(— liz URKZ in €2> (40)

Hence, by (27), (12), (31) and (22), we get
Dy dil* + kjgm® = (1EI® — [B[*) P (n, m)*.

This yields the value of T stated in Theorem 1.
It remains to calculate C|§1<%C|5. Notice that

~ _ ; 0 p(T\sn, mk

Moreover, because of (32), we have
Cis'#Cjs = Cij5' #Cys.
We shall use the following lemma.

Lemma 4. For any v = (vy, 02, 03) eR?,

ity 7y )@

() 0
. U3 1 _p(E\g\ZB) T 91)2 p(|Ef\) 0
Vi@ \p(5p) VI—e\ 0 (i)

1 0 U>k (\/ |(9| U1, 02, )U
VI=\ (/1= (61201, 00,0)U 0

Proof. This lemma comes from simple computations and the use of

/ v .
SOP(.0)y/5(~8) :p(vl,ﬂ—i_m,o) +i0p(0,0.1),
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These latter equations are consequences of the definition of U (see (28)), of (22)
and (12). ]

By definition of ®(n,m), we have
_ E 0 v
=g =180 e 0 78 e

®(n, m) pv) 0
with v = (\sI'|s77, mkis). By (40), we obtain
= (IEF — B)™*m
E X B
0v, = —(|E|> — |B]*) Y4y ,
»=—(E - |B]*)” 0

(VitPon) = f =15y () - (5 m) o
(é ><77> .el>.

In view of (28), we get the expression of # stated in Theorem 1. ]

In the following sections, we drop the “on 7) and we focus on proving Theorem 2,
for a€ (0,1/2) or (a« > 1/2 and || = o0) first, then for (o > 1/2 and 1 < +00).

Before closing this section, let us state a last result concerning system (15). The
dependance on the variable ¢ of the function +; and v, does not prevent from
dealing with system (15) as with a system of evolution equations. Actually,
arguing as in [11], Proposition 5, we can prove the following hyperbolic estimate.

Proposition 3. Consider (v°) a bounded family in L*(R? C*) satisfying (15),

consider p € €3°(R®) such that p(0) = 1, then there exists 6 >0 and 9 >0 such
that the family (p ((MD%SD))vE)E> is bounded in L* (R, L*(R?)).

Therefore, arguing as in [11] and [9], we can estlmate (op.(a)v® | v°) for
ac 6y (K) where K is some compact subset of {|C|* 4 s> < 6}, for 6 small
enough; by Proposition 3 and Schur’s lemma, we have

+00
Op@el)l<C|  sp s otz Olds (1)
—00 k+|B| SN (z,00) eR’ '

uniformly with respect to K.

4. The Adiabatic Cases: (|| = +00,a > 1/2) or a€(0,1/2)

In this section, we prove Equations (39) for a€(0,1/2) and for (o > 1/2,
n| = 400), ie.
+ out @I/+ in % I;f,out — e@I;f,in (@ (42>

In view of the definition of IT* (see (36)), we have

o+ = <(1) g) above J©n, o+ = (g (1)) above J©OU, (43)
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m— 0 0 —,in T— 10 —,out
IT —<0 1) above /7" 11 —<0 0) above J % (44)

Therefore, the polarization of 7+ " is not the same than the one of v ot This
explains the presence of the matrix £ in (42).

We follow the method initiated in [9]-[11] and developed in [8] for eigenval-
ues of multiplicity higher than 1. We shall focus on the plus mode, the proof for the
minus mode is similar. We proceed in two steps. First, we reduce (42) to some
statement on the family (v°) by use of suitably chosen symbols. Then, in a second
step, we prove this statement by Weyl-Hormander pseudo-differential calculus.

4.1. An equivalent statement to (42). Here again, we proceed in two steps.
Equation (42) link the traces on S of #*. The first step consists in translating (42)
into some result on 7~ itself and not only on its traces. Then, it is easy to obtain an
equivalent statement on (v°), simply by using the definition of two-scale Wigner
measure. Let us introduce first some notations.

Consider the vector-valued function X3° = X (s, z, 0, (,n) defined by

for a>1/2,

r
X® = <p(|r—”,o>w, <o,0)> ifs>0, X =((0,0),w) ifs<0,
n
for o =1/2,

X = <p<(r’7”"k>>w, (0,0)> it5>0, X =((0,0),0) ifs<0,

) D0l + m2k2
for «€(0,1/2),
X% = (p(0,0, 1w, (0,0)) if s>0, X = ((0,0),w) ifs<0,
and the matrix-valued function I , = IIY (s, z, 0, ¢, n) defined by

I, if s<0

°°,,:=X°0®X_°<,>=:{ .
Wi w W Iy, if  s>0.

Lemma 5. Consider now pec %;°(R), p(0)=1.
1) If a = 1/2, Equation (42) for |n| = +oc is equivalent to

) 1 s n
00 (7 1 A 00
Vage 6y (R xSY), 113(1) tr(<€p <E>a0 <z,a,g,|n|>r[w’w,,

ﬂ*lnoc> =0, (45)

2) If a«€(0,1/2), Equation (42) is equivalent to

Yag € o/, lin(l) tr<<§p’<§>ao(z, o, &I, ﬂ+> =0. (46)
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Proof. 1) We crucially use that the matrix " satisfies the commutation’s
relations (37). We write the 4 x 4 matrix 7" by blocks of 2 x 2 matrices

. (AT BY
v = C+ D+ .

By (43) and (44), vt is of the form

AT 0 .
vt = ( 0) above J ™",

0
0O 0
vt = above J1 U,
0 DF

Besides, the 2x2 matrix A" is utterly determined by the knowledge of
tr(ATw ® &) for any w, o' in S'. The same fact holds for D*. Moreover, above J "

wwo oo ((3))= ()

and above J 1o

ooz =u(((s))o (0)))

Therefore, by the definition of flg{w,, Equation (42) is equivalent to the fact that for
any choice of w and w/,

~-+ out yTin
(v L,

) =t(Ro0" RTID ).
In view of
(R R =w(@™ " RULLR) and R, R =110,
Equation (42) is equivalent to the fact that for any choice of w and &', on
Inl = +o0,
tr(l;+,0ut Hout/) — tr(,;+.,in Hin /)

i.e. to (45).

The proof of 2) is similar. O]

For the second step, we need more notations. We set

£ = \/s2 +m? + |0 = \/sz + m2k2e2 4 TP,

A (p(Fc{ me) p(Fésmg)) ’

and we denote by (f¢) the family such that, locally near 0,

i@svs = op. (A )v° +€f°,
i
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with (op_(¢)f¢) bounded in L?, for any ¢ compactly supported in a neighborhood
of 0 small enough. '

Then, for weS', we denote by X5 = X¢(s,0,z,() the norm 1 eigenvector
of A® for the eigenvalue \° defined for s #0 or ( #0 by

1 ~ 1 0
X =——o —(p(T'¢,m)w, (N —s5)w) = ————= (A + A° .
o 2/\5(/\E_s)(p( ¢y me)w, ( Jw) 2)\5()\5—s)( )<w>
For w, ' € Sl, we consider the matrix
1 :HiAw/(S,Z,U, C) = XZ®)_(iz"

w,w
The function IIf , depends on ¢, thus, for a € .27, the function

q : (Su Z,0, Ca 77) = a(s, Z,0, C) n)Hi},w’ (S7 Z,0, C)

is not in .«Z. However, this function is smooth and one can consider the family of
operators op.(q(s, z, 0, ¢, %)) that we will denote by op,./(allf, W)

Lemma 6. Consider the scalar symbol a € .o/ compactly supported outside
s =0 and in the ball {s*> + |C|* <&}, for §>0 as in Proposition 3. Then we
have,

(0p. (aTT5, )" |*) — tr(a T,

ww'?

).

Proof. Let us suppose that s >0 on Supp(a), the proof is similar in the other
cases. We have

X =

w

(x/)\5+sp< (F(N,mg) )w\//\a—sw)

2)\5 /|I—\<-|2 +mg 2)\5

The functions (s, z,0,() — V\/A;Tf‘ and (s,z,0,0) — V\;\z%s are smooth functions on

Supp(a). They go respectively to 1 and 0 as e goes to 0. Therefore, we get
(op. ! (alT;, ,)v"|v%) = (op.' (all,)0%, v°) + o(1),

where we used (41). Hence the result. ]

In order to prove (45) and (46), we use Lemma 6 as follows.

e In the non adiabatic case o > 1/2, we consider ay, 6 and ¢’ as before, and for
R >0, we define a as

T N ol E))

The function a is in .o/ and for ¢° = all ,, the operator op,(g°) satisfies

ww'?

1 [
‘ 0,2,(3 S(q| C’fV((S 6)<R\/’) )

where we implicitly assumed R/ < 1



Semi-Classical Analysis of a Dirac Equation without Adiabatic Decoupling 303

If we consider the Weyl-Hormander metric

ds? C2
_dZ + +E(d0' +d<3)+€ﬁ,
we have, with Hormander’s notatlons, gi < (‘[) ; thus the gain of this symbolic

calculus is \/— Equation (45) is equ1valent to
lim lim lim hm(op€ (Osall;, ,)v°[v") = 0. (47)

&' —0 R—00 6—0e—

e In the adiabatic case: a € (0, 1/2), for ag as before, § > 0, § < §y (where & is
defined in Proposition 3), we define a as

a(s,z,0,,m) = (5,>ao(z o,(m)p (g)

We get that if g. = all®

ww'?

]
( 1
0. < 85 )

This estimate allows us to use Weyl-Hormandes symbolic calculus for which we
refer to Sections 18.4, 18.5 and 18.6 in [20]. The symbol ¢° belongs to the class
S(1,g-) where g. is the metric

ds?
. =dZ? + 5= —+ &2 (do? +d3) + 2 dd.

2( 12«

Since £ < 2729 the gain of this symbolic calculus is €
goes to 0. Then (46) is equivalent to

;,lgggg)g@(opg (Osallg, , )v"[v") =0, (48)

and the proof of (47) will apply too to (48).

4.2. Proof of (47) and (48). For short, we focus on the case « > 1/2. We
crucially use Weyl-Hormander metric g. defined above and Corollary 41. We set

(Op I(a an w’) E|v€)7

and we decompose L into L = L' + L? + L* with

1:£ 1 € s p(Fg,mg))] € s)
L c <|:Ope (anw,w’)aopg (p(rg_, mg)* g v |1) )

L* = (op.! (ad,IT° LA L
L’ = i(op.!(all}, ,)f*|v%) — i(op.! (all, )" |f").

Then, we prove the convergence to 0 of L!, L? and L?. For b = b(s,z,0,(,n) €E™,
we set

which goes to 0 as €

bZ(s>Zaavo = b(S7Z707C7\§E>7

bi(s,z,0,C) = b(s,z,c0,e(, (),
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so that we have for b € .o/,

Opgl(b) = Ops(bi) = Opl(bg)

e We begin with L. By the Weyl-Hormander symbolic calculus, if x € €°(9)
with x = 1 near the support of a, we have

N
€
op /() = op. aTT ) = op. el Jop. () +opy (5 % ) ).

for all N eN. On the other hand, we can apply Corollary 41 to the symbol
b. =a] H° . Using the explicit expressions of a and of II;, ,, we get

e p(g oo ()

e Let us consider now L'. Note that AgeS(Ag,ge), therefore by symbolic
calculus, we obtain

L = 3 op (a1 .4} ~ (AT )le) + 0 )
We set
b = {aIL;, ,, A} — {A, 1L, }. (49)
Observe that TI5, , = U(s, \*,T'C, m.) where U = U(r,1,X,m) is homogeneous of

degree 0. Therefore O,IL, w and V(I are homogeneous of degree —1 in the
variables s, A°, ¢ and m,.. However, 9, ,1I° , and V.II° , have a better degree of
homogeneity, they are homogeneous function of degree 0 in A%, s and ( Note that,
in (49), the derivatives 0, , and V ;IL7, , appear with some factor C which
compensates the —1 degree of homogenerty of these functions. Therefore, apply-
ing Corollary 41, we obtain the estimate

+00 s
|(op..(bo)v", v°)| < CJ p<§>ds =0(8).
Thus

limsup lim sup lim sup |L1| —o.
(8,6)—(0,0) R—+o0 =0

e Finally, let us deal with the remainder term L?. We shall use the following
properties of X,, and 1}, .

Lemma 7. 1) There exists some matrix-valued function ¢, homogeneous of
degree 0 in s, € and C, such that if (w,') is some orthonormal basis of R?,

€ 1 € £\ye €
asz = W (5SA - ay)\ )XW + (qbw . w')Xw,.
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2) If (w,) is some orthonormal basis of R,

€

A
01, = |A®, ——= O,IL w} w-w)(II, , + 1L, w
| [ T (pe- ) )
€ g AE € / € €
AL, = |A%, ——=0lL, | — (pw )L, +1I, ). (50)
W 2(}\ ) ) 9

We postpone the proof of this Lemma at the end of the section.
Let us conclude for L% The homogeneity of ¢ and II¢, w Ins, A% and ( yields that

limsup lim sup lim sup |(op./ (a(pw - ') )| = 0.

(8",6)—(0,0) R—+00 e—0

ww’)

Moreover, we transform the bracket part of 0,1, , asin [11] so that we can reuse
the equation. In the metric g., since ()\5) =C \/_ R on Supp(d’)

e\ € 1
(a()\ ) 2A€)535Hw)w/ S S([{Iaz s gs> .
We obtain

A® 1
’I A 1T - A 1 € —2A€ I,
on (|50 ) € Son.@on ) ara )

1 - g (3 g
~ 50p.!(a(\) A°DIL  op. (47)

o)

Therefore, we can use again the equation and we get

(o (o[
= 0( 3 ) +06) - 5 (op Oual) 40T ).

Since 9_ds(a(X°)~ *A%9) wa,) | < m, as € goes to 0,

()

=)+ <>+C€J+:<sz+i$>w o +0( ).

Hence, limsupg_, , . limsup,_, L? = 0. It remains to prove Lemma 7 to complete
the proof of (47) for & > 1/2. Similar proof applies in the case o € (0, 1/2) where,
roughly speaking £'~*/? plays the rule of 1/R>. 0

Proof of Lemma 7. 1) Consider w, ' €S! such that w - ' = 0. The vectors X,,
and X, form a orthonormal basis of the subspace of all the eigenvectors of A® for
the eigenvalue A\°. Moreover, using that X, - X,y = 0, we obtain that

1 £ £ £ £ 0 . 0
asz.Xw/_m (A + A7) (0N + 0,A )(wﬂ <w,>.
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We get, through straightforward computation,

1 - -
Xy - Xy = v —s) (p(T¢,m.) p(ATE, m)w - o).
We set
1 - -
¢(s,2,0,¢) = mP(FQ m&)*p(avFC7 me). (51)

Since |X,,| = 1, we also have 9;X,, - X, = 0. Thus, the vector 9;X,, is of the form
X, = (pw- )Xy +7Y,

where Y is an eigenvector of A® for the eigenvalue —\°. The derivation in the
variable s of the relation A°X,, = A°X,, yields

(DN — DAT)X,, = (A° — N)DX, = —2X°Y = —2XN(9,X,, — (dw - o/ )Xo0),

whence 1).
2) Because of 1), if M = 5 ((0,A° — 9;X%)), we have for w-w' =0,

OIL, , = MIL,, , + 1T, M + (pw - ' )(IT;, , + 1T, )
L, , = MIT;, , + 115, M+ (pw - w)(IL;, , +1I, ).
Observe that since
0,((A9)?) = 0,((\)?) = ADA° + AD,A" = 2X°O,X°,
we have A°M + MA® = 20,\°T1_ . Therefore, using
AL, , =11, JA° = NIL, ,,  A°IL, =11, A° = XNIL,
we obtain
ATQTIE, AT = —(X°)°OIT , +2(X°) (pw - w)(IT5,, + 115, ),
ATQIIL A° = (N POTI, + 200 (pw- w)(I, + 115, ).

Hence 2). O]

5. The Non-adiabatic Case: o > 1/2 and |n| < +00

In this section, we aim at proving Landau-Zener formula (39) in {|n| < +o00}
for a = 1/2. We proceed in two steps. We begin by stating a normal form which
holds in any ball B C Rf]. Then, we are reduced to deal with some abstract scatter-
ing problem which can be solved explicitly. This allows to obtain Landau-Zener
formula for measure 7, thus for v.

5.1. A normal form at finite distance.
Proposition 4. For any ball B C R?, there exists a matrix C E%SO(RSISJ)M)
such that if w* = (14 \/zop./(C))v", then, in L*(R*),

Va e 6 (RS x B, opfl(a)opg( —ots PTG meg) )uE — 0e).
p(Lis¢,mes) —0 =5
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Remark 1. Notice that (u°) and (v°) have the same two-scale Wigner measure
for .

_ (10 s 7. _ ( —o+s  p(T¢m.)
Proof. WesetJf(0 _I)ER , ( (FC,mf) o )

I =T1(s20,¢), I'=I(0,20,0),
mg =emk(s,z,0,(), mgo =emk(0,z,0,(),
~0 —o+s p(I‘Of, mg) A% _ —0+s p(l"oog:, mgo)
Hy = oF oy o) Hy = 007 00 o :
p(I°¢, m?) o—s p(I¢, m2) o—s
We prove the following lemma.

Lemma 8. There exist four smooth matrices C; = C(s,z,0,(,n), C'J =(;
(s,z,0,¢,m), j€{1,2}, C;, C;€ 6 (R') such thatfor all ae‘g‘”(Rlo x B),

llop./(a)[(1 + VEop. (J(Cy +e*7/2C1)J))op. (Ho)
— op.(HY)(1 + Vzop. (C1 + "' 2C1))ll| g2y = O(e),  (52)

[lop-'(@)[(1 + v op.!(C2 +°7/2C2))op. (H))
—op.(HY)(1 + Veop. (Co + e 2Co))ll| g g2y = Ole). (53)

This lemma yields Proposition 4. Actually, if a is compactly supported in all
the variables s, z, o, ¢, 1, then, we have in Z(L?),

op.’ (a)op.(¢b) = vz op.!(anib) + O(VE).
Hence
llop." (@)op. (GB)| 412y = O(V2), (54)
for j€{0,1,2,3} and b€ 6°(R'). Therefore, writing
¢ =Ty +0(I¢f), m&® =mejs+e* 0(()),

and using that « > 1/2, we obtain that, for any a compactly supported in all the
variables,

[lop. (a)op.(p(%C, m)) — op." (@)op. (p(T's¢, meis)|| 2y = O(e).
Therefore, Equations (52) and (53) yield Proposition 4. O
Proof of Lemma 8. Set C; = C; + £~ '/2C,, Equation (52) is equivalent to
llop." (@) [(1+V20p.!(CT))op.(JHz) — op. (JH3) (1 + veop." (C)))]| 4 z2) = O(e).
—o+s  p(T¢m.)

_p(FCa me) ots
in power of ¢ the left hand side. Because of (54), we obtain that C] must satisfy,

e 0 (0 =T)n, e 2m(K* — k))
O’[J, Cl] - (_p((l"() _ F)n, gw—l/zm(k() _ k)) P K 60 )

Note that JH, = ( ) We use symbolic calculus to expand
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Therefore, we get

1 0 p((FO - F)na 0)
20 (p((r° —T),0) 0 )X(”) ’

=1 0 p(0,m(k° — k)
R P S

for some function x € %’ (R;;) identically equal to 1 on B.
A similar proof determines C, and C,, whence Lemma 8. O

C =

5.2. Landau-Zener formula. Because of Proposition 4, once given some ball
B C Rf], we are reduced to the study of the traces on s = 07 and s = 0~ of the two-
scale Wigner measure of a family (u°) satisfying
—o+s p(T ~, m
Vac %y (R® x B), opal(a)op€< - (¢ EIS))uE
p<F|S ¢ m€|S) o=

=0(e) in L*(R%).

Moreover, by applying a cut-off function, we may suppose that I' and k are
compactly supported and turn I'jg, ks into ¢(n)I'|s and ¢(n)k|s with ¢ compactly
supported and identically equal to 1 on B. This way, our system is micro-localized
in the ball B; which is enough to calculate the two-scale Wigner measures in B. We
are left with a system of the form

iasus _ Op;( s ~ ¢(77)P(F\s Ca m5|S)

i ¢(mp(Ljs ¢, mes) =S
where (op./(a)f?) is uniformly bounded in L2 for symbols a compactly supported
in R® x B. However, f¢ does not contrlbute to the description of the traces on

s =0%, s =0 of the two-scale Wigner measure of (u°). Actually, if S-(s,s")
denotes the evolution operator associated with the free system

€. —opn! s ¢<77)P(F|s€:ame|s>> e e e
iarﬂ = Op, <¢(n)p(rs 57 mg‘S) s u, E\s:() - u‘s:()a

)lf + 5f57

then we have
=i + iJ‘ S.(0,1)f° (1)dr
0

Hence, u® = u® + O(y/]s]) in L*(R?). Therefore, the traces of the two-scale
Wigner measures of (#°) and (u°) on s = 0F are the same. Let us denote by G
the compact operator

G = op.' (¢(m)p(T|sm, e *mk)).

The family () satisfies
P s VeG
- 0)
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As a consequence of Proposition 7 in [11], we have the following Lemma.

Lemma 9. There exist o5 = o(z), wi = wi(z), j€{1,2}, such that, as € goes
to 0, for any x € 6 ( R) )((,GG>’< or (JG*Gﬁoé, X(GG*)w; and x(G*G)w5 are
bounded families in L*(R}, R?) and as € goes to 0

Sfor s <0,
uj(s,2) ol s [
GG ): GG¥)em|—=| o +o(l
waa) (17 ) = xiaahet | oot
_iG'G
(66 (SN Zxerae | | ag o),
uy (s, 2) Ve
for s>0,
i (5,2) 2| s [
X(GG*)<ui(s Z)) = x(GG¥)e'= wi +o(l)
2\
* U5(s,2) * i %
X(G G) ME(S Z) :X(G G)e == w2+0<1)’
4\P>»
Moreover
Wi\ _ el
(4)=s(2) s
with

. [ alGG*) —b(GG¥)G
S _<b(G*G)G* a(G*G) >

with a(\) = e™™, b(\) = if—ﬁzfﬂ/zefﬂ% T(1+id)sh(@), a(\)* =1 - Xb\)|*.

These formula allow to calculate two-scale Wigner measures thanks to Lemma
8 in [11] which states that for x € ;" (R) and for o = 1/2,

o (o2 30 =t

= x(G*G) +o(1), (56)
for a«>1/2,

op.! (x(‘qé(g)nsn

In view of

)) = x(GG") +o(1) =x(G*G) +o(1).  (57)
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we obtain that 7288 PO (resp 72 0) is the two-scale Wigner measure of the family

| S ] (5, 0) (resp. e*lz ] ‘ i (0, a2 ) Slmllarly, vt 1s>0 (resp v 1,59)is
NG | (w5,0)). We
use Lemma 9 in [11]: for every x € C°(R'?)), we have in #(L?),

the two-scale Wigner measure of e ~is | \/-| O (0,w5) (resp. e’ 2

:GG* :GG* iG*G G*G

—ie s | s |7
op.’ (x)

2 2 2

\/g Opsl(X) \/E - \/g \/g +0(1) :OPEI(X) +0(1)

Therefore, 7" (resp. v %) is the two-scale Wigner measure of the family
(a5,0) (resp. (0,a5)). Similarly, 7™ (resp. ™) is the two-scale Wigner mea-
sure of the family (0,w5) (resp. (wj,0)). Observe that Equation (55) yields,

() () s (2 ) (o)),
()< () -seo( 5)(4)

These relations yield (39) via (56) and (57), which completes the proof of Theorem 1.
]

s

6. Appendix
6.1. Restitution of the energy by the crossing. We denote by (2 the set
Q={E-B#0 or (E-B=0 and |E|>|B]|)}.
Proposition 5. If (1)7) is a family of solutions to (6) and p a Wigner measure of

(1), then we have
u(SNQ) =

Proof of Proposition 5. We set

o= (p(&o—m p@(;A))_

P.(x,€) = Qo + “my° + V(1,x).

Observe that (7+V —e%m— Qo)(T+V +em+ Qp) = (1+ V)* = |€ — A]*—
e2*m?. Therefore, if

Q:=op.(T+V —e"m—Qp)op.(T+V +e"m+ Q),

We have

we have
Q=op.((r+ V) —[g—A] —*m?)

+%op€({7+ V= Qo T+ V+00})+o(e) (58)
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in Z(L?*). Let us denote by R the matrix

:_{T+V Qo, T+ V+ 0o} = (5(%) 5)((?))

Since i0y1)° = op,(P-)y", for any matrix-valued symbol a € ;° (R tﬂf) we have
1 E
- (op-(a) QY7 |y7) —*(Opg( )UF|QY:) =0
Using (58), we obtain

" fop (), op.((7+ V)? ~ |¢ ~ AP)]

+ % ((op-(a)op(R) + op.(R*)op.(a))¥*|v) = o(1),

whence {p, (T + V)* — |¢ — A|*} = uR*+ R ju. Consider Peby (Rg) such that
0 < ® < 1 with ®(0) = 1. Using test functions of the form <I>(£ 6(””) for some
positive 6, then letting 6 which go to 0, we get

Rlg_pgrpp + 1§:A(t,x),uR* =0.

Consider x = x(t,x,7,&) a scalar test function and M = (x, pulye—ajno;). The
matrix M is a positive hermitian matrix satisfying MR* + RM = 0. Let us prove
that M = 0. Observe that

R IE*— B> 2iB-E
2iB-E |E—B}*)

Since we have RMR™ = —R>M, the matrix —R>M is hermitian and positive. Thus,
in the case E - B = 0, it is obvious that the fact that |E| > |B| yields M = 0. We
focus now on the case E - B 0. Matrix M can be decomposed in 2 x 2 blocks

A C
(&)
where A and D are 2 x 2 hermitian positive matrices. Moreover, if —R2M is hermitian
positive, we obtain that we must have (E - B)(A + D) = 0. Therefore, necessarily,
A = D = 0, which yields C = 0 and M = 0. This comes from the fact that the non-

diagonal coefficient y1;; of measure-valued matrix . is a measure absolutely contin-
uous with respect to the diagonal measure-valued coefficients i, ; and ;. O

_ 6.2. Proof of Lemma 1. Let us study the limits of the fibers of N (/*") and
Ny (J*°%) above some point p which tends to S. Consider H and H' the limits of
the two Hamiltonian vector fields along J and J' above S, we have

lim Hy (py 7= lim Hy-(p;) = Hriv(po) — w - He-alpo) = H,

lim Hy: (pg') = lim Hy-(p;') = Hriv(po) + & - He-a(po) := H'.

Let H' and (H')" be the orthogonal of H and H’ respectively for the symplectic

t
form on T(T*R*). The measures v{'™ and vy ™ are measures on the
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+,out

compactification of H + /TJ, and similarly, the measures Vg 0 and vg live on the
compactification of (H')"/TJ'. Note that TJ = TS @& RH and TJ' = TS & RH/,
therefore if we set

F=TI+TI'=TS®RH & RH',

the planes H-/TJ and (H')" /TJ' can be identified to T(T*R*)/F.

Consider 6p € T(T*RY)

» PES. We decompose 6p as

bp=IH +I'H + 65+ 6p,

with /, I’ € R and és € TS),.. The class of p modulo F is characterized by the class
of p modulo J, i.e. by d(§ — A) 6p — d(7 + V) 6pu (because £ — A = (7 + V)u is
an equation of J). Observe that

d—A)H —-d(tr+V)Hu=0, d(—A)és—d(r+V)bsu=0,

E
d¢-A)H —d(t+ V)H'u = —ZrW.

Therefore, the class of 6p modulo F is utterly determined by the knowledge of

n=(d(—A)ép—d(t+V)bpu) NE
=d({—A)ép NE+d(T+V)bpB,

where we have used (11). This concludes the proof of Lemma 1. O
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