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Abstract. Extensible (polynomial) lattice rules have been introduced recently and they are con-
venient tools for quasi-Monte Carlo integration. It is shown in this paper that for suitable infinite
families of polynomial moduli there exist generating parameters for extensible rank-1 polynomial
lattice rules such that for all these infinitely many moduli and all dimensions s the quantity RðsÞ and
the star discrepancy are small. The case of Korobov-type polynomial lattice rules is also considered.
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1. Introduction

A useful construction of digital nets for quasi-Monte Carlo methods is based
on rational functions over finite fields. This construction was introduced by the
author [12] and is also described in [13, Section 4.4]. The construction can be
viewed as an analog of the construction of good lattice points (see [13, Chapter 5],
[18] for the latter). Instead of an integer at least 2 which serves as the modulus for
good lattice points, we choose a polynomial f over a finite field with degðf Þ5 1.
Whereas good lattice points are determined by choosing s additional integers,
where s5 1 is a given dimension, in the digital net construction we select s
additional polynomials over the finite field. These polynomials matter only modulo
f. A detailed description of the construction will be given in Section 2. This
construction can now be viewed as an important special case in the theory of
polynomial lattice rules which was recently developed by Lemieux and L’Ecuyer
[8] (see also [7, Section 3.2.4]). In fact, the construction considered in the present
paper is the rank-1 case of polynomial lattice rules, just as good lattice points are
the rank-1 case of lattice rules.

Existence theorems for good lattice points form the centerpiece of the theory
of rank-1 lattice rules (see [10], [13, Chapter 5], [15], [18]). Similarly, we have
existence theorems for good rank-1 polynomial lattice rules (see [4], [5], [12],
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[13, Section 4.4], [17]). The proofs of these existence theorems are nonconstruc-
tive. Therefore, explicit parameters for good rank-1 polynomial lattice rules are
obtained by computer search methods. The first such computer searches were
carried out by Hansen, Mullen, and Niederreiter [1], and this work was continued
in [5], [16], [17].

Good parameters for rank-1 lattice rules and for rank-1 polynomial lattice rules
usually depend on the modulus and the dimension s. Recently, a major step was
taken by Hickernell et al. [2] who proposed the idea of extensible lattices, i.e., of
good parameters for rank-1 lattice rules that work simultaneously for infinitely
many moduli (the moduli are, in fact, powers of a fixed integer base b5 2). This
idea was further refined by Hickernell and Niederreiter [3] who proved an exis-
tence theorem for good parameters for rank-1 lattice rules that work not only for
all moduli bk, k ¼ 1; 2; . . . , but also for all dimensions s5 1 simultaneously. Of
course, these parameters have to be doubly infinite in some sense (indeed, infinite
tuples of b-adic integers are considered).

The main result of this paper is an analog of the existence theorem of
Hickernell and Niederreiter [3] for rank-1 polynomial lattice rules (see Theorem
3 below). We arrive in this way at extensible polynomial lattice rules which work
simultaneously for infinitely many polynomial moduli and all dimensions s5 1.
The desirability of extensible polynomial lattice rules is briefly mentioned in
L’Ecuyer and Lemieux [7, Section 3.5]. We consider not only sequences of moduli
which are powers of a fixed polynomial of positive degree, but more generally
divisibility chains of polynomials (see Definition 1).

In Section 2 we set up the notation, define the digital nets that form the basis of
this paper, and introduce concepts that are crucial for the proof of our existence
theorem. Section 3 contains the proof of this existence theorem and some con-
sequences for the star discrepancy and the quality parameter of the digital nets. We
also show how this existence theorem leads to the construction of infinite
sequences with desirable properties. Section 4 establishes analogous results for
a one-parameter subfamily of these digital nets, the ‘‘Korobov point sets’’. The
method yields also a new result for Korobov lattice rules (see Remark 11).

2. Basic Definitions and Notation

Throughout this paper, p will denote a prime number and Fp the finite field of
order p which we can identify as a set with f0; 1; . . . ; p� 1g. Let Fp½x� be the
polynomial ring over Fp in the variable x and Fpððx�1ÞÞ the field of formal Laurent
series over Fp in the variable x�1. Note that Fpððx�1ÞÞ contains the field FpðxÞ of
rational functions over Fp as a subfield. The case of a finite prime field allows us to
simplify the general construction principle for digital nets by choosing all the
bijections in [13, p. 63] to be identity maps.

For a given dimension s5 1, let f 2Fp½x� with degðf Þ ¼ m5 1 be a chosen
polynomial modulus. Furthermore, let g ¼ ðg1; . . . ; gsÞ2Fp½x�s be an s-tuple of
polynomials. These are the basic parameters of the point set Pðg; f Þ we are going
to construct. We use the description of Pðg; f Þ given in [14, Section 2.4] which, in
the case we are considering (all bijections in [13, p. 63] are identity maps), is
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simpler than the original definition in [12]. First, define � ðmÞp : Fpððx�1ÞÞ ! ½0; 1Þ
by

� ðmÞp

�X1
j¼w

bjx
�j

�
:¼

Xm

j¼maxð1;wÞ
bjp
�j; ð1Þ

where all bj2Fp ¼ f0; 1; . . . ; p� 1g. Then Pðg; f Þ consists of the pm points�
� ðmÞp

�
ng1

f

�
; . . . ; � ðmÞp

�
ngs

f

��
2 ½0; 1Þs; ð2Þ

where n runs through all polynomials over Fp with degðnÞ<m. It is clear that
g1; . . . ; gs are relevant only modulo f. In the case where f is irreducible over Fp, the
construction of Pðg; f Þ is equivalent to a special case of an earlier construction in
Niederreiter [11] (compare with [12, Remark 5] and [13, Remark 4.45]).

The point set Pðg; f Þ is a digital ðt;m; sÞ-net in base p (see [13, Theorem 4.42])
and gives rise to a rank-1 polynomial lattice rule for quasi-Monte Carlo integra-
tion. The quality of the point set Pðg; f Þ can be measured in various ways, for
instance, by the quality parameter t of the digital net. For our purposes, the
quantity RðsÞðg; f Þ to be defined in (3) is the most useful one. We recall that for
any s-tuple h ¼ ðh1; . . . ; hsÞ2Fp½x�s with degðhiÞ<m ¼ degðf Þ for 14 i4 s there
is a standard way to associate a positive weight WpðhÞ (see [13, pp. 37 and 77]).
For the sake of completeness we present the definition of WpðhÞ. For this purpose
only, we identify Fp as a set with CðpÞ :¼ ð�p=2; p=2� \ Z, which is a complete
residue system modulo p. For a given h ¼ ðh1; . . . ; hsÞ2Fp½x�s with degðhiÞ<m
for 14 i4 s, we can thus write

hiðxÞ ¼
Xm

j¼1

hijx
j�1 for 14 i4 s;

where all hij2CðpÞ. Then we put

WpðhÞ ¼
Ys

i¼1

Qpðhi1; . . . ; himÞ;

where Qpðr1; . . . ; rmÞ is defined as follows for any ðr1; . . . ; rmÞ2CðpÞm. First of all,
we let dðr1; . . . ; rmÞ ¼ 0 if ðr1; . . . ; rmÞ ¼ 0, and for ðr1; . . . ; rmÞ 6¼ 0 we let
dðr1; . . . ; rmÞ be the largest index d with rd 6¼ 0. For p ¼ 2 we put

Qpðr1; . . . ; rmÞ ¼ 2�dðr1;...;rmÞ:

For p> 2 we put Qpðr1; . . . ; rmÞ ¼ 1 if ðr1; . . . ; rmÞ ¼ 0, and for ðr1; . . . ; rmÞ 6¼ 0
we put

Qpðr1; . . . ; rmÞ ¼ p�d

�
csc

�

p
jhdj þ �ðd;mÞ

�
;

where d ¼ dðr1; . . . ; rmÞ and where �ðd;mÞ ¼ 1 for d<m and �ðm;mÞ ¼ 0.
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With these weights WpðhÞ we then define

RðsÞðg; f Þ :¼
X

h

WpðhÞ; ð3Þ

where the sum is over all nonzero s-tuples h ¼ ðh1; . . . ; hsÞ2Fp½x�s with degðhiÞ<m
for 14 i4 s and

Xs

i¼1

higi� 0 ðmod f Þ:

Note that for s ¼ 1 and g ¼ g1 with gcdðg1; f Þ ¼ 1, the sum in (3) is empty, and so
Rð1Þðg; f Þ ¼ 0. Like Pðg; f Þ, the quantity RðsÞðg; f Þ depends only on g modulo f.
The aim is to make RðsÞðg; f Þ as small as possible for fixed s and f.

Next, we introduce some concepts pertaining to polynomials over finite fields.
Let �p denote the analog of Euler’s totient function for the polynomial ring Fp½x�
(see [9, Section 3.4]). For nonzero f 2Fp½x�, �pðf Þ is the number of g2Fp½x� with
gcdðg; f Þ ¼ 1 and degðgÞ< degðf Þ. For degðf Þ5 1 we have the formula

�pðf Þ ¼ pdegðf Þ
Y
qjf
ð1� p�degðqÞÞ; ð4Þ

where q runs through all monic irreducible factors of f in Fp½x�.
Definition 1. A sequence F ¼ ðfkÞ1k¼1 of polynomials from Fp½x� is called a

divisibility chain in Fp½x� if fk divides fkþ1 and 14 degðfkÞ< degðfkþ1Þ for all
k5 1.

For any given divisibility chain F ¼ ðfkÞ1k¼1 in Fp½x�, it is clear from (4) that the
sequence of positive numbers

�pðfkÞ
pdegðfkÞ

; k ¼ 1; 2; . . . ;

is nonincreasing. Therefore it is meaningful to put

�F :¼ lim
k!1

�pðfkÞ
pdegðfkÞ

: ð5Þ

With F we associate the set YF of F-adic polynomials. That is, YF is the set of
all formal sums

A ¼
X1
j¼0

ajfj ð6Þ

with f0 ¼ 1, aj2Fp½x�, and degðajÞ< degðfjþ1Þ � degðfjÞ for all j5 0. If aj ¼ 0 for
all sufficiently large j, then A can be identified in a canonical way with a poly-
nomial over Fp. Thus, we have Fp½x� � YF .

For A2YF as in (6) and k ¼ 1; 2; . . . ; we put

Aðmod fkÞ :¼
Xk�1

j¼0

ajfj2Fp½x�:
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Note that the degree of this polynomial is smaller than degðfkÞ. For B ¼
ðB1; . . . ;BsÞ2Ys

F, s5 1, and k ¼ 1; 2; . . . ; we define Bðmod fkÞ by carrying out
the reduction modulo fk componentwise, i.e.,

Bðmod fkÞ :¼ ðB1ðmod fkÞ; . . . ;Bsðmod fkÞÞ2Fp½x�s:
We extend the definition in (3) by setting

RðsÞðB; fkÞ :¼ RðsÞðBðmod fkÞ; fkÞ: ð7Þ
For A ¼ ðA1;A2; . . .Þ2Y1F and s ¼ 1; 2; . . . we define the projection

AðsÞ :¼ ðA1; . . . ;AsÞ2Ys
F:

The quantity we will be interested in is RðsÞðAðsÞ; fkÞ. This quantity is thus obtained
by considering the first s components of A2Y1F , reducing each of these compo-
nents modulo fk, and then applying (3).

We conclude this preparatory section by introducing suitable probability mea-
sures. Let YF be the set of F-adic polynomials as above. It is clear that YF has a
probability measure �F such that the set of A2YF with specified first k coefficients
a0; a1; . . . ; ak�1 in (6), or equivalently with Aðmod fkÞ specified, has measure
p�degðfkÞ. Now let

UF :¼ fA2YF : gcdðAðmod fkÞ; fkÞ ¼ 1 for all k5 1g ð8Þ
and

U
ðkÞ
F :¼ fA2YF : gcdðAðmod fkÞ; fkÞ ¼ 1g for k ¼ 1; 2; . . . :

Since F is a divisibility chain, we have U
ð1Þ
F � U

ð2Þ
F � . . . . Therefore

UF ¼
\1
k¼1

U
ðkÞ
F

satisfies

�FðUFÞ ¼ lim
k!1

�FðUðkÞF Þ ¼ �F;

where �F is defined in (5). Now we assume that �F > 0. Then we restrict �F to UF

and renormalize to get a probability measure �F on UF . In other words,

�F ¼
1

�F

��F ; ð9Þ

where ��F denotes the restriction of �F to UF . Let �1F be the complete product
measure on U1F induced by �F.

3. A General Existence Theorem

For s5 1 and a polynomial f 2Fp½x� with degðf Þ5 1, let Gsðf Þ be the set of all
s-tuples g ¼ ðg1; . . . ; gsÞ2Fp½x�s with gcdðgi; f Þ ¼ 1 and degðgiÞ< degðf Þ for
14 i4 s. Note that cardðGsðf ÞÞ ¼ �pðf Þs. The following result is implied by
[13, Theorem 4.43].
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Lemma 2. For any dimension s5 1 and any f 2Fp½x� with degðf Þ5 1 we have

1

�pðf Þs
X

g 2Gsðf Þ
RðsÞðg; f Þ4 ðcp degðf ÞÞs

pdegðf Þ

with a constant cp > 0 depending only on p.

Based on this bound on the average value of RðsÞðg; f Þ over Gsðf Þ, we can now
establish our main result for divisibility chains F with �F > 0 (see (5) for the
definition of �F).

Theorem 3. Let F ¼ ðfkÞ1k¼1 be a divisibility chain in Fp½x� with �F > 0. Sup-
pose that "> 0 is given. Then there exists a �1F -measurable set E � U1F such that
for all A2U1F nE we have

RðsÞðAðsÞ; fkÞ4Cð�F; p; s; "Þ
ðdegðfkÞÞskðlogðk þ 1ÞÞ1þ"

pdegðfkÞ

for all k5 1 and s5 1, where the constant Cð�F; p; s; "Þ depends only on �F; p; s;
and ". Furthermore, we can make �1F ðEÞ arbitrarily close to zero by choosing
Cð�F; p; s; "Þ large enough.

Proof. First we fix k 5 1 and s5 1. Note that RðsÞðAðsÞ; fkÞ depends only on the
first s components of A2U1F and on their residues modulo fk. Therefore
RðsÞðAðsÞ; fkÞ is �1F -integrable as a function of A2U1F , and we have

ek;s :¼
ð

U1
F

RðsÞðAðsÞ; fkÞd�1F ðAÞ ¼
ð

Us
F

RðsÞðB; fkÞd�s
FðBÞ;

where �s
F is the product measure on Us

F induced by �F. In view of (9) and with the
obvious meaning of �s

F , we get

ek;s ¼
1

�s
F

ð
Us

F

RðsÞðB; fkÞ d�s
FðBÞ

4
1

�s
F

X
g2GsðfkÞ

RðsÞðg; fkÞp�s degðfkÞ

4
ðcp degðfkÞÞs

�s
F pdegðfkÞ

;

where we used Lemma 2 in the last step. For given "> 0 we put

�k :¼ cð"Þkðlogðk þ 1ÞÞ1þ" for k ¼ 1; 2; . . . ;

where cð"Þ is chosen such that

cð"Þ>
X1
k¼1

1

kðlogðk þ 1ÞÞ1þ"
:

For any k5 1 and s5 1 we define

Ek;s :¼
�

A2U1F : RðsÞðAðsÞ; fkÞ>
�k�sðcp degðfkÞÞs

�s
F pdegðfkÞ

�
:
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Then

ðcp degðfkÞÞs

�s
F pdegðfkÞ

5 ek;s 5
ð

Ek;s

RðsÞðAðsÞ; fkÞ d�1F ðAÞ

5
�k�sðcp degðfkÞÞs

�s
F pdegðfkÞ

�1F ðEk;sÞ;

and so

�1F ðEk;sÞ4
1

�k�s

:

With

E :¼
[1
k¼1

[1
s¼1

Ek;s

we have

�1F ðEÞ4
X1
k¼1

X1
s¼1

1

�k�s

¼
�X1

k¼1

1

�k

�2

< 1

by the choice of the �k. Note that we can make �1F ðEÞ arbitrarily close to zero by
choosing cð"Þ large enough. For any A2U1F nE we have

RðsÞðAðsÞ; fkÞ4
�k�sðcp degðfkÞÞs

�s
F pdegðfkÞ

¼ Cð�F; p; s; "Þ
ðdegðfkÞÞskðlogðk þ 1ÞÞ1þ"

pdegðfkÞ

for all k5 1 and s5 1, which is the desired bound. &

Remark 4. Consider the divisibility chain F ¼ ðf kÞ1k¼1 in Fp½x� consisting of the
powers of a polynomial f 2Fp½x� with degðf Þ5 1. Then it is clear that �F > 0. In
fact, from (4) and (5) we get

�F ¼
�pðf Þ
pdegðf Þ :

Thus, Theorem 3 applies in this special case, as do the following results in this
section.

With AðsÞ and fk there is associated the point set PðgðsÞk ; fkÞ, where g
ðsÞ
k :¼

AðsÞðmod fkÞ. This point set has Nk :¼ pdegðfkÞ points. If we use k4 degðfkÞ for all
k5 1, then in terms of Nk the bound in Theorem 3 yields

RðsÞðAðsÞ; fkÞ ¼ OðN�1
k ðlog NkÞsþ1ðlog logðNk þ 1ÞÞ1þ"Þ ð10Þ

for all A2U1F nE and all k5 1 and s5 1, where the implied constant depends
only on �F; p; s; and ". If k and s are fixed, then the best known existence theorem
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is the one implied by Lemma 2, namely that for some g2GsðfkÞ, with g depending
on k and s, we have

RðsÞðg; fkÞ ¼ OðN�1
k ðlog NkÞsÞ

with an implied constant depending only on p and s. Thus, the price of having an
A2U1F nE which works for all k and s simultaneously is an extra factor of the
order of magnitude ðlog NkÞðlog logðNk þ 1ÞÞ1þ":

Corollary 5. For A2U1F nE let g
ðsÞ
k ¼ AðsÞðmod fkÞ as above. Then the star

discrepancy D�Nk
of the point set PðgðsÞk ; fkÞ satisfies

D�Nk
¼ OðN�1

k ðlog NkÞsþ1ðlog log ðNk þ 1ÞÞ1þ"Þ

for all k5 1 and s5 1, where the implied constant depends only on �F; p; s; and ".

Proof. Since in our construction of the digital nets Pðg; f Þ all bijections in
[13, p. 63] are identity maps (compare with Section 2), we can apply the discre-
pancy bound in [12, Theorem 5] (see also [13, eq. (4.49)]). This yields

D�Nk
4

s

Nk

þ RðsÞðAðsÞ; fkÞ ð11Þ

for the star discrepancy D�Nk
of PðgðsÞk ; fkÞ. The rest follows from (10). &

We noted in Section 2 that Pðg; f Þ is a digital ðt;m; sÞ-net in base p. For
PðgðsÞk ; fkÞ the following bound on the quality parameter t can be derived.

Corollary 6. For A2U1F nE let g
ðsÞ
k ¼ AðsÞðmod fkÞ as above. Then for all

k5 1 and s5 1, the point set PðgðsÞk ; fkÞ is a digital ðtðsÞk ; degðfkÞ; sÞ-net in base
p with

t
ðsÞ
k 4 s logpdegðfkÞ þ logp½kðlogðk þ 1ÞÞ1þ"� þ C0ð�F; p; s; "Þ;

where logp denotes the logarithm to the base p and C0ð�F; p; s; "Þ depends only on
�F; p; s; and ".

Proof. Let D�Nk
be as in Corollary 5. Then by [13, eq. (4.47) and Theorem 4.42]

we obtain

D�Nk
5

p� 1

2p
p��ðg

ðsÞ
k
; fkÞ ¼ p� 1

2p
pt
ðsÞ
k N�1

k 5
1

4
pt
ðsÞ
k N�1

k

for all k5 1 and s5 1. On the other hand, Theorem 3 and (11) yield

D�Nk
4 sN�1

k þ Cð�F; p; s; "ÞðdegðfkÞÞskðlogðk þ 1ÞÞ1þ"N�1
k

for all k5 1 and s5 1. We get the desired result by combining these
inequalities. &

Remark 7. It may be an interesting research problem to find out whether there
are always A2U1F for which an improved bound on t

ðsÞ
k can be obtained. In the

special case where fkðxÞ ¼ xk for all k5 1, a slight improvement on Corollary 6
follows from the existence theorem of Larcher [4]. In the general case, one will
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probably need to argue directly, i.e., not via the star discrepancy. The methods
developed by Larcher and Niederreiter [6] may be helpful here.

Hickernell et al. [2] showed that s-dimensional lattice rules that are extensible
in the moduli yield infinite sequences in ½0; 1�s with desirable properties. In this
way, the restriction that lattice rules work only with finite point sets can be over-
come. The results of Hickernell and Niederreiter [3] demonstrate that, with a
suitable choice of parameters, these infinite sequences have small star discrepancy
and that the construction can also be extended in the dimensions s.

We now describe an analogous construction based on extensible polynomial
lattice rules. Let F ¼ ðfkÞ1k¼1 be an arbitrary divisibility chain in Fp½x�. Then any
polynomial n2Fp½x� can be written in the form

n ¼
Xk�1

j¼0

njfj ð12Þ

with f0 ¼ 1, nj2Fp½x�, and degðnjÞ< degðfjþ1Þ � degðfjÞ for 04 j4 k � 1. This
representation is unique except for the addition of terms with zero coefficients.
Thus, the following ‘‘radical-inverse function’’

	FðnÞ :¼
Xk�1

j¼0

nj

fjþ1

2FpðxÞ ð13Þ

is well defined. This generalizes a definition given by Tezuka [19]. Next, we
introduce an ‘‘infinite’’ analog of (1) by defining �p : Fpððx�1ÞÞ ! ½0; 1� via

�p

�X1
j¼w

bjx
�j

�
:¼

X1
j¼maxð1;wÞ

bjp
�j; ð14Þ

where all bj2Fp ¼ f0; 1; . . . ; p� 1g. Finally, given B ¼ ðB1; . . . ;BsÞ2Ys
F , s5 1,

we get the infinite sequence �ðB;FÞ consisting of the points

ð�pð	FðnÞB1Þ; . . . ; �pð	FðnÞBsÞÞ2 ½0; 1�s; ð15Þ
where n runs through all polynomials over Fp arranged according to nondecreasing
degrees. Here, if n is as in (12) with the least k5 1, then 	FðnÞBi with 14 i4 s is
interpreted to be the rational function 	FðnÞ � ðBiðmod fkÞÞ over Fp.

For a given k5 1 we now consider the first Nk ¼ pdegðfkÞ terms of the sequence
�ðB;FÞ. Then n in (15) runs through all polynomials over Fp of degree smaller than
degðfkÞ. Thus, n is of the form (12) with the nj running through all polynomials
over Fp with degðnjÞ< degðfjþ1Þ � degðfjÞ for 04 j4 k � 1. It follows then from
(13) that 	FðnÞ runs through all rational functions of the form a=fk with a2Fp½x�
and degðaÞ< degðfkÞ. A comparison with (2) now shows that by considering the
first Nk terms of the sequence �ðB;FÞ and truncating these points in ½0; 1�s to the
precision p�degðfkÞ, we get the point set Pðgk; fkÞ with gk ¼ Bðmod fkÞ. The trunca-
tion is required because of the difference in the definitions of the maps � ðmÞp and �p

in (1) and (14), respectively.
If �F > 0 and A2U1F nE, then we can give the following discrepancy bound

for the first Nk terms of the sequence �ðAðsÞ;FÞ. This bound follows from
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Corollary 5 and the fact noted above that the first Nk terms of �ðAðsÞ;FÞ are at a
distance OðN�1

k Þ from the corresponding points of PðgðsÞk ; fkÞ. Therefore, the star
discrepancies of PðgðsÞk ; fkÞ and of the first Nk terms of �ðAðsÞ;FÞ differ by OðN�1

k Þ.
Corollary 8. Let F ¼ ðfkÞ1k¼1 be a divisibility chain in Fp½x� with �F > 0 and let

"> 0. Then for A2U1F nE the star discrepancy D�Nk
of the first Nk ¼ pdegðfkÞ terms

of the sequence �ðAðsÞ;FÞ satisfies

D�Nk
¼ OðN�1

k ðlog NkÞsþ1ðlog logðNk þ 1ÞÞ1þ"Þ

for all k5 1 and s5 1, where the implied constant depends only on �F; p; s; and ".

We emphasize that the sequence �ðAðsÞ;FÞ in Corollary 8 can be extended in
all dimensions s5 1, in the sense that AðsÞ 2Us

F is obtained from a fixed suitable A
in the infinite product U1F by projecting to the first s components.

4. A One-Parameter Family of Polynomial Lattice Rules

We consider a one-parameter family of polynomial lattice rules which was
introduced in [12, Remark 4]. Let f be an irreducible polynomial over Fp. Then
the digital nets Pðg; f Þ considered here have g of the special form

g ¼ ð1; g; g2; . . . ; gs�1Þ2Fp½x�s

for some g2Fp½x�. We get in this way polynomial analogs of Korobov lattice rules
(compare with [7, Section 3]).

We show an analog of Theorem 3 for this family, but here we can extend only
in the dimensions s5 1. Put

Tðf Þ :¼ fg2Fp½x� : degðgÞ< degðf Þg;
and for h2Tðf Þ set

hðsÞ :¼ ð1; h; h2; . . . ; hs�1Þ2Fp½x�s:

Theorem 9. Let f be an irreducible polynomial over Fp. Then there exists a
polynomial h2Tðf Þ such that

RðsÞðhðsÞ; f Þ4CpðsÞ
ðdegðf ÞÞs

pdegðf Þ for all s5 1

with a constant CpðsÞ depending only on p and s. In fact, for arbitrarily small "> 0
we can get at least ð1� "Þpdegðf Þ such polynomials h by choosing CpðsÞ large
enough.

Proof. Put

Ksðf Þ :¼ fg ¼ ð1; g; g2; . . . ; gs�1Þ2Fp½x�s : g2Tðf Þg:
Then it was shown in [12, Remark 4] that for all s5 1 we have

Lsðf Þ :¼ 1

pdegðf Þ

X
g 2 Ksðf Þ

RðsÞðg; f Þ4 s� 1

pdegðf Þ ðCp degðf Þlog pÞs
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with a constant Cp > 0. Let

�s :¼ csðlogðsþ 1ÞÞ2 for s ¼ 1; 2; . . . ;

where the constant c is chosen such that

c>
X1
s¼1

1

sðlogðsþ 1ÞÞ2
:

For any s5 1 we define

Es :¼
�

h2Tðf Þ : RðsÞðhðsÞ; f Þ> �sðs� 1Þ
pdegðf Þ ðCp degðf Þlog pÞs

�
:

Then

ðs� 1ÞðCp degðf Þlog pÞs 5 pdegðf ÞLsðf Þ5
X
h 2 Es

RðsÞðhðsÞ; f Þ

5 cardðEsÞ
�sðs� 1Þ

pdegðf Þ ðCp degðf Þlog pÞs;

and so

cardðEsÞ4
pdegðf Þ

�s

:

With

E :¼
[1
s¼1

Es

we have

cardðEÞ4 pdegðf Þ
X1
s¼1

1

�s

< pdegðf Þ ¼ cardðTðf ÞÞ

by the choice of the �s. Thus, there exists an h2Tðf ÞnE, and for this h we have

RðsÞðhðsÞ; f Þ4 csðs� 1Þðlogðsþ 1ÞÞ2

pdegðf Þ ðCp degðf Þlog pÞs

for all s5 1. By choosing c sufficiently large, we can satisfy the second part of the
theorem. &

Remark 10. Some of the consequences of Theorem 3 can also be drawn here.
For instance, if h2Tðf Þ is as in Theorem 9, then with N ¼ pdegðf Þ the star dis-
crepancy D�N of the point set PðhðsÞ; f Þ satisfies

D�N ¼ OðN�1ðlog NÞsÞ for all s5 1;

with an implied constant depending only on p and s. Note that for sufficiently large
p the constant Cp in the proof of Theorem 9 satisfies Cp < 1, and so for such p the

The Existence of Good Extensible Polynomial Lattice Rules 305



coefficient of the main term N�1ðlog NÞs in the above bound for D�N can be made
absolute. In fact, we have

D�N 4
dsðlog NÞs

N
þ s

N
for all s5 1;

provided that p is so large that Cp < 1. The coefficient ds satisfies ds ! 0 as
s!1. But obviously this bound is nontrivial only if s<N.

Remark 11. A similar result holds for Korobov lattice rules with a prime
modulus p. Instead of the averaging result in [12, Remark 4] which was used in
the proof of Theorem 9, we now employ [13, Theorem 5.18] which says that for all
s5 1 we have

1

p

Xp�1

g¼0

RðsÞðð1; g; g2; . . . ; gs�1Þ; pÞ4 s� 1

p
ð2log pþ 1Þs;

where RðsÞð. . .Þ is defined by [13, Definition 5.4] for s5 2 and Rð1Þð. . .Þ ¼ 0. Thus,
the same method as in the proof of Theorem 9 yields the existence of a
g2f0; 1; . . . ; p� 1g such that

RðsÞðð1; g; g2; . . . ; gs�1Þ; pÞ4BðsÞp�1ðlog pÞs for all s5 1;

with a constant BðsÞ depending only on s. We cannot consider higher powers of
p since in this case the required averaging results are not available for arbitrary s.
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