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Abstract. In this paper, we study partial group actions on 2-complexes. Our results include a char-
acterization, in terms of generating sets, of when a partial group action on a connected 2-complex has a
connected globalization. Using this result, we give a short combinatorial proof that a group acting
without fixed points on a connected 2-complex, with finite quotient, is finitely generated. This result is
then generalized to characterize finitely generated groups as precisely those groups having a partial
action, without fixed points, on a finite tree, with a connected globalization. Finally, using Bass-Serre
theory, we determine when a partial group action on a graph has a globalization which is a tree.
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1. Introduction

This paper studies partial actions of groups on 2-complexes. Such partial
actions basically arise via the restriction of a full action of a group G on a complex
K to a subcomplex L of K. The notions and results of this paper apply equally well
to simplicial complexes; what is important is that one is dealing with a combina-
torial object rather than the geometric realization of such. Our main goal is to
determine exactly what it means for a connected complex L to be a G-covering for
an action of G on some (unspecified) connected complex K.

Partial group actions have appeared in the literature in various guises, but were
first explicitly formalized in Exel’s [3] and were then further developed by Lawson
[5], who went on to provide many examples of partial actions; see [5, 4]. In [5], it
is proved that every partial action of a group on a set has a globalization meaning,
roughly, that every partial action can be obtained by restricting a full action.
However, when a group acts partially on a set with extra structure the globalization
does not necessarily inherit this structure; thus in [5], the globalization of a partial
action of a group on a semilattice results in a partially ordered set which need not
be a semilattice; while in [5] similar issues arise in the study of globalizations of
partial actions on categories or topological spaces. Likewise, in this paper, we will
see that the globalization of a partial action on a connected 2-complex may result
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in a complex which is not connected. The study of when connected globalizations
(or globalizations with even more stringent conditions), arise leads to new insight
into several classical results in the theory of group actions.

Like the classical theory of a group acting on a 2-complex (or a topological
space), see for instance [8, 9, 11], we try to recover information about the group
from the partial action. The relation of this theory to the theory of groups acting on
a complex is analogous to the relation between graph immersions and coverings
[12, 10]. An immersion of graphs is a sort of partial covering: what one obtains
from restricting a covering map to a subgraph. Immersions retain many of the
properties of a covering, but lose such properties as path lifting. The tradeoff is
that one can use finite graphs to represent finitely generated subgroups of a free
group (only finite index subgroups can be represented by finite sheeted covers).
Now a group acting without fixed points on a finite complex must be a finite group.
But the Bass-Serre Theorem [11] states that a group can act without fixed points on
a tree if and only if the group is free; hence only the trivial group can act without
fixed points on a finite tree. The situation for partial actions is quite different; any
group can act partially without fixed points on a tree. However, after excluding
some trivial sorts of partial actions, finitely generated groups can be characterized
as exactly those groups acting partially without fixed points on a finite tree. Thus,
as in the case of graph immersions, if we are willing to generalize the classical
notions, we can ‘‘represent’’ finitely generated groups by finite complexes. Simi-
larly, Bass-Serre theory states that any amalgamation or HNN-extension acts on a
tree, but we can have such act partially on a segment.

Working with partial actions also gives a better understanding of some well-
known results about groups acting on a complex. For instance, see [8, 9], it is
well-known, that if a group G acts on a connected complex K and L is a sub-
complex such that GL¼K, then G is generated by the set of elements such that
gL \ L 6¼ ;. This will turn out to have a natural interpretation in terms of the
induced partial action of G on L and is, in fact, the exact condition needed for
the partial action to have a connected globalization. Also, it is well-known that a
group acting without fixed points on a connected topological space with compact
quotient is finitely generated; see for instance [2]. We give a completely combi-
natorial proof, in the case of complexes, which is more enlightening in that it
shows the result to be a consequence of the fact that there are only finitely many
partial automorphisms of a finite complex. The Bass-Serre theorem can be inter-
preted as characterizing partial actions of groups on connected graphs with glo-
balizations to actions on trees.

This paper is organized as follows: we begin with a combinatorial definition of
a 2-complex; then the definition of a partial action is given followed by the
definition of a globalization. The heart of the work begins with an investigation
of when a partial action on a connected complex has a connected globalization;
this will turn out to be equivalent to a natural hypothesis to place on a partial
action. We then investigate what happens when one turns to partial actions without
fixed points. We then dedicate a section to investigating the relationship between
Bass-Serre theory and partial actions, characterizing when a partial action can be
globalized to an action on a tree. Finally, we end with several questions and point
out some interesting lines of further investigation.
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We are indebted to M. Lawson for bringing to our attention the work of
Macbeath [9]. He and Kellendonk [5] also examine [9] in relation to partial
group actions, though from a topological point of view, with different goals than
ours.

2. 2-Complexes

In this paper, complexes will be viewed as combinatorial objects as per [8].
First we define a graph or 1-complex. A graph K consists of the following data: a
set V (K) of vertices; a set E (K) of edges; maps �, ! : EðKÞ ! VðKÞ selecting the
initial, respectively, terminal vertex of an edge; and an involution ð	Þ	1 : EðKÞ !
EðKÞ such that, for e2EðKÞ, e	1 6¼ e and �ðeÞ ¼ !ðe	1Þ. The edge e	 1 is called
the reverse of e. An orientation of a graph consists of choosing a subset EþðKÞ �
EðKÞ consisting of exactly one member of each pair fe; e	1g. From now on, we
will assume all graphs to be oriented.

A path p ¼ e1 � � � en (perhaps empty) is, as usual, a sequence of edges such that
!ðejÞ ¼ �ðejþ1Þ; we give � (p) and ! (p) the obvious interpretations. A path is
called reduced if it contains no subpath of the form ee	 1. A loop is a path p such
that � (p)¼! (p). If p and q are loops, one says that q is a cyclic conjugate of p if
there are paths u, v such that uv ¼ p, vu ¼ q; that is, q is obtained from p by
starting at a different point of the loop. The relation of being cyclic conjugates is
clearly an equivalence relation. We call the equivalence class of a loop a cycle.

A 2-complex K consists of a graph K1, called the 1-skeleton of K, a set C (K)
(possibly empty) of 2-cells, and an assignment to each 2-cell of a cycle in K1

called its boundary cycle; the boundary cycle of a 2-cell is permitted to be empty
and need not consist of reduced loops. The notation V (K) and E (K) will be used
for the vertices and edges of K. Vertices, edges, will also be called 0-cells, 1-cells,
respectively. We may sometimes use notation like c2K if the dimension of the n-
cell c is clear from the context. A 2-complex is called finite if it has only finitely
many n-cells for all n. One says that a 2-complex is connected if any two vertices
can be joined by a path. We consider a graph to be a 2-complex without 2-cells. A
connected graph whose only reduced loops are trivial is called a tree.

A morphism of 2-complexes ’ : K ! L consists of three functions, all denoted
’, sending n-cells to n-cells and respecting all the structure (that is, preserving
orientation, incidence, and boundary cycles). The collection of 2-complexes forms
a category with the obvious definitions of the identity morphism and composition.
An automorphism will have its usual meaning. A partial automorphism of a 2-
complex K is an isomorphism between sub-complexes of K. Note that we consider
the ‘‘identity map’’ of the empty complex as a partial automorphism called the
empty partial automorphism. We also make the observation that, since morphisms
are assumed to preserve orientation, no edge is sent to its reverse by a partial
automorphism.

3. Partial Actions

Fix a 2-complex K. The set of all partial automorphisms of K forms a monoid
I (K) under composition of relations; that is, if ’ and � are partial automorphisms,
then the various component functions of ’ and � are relations and can be
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composed as such, the result being a partial automorphism with domð’�Þ ¼
�	1ðdomð’ÞÞ and ranð’�Þ ¼ ’ðranð�ÞÞ. Note that the empty partial automorphism
is the zero of I (K). The monoid I (K) has the following additional property: for
each ’2 IðKÞ, there exists a unique element ’	1 of I (K) such that ’’	1’ ¼ ’ and
’	1’’	1 ¼ ’	1. A monoid with this property is called an inverse monoid; see [8]
for an introduction to this interesting theory (which also comes up in the study of
graph immersions [10]). There is a natural partial order on I (K) given by ’4 � if
’ is a restriction of �. This order is easily seen to be compatible with multi-
plication and taking inverses. More generally, if I is any inverse monoid, there
is a natural partial order, compatible with multiplication and taking inverses,
defined by m4 n if m ¼ en with e an idempotent; this order on I (K) is exactly
the restriction order.

We are now interested in motivating the notion of a partial action of a group on
a 2-complex. The idea is to imagine that one has a group G acting on a 2-complex
K by automorphisms and that L is a subcomplex. Then to each element of G, we
can associate a partial automorphism of L by restriction. The map f :G ! IðLÞ is
then easily verified to have the following properties:

(1) f ð1Þ ¼ 1;
(2) f ðg	1Þ ¼ f ðgÞ	1

;
(3) f ðg1Þf ðg2Þ4 f ðg1g2Þ.

This last property follows because, in general, it could happen that, for some
vertex v2L, one has g2v 2= L, but g1g2v2L. On the other hand, if g2v2L and
g1ðg2vÞ2L, then ðg1g2Þv ¼ g1ðg2vÞ.

In general, a map f :G ! I from a group to an inverse monoid satisfying the
above properties is called a dual prehomomorphism. Following Lawson [7], we
define a partial action of a group on a 2-complex L to be a dual prehomomorphism
f :G ! IðLÞ. One could explicitly write down axioms to describe partial actions
as is done in [5] for the case of a partial action of a group on a set. We shall see
shortly, as was shown to be the case by Kellendonk and Lawson [5] for partial
actions of groups on sets (and certain other structures), that every partial action of
a group on a 2-complex comes from restricting a total action and so this scenario
should give the proper intuition. We will sometimes use the adjective full when
talking about group actions in the usual sense.

Now suppose G is a group and H is a subgroup of G acting (fully) on a complex
K. Then one can extend this partial action to G by having each element of GnH act
via the empty partial automorphism (while letting H act as before). In a sense, this
partial action does not detect the elements of GnH leading us to the following
notion. Let f :G ! IðLÞ give a partial action of G on L and let

DðGÞ ¼ f	1ðIðLÞn0Þ ¼ fg2Gjdomðf ðgÞÞ 6¼ ;g;
then we say that the partial action is true or G truly acts partially on L if G is
generated by D(G). Observe that the partial action of G on L is obtained by
extension (in the above sense) of the induced partial action of hDðGÞi on L. In
this paper, we will be concerned primarily with true partial actions. To give the
reader more of a feeling for this notion, let G act on a 2-complex K and let L be a
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subcomplex; then for the induced partial action of G on L,

DðGÞ ¼ fg2GjgL \ L 6¼ ;g:

In the theory of groups acting on complexes, this set plays an important role. We
also observe that D (G) is a symmetric set meaning that g2DðGÞ if and only if
g	1 2DðGÞ. Thus if a partial action is true, D (G) is, in fact, a symmetric generat-
ing set for G. Partial actions and globalizations relative to symmetric generating
sets were studied in [5] and the interested reader is referred there.

We end this section by remarking that Exel [3] showed that, to each group G,
one can associate an inverse monoid GPr with the property that partial actions of G
correspond to full actions (in the sense of inverse semigroup theory) of GPr; this
inverse semigroup was identified as the prefix expansion of Birget-Rhodes in [5]
and was subsequently generalized in [7] to the theory of partial actions of inverse
semigroups.

4. Globalization

If G acts partially on a 2-complex L, then a globalization (of the partial action)
consists of a full action of G on a complex K and an embedding of L in K such that:

(1) GL ¼ K;
(2) The partial action of G on L is the restriction of the action of G on K.

We denote this globalization by (G, L, K). One, of course, has an analogous
definition for partial actions of a group on other structures. The notion of a glo-
balization was introduced by Kellendonk and Lawson [5].

A globalization (G, L, K) is called universal if, given any other globalization
(G, L, K0), there is a morphism ’ : K ! K 0 fixing L and preserving the action. In
[5], Kellendonk and Lawson prove that if G acts partially on a set X, then there is a
universal globalization. To construct this globalization, consider the equivalence
relation on G�X given by ðg; xÞ � ðh; yÞ if their exists f 2G such that gf	1 ¼ h
and fx ¼ y (this is like a tensor product of G and X). One can show that G acts on
the quotient by h½ðg; xÞ� ¼ ½ðhg; xÞ� where we use square brackets to denote equiva-
lence classes. We call the quotient XG1. It is shown in [5] that x 7! ½ð1; xÞ� embeds
X in XG1 and that, in fact, (G, X, XG1) is the universal globalization of X.

Now if G acts partially on a 2-complex L, then G acts partially on V (L), E (L),
and C (L). It is not hard to see that if e1, e2 2EðLÞ and ðg; e1Þ � ðh; e2Þ, then
ðg; �ðe1ÞÞ � ðh; �ðe1ÞÞ. Indeed, if gf	1 ¼ h and fe1 ¼ e2, then f�ðe1Þ ¼ �ðe2Þ.
A sequence of similar observations makes it clear that the collection fVðLÞG1;

EðLÞG1;CðLÞG1g has a natural 2-complex structure and the resulting complex, call
it LG1, gives rise to the universal globalization of the partial action of G on L; note
that in proving that ½ðg; eÞ�	1 ¼ ½ðg; e	1Þ� 6¼ ½ðg; eÞ�, one needs to use the fact that
partial automorphisms never take an edge to its reverse. We thus have the follow-
ing theorem:

Theorem 4.1. Every partial action of a group on a 2-complex has a universal
globalization.
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The next section is concerned with when partial actions on connected com-
plexes have connected globalizations. This turns out to be very related to some
classical results in the theory of groups acting on complexes and topological
spaces.

As an example, consider the extension to a group G of the trivial action of the
identity on a single vertex. The universal globalization of this action is easily seen
to be isomorphic to the left regular representation of G (where the set G is viewed
as a collection of isolated vertices). In particular, the globalization is not con-
nected, although the original partial action was on a connected graph.

5. Connected Globalizations

If G is a group acting partially on a connected 2-complex L, then a globaliza-
tion (G, L, K) is called connected if K is connected. Our first main result is the
following theorem, characterizing when connected globalizations exist.

Theorem 5.1. Let G act partially on a non-empty connected 2-complex L. Then
there is a connected globalization if and only if the partial action is true. In this
case, all globalizations are connected.

Proof. Suppose first that the partial action is true. Since the partial action has a
universal globalization by Theorem 4.1, we may prove sufficiency by proving that,
in fact, all globalizations are connected. So let (G, L, K) be a globalization; it
suffices to show that if v0; v2L and g2G, then there is a path in K from v0 to gv.
By assumption, g ¼ g1 � � � gn with gj 2DðGÞ all j. We induct on n (over all vertices
v). If n ¼ 0, the result follows since v0; v2L and L is connected. Assume now that
v0 2L and g1; . . . ; gn	1 2DðGÞ implies that there is a path in K from v0 to
g1 � � � gn	1v

0. Let w2L be such that gnw2L; such exists since gn 2DðGÞ. Choose
a path p in L from w to v. Now gw ¼ g1 � � � gn	1v

0 where v0 ¼ gnw2L so, by
induction, there is a path q from v0 to gw. Then the path q followed by the path
gp goes from v0 to gv as desired.

Suppose now that (G, L, K) is a connected globalization; we show that the
partial action of G on L is true. Let H ¼ hDðGÞi be the subgroup generated by
D (G) and fix a vertex v0 of L. Let g2G and consider a path e1 � � � en in K from v0

to gv0. Suppose ej goes from gj	1vj	1 to gjvj with g0 ¼ 1, gn ¼ g, vn ¼ v0 , and
gj 2G, vj 2L, j ¼ 1; . . . ; n. Let hj ¼ g	1

j	1gj, j ¼ 1; . . . ; n; note that h1 � � � hn ¼ gn.
We show that, for all j, hj 2H; the result will then follow. Let ej ¼ ke with k2G
and e2L. Then gj	1vj	1 ¼ k�ðeÞ and gjvj ¼ k!ðeÞ. Thus g	1

j	1k; k	1gj 2DðGÞ, so
hj ¼ g	1

j	1gj ¼ g	1
j	1kk	1gj 2H. &

6. Partial Actions Without Fixed Points

If G acts partially on a 2-complex L, then there exists a natural quotient complex
L=G defined by identifying two n-cells if they are in the same orbit under the
G-action; once again, the fact that no edge of L=G is its own reverse follows from
the fact that partial automorphisms cannot send an edge to its reverse. It is also easy
to see that if (G, L, K) is a globalization of the action, then L=G ¼ K=G. Finally, we
note that if L is connected, respectively, finite then so is the quotient L=G.
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A partial action of a group G on a 2-complex L is said to be without fixed points
if, for any n-cell c, gc ¼ c implies that g ¼ 1. Partial actions without fixed points
were first considered in [4]. If c is an n-cell, we let the stabilizer of c, denoted Gc,
be the set fg2Gjgc ¼ cg. A partial action is then without fixed points if and only
if the stabilizer of every n-cell is trivial. Note that if (G, L, K) is a globalization,
then the stabilizer of an n-cell c2L is the same under both the partial action on L
and the action of K. The following proposition is straightforward.

Proposition 6.1. Let G act partially on a 2-complex L and (G, L, K) be a
globalization. Suppose g2G and c2L in an n-cell; then Ggc ¼ gGcg	1. In parti-
cular, the partial action of G on L is without fixed points if and only if the action of
G on K is without fixed points.

If K is a graph and v2K is a vertex, the star of v is the set �	1ðvÞ. A morphism
of graphs is called star injective or, alternatively, an immersion [12, 10] if it is
injective when restricted to each star.

Proposition 6.2. Let G act partially without fixed points on a 2-complex L.
Then the natural quotient morphism ’ : L1 ! ðL=GÞ	1

is an immersion.

Proof. Suppose e1, e2 are edges of L with common initial vertex v and that
ge2 ¼ e1 with g2G. Then

gv ¼ g�ðe2Þ ¼ �ðge2Þ ¼ �ðe1Þ ¼ v

so g ¼ 1. &

The above argument shows, more generally, that if v is a vertex and Gv ¼ 1,
then the projection from L to L=G is injective when restricted to the star of v.

Our next goal is to give a proof, using partial actions, that if a group G acts without
fixed points on a connected 2-complex with compact quotient, then G is finitely
generated. Our proof will be entirely combinatorial: we will use no compactness
arguments. Since a 2-complex has compact geometric realization if and only if it is
finite, we are really talking about the quotient being a finite 2-complex. We remind
the reader that this result and its proof work equally well for simplicial complexes.

The following result, although in some sense a trivial observation, is at the
heart of what follows and so we designate it a theorem.

Theorem 6.3. Suppose G has a true partial action without fixed points on a
non-empty finite 2-complex L; then G is finitely generated.

Proof. First we observe that since the action is without fixed points, if g1,
g2 2DðGÞ act the same on some common n-cell of their respective domains, then
these elements are the same. Suppose that the partial action is given by a dual
prehomomorphism f :G ! IðLÞ. Then the above observation shows that f jDðGÞ is
injective. But L finite implies that I (L) is finite and so we can conclude that D (G)
is finite. Thus G ¼ hDðGÞi is finitely generated. &

We proceed with two lemmas.

Lemma 6.4. Suppose that K is a 2-complex and L is a finite subcomplex; then L
is contained in a finite connected subcomplex L0 of K.
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Proof. For each connected component Li of L, choose a vertex vi as a base
point. Then since K is connected, each of these base points can be connected to v1

by a path. Choose one such path for each base point. The union of L with the edges
and vertices used in these (finitely many) paths is then a finite subcomplex L0 as
desired. &

Lemma 6.5. Suppose G has a true partial action on a non-empty 2-complex L
and L0 is a connected subcomplex with GL0 ¼ L. Then partial action of G on L0

obtained by restriction is also true.

Proof. It is straightforward to see that the restriction of the partial action to L0 is
a partial action. Now Theorem 5.1 tells us that there is a connected globalization
(G, L, K). But then (G, L0, K) is easily seen to be a connected globalization and so
another application of Theorem 5.1 completes the proof. &

We now prove a more general version of the desired result.

Theorem 6.6. Suppose G has a true partial action without fixed points on a
non-empty connected 2-complex L with the quotient L=G finite; then G is finitely
generated.

Proof. Since L=G is finite, there exists a finite subcomplex L0 of L containing at
least one representative of each n-cell of L=G (one can do this by choosing a lift of
each n-cell and then including, in the case of a 1 or 2-cell, its boundary). By
Lemma 6.4, there exists a finite connected subcomplex L00 containing L0. Clearly
GL00 ¼ L whence, by Lemma 6.5, the partial action of G on L00 is true. An applica-
tion of Theorem 6.3 then shows that G is finitely generated. &

Since a full action of a group on a connected 2-complex is a true partial action,
we obtain the desired result as a corollary.

Corollary 6.7. Let G be a group acting without fixed points on a non-empty
connected 2-complex with finite quotient; then G is finitely generated.

The above results show that there are certain similarities and relationships
between partial actions and full actions. We now wish to highlight some of the
differences. First of all, we recall that a group acting (fully) without fixed points on
a finite complex must be a finite group. The situation can be quite different for
partial actions. Recall the theorem of Bass-Serre [11] that a group G acts without
fixed points on a tree if and only if G is free. In particular, G can only so act on a
finite tree if G is trivial. This should be contrasted with the following result.

Theorem 6.8. Every group G has a true partial action without fixed points on a
tree. The tree can be taken to be finite if and only if G is finitely generated.

Proof. The trivial group acts without fixed points on a single vertex tree.
Suppose G is non-trivial and let X � Gnf1g be a collection of generators for G.
Then the star of the identity in the Cayley graph of G with respect X is a tree T and
the restriction of the natural left action on its Cayley graph to T is a true partial
action without fixed points. In particular, if G is finitely generated, this tree can be
take to be finite. Conversely, if G has a true partial action without fixed points on a
finite tree, then G is finitely generated by Theorem 6.3. &
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Of course, it is necessary to include true in the hypothesis of the above theorem
since any group acts partially without fixed points on a one vertex tree by letting
the identity fix the vertex and all other elements have empty domain.

7. Bass-Serre Theory and Tree Globalizations

In this section, we use Bass-Serre theory to characterize when a group acting
partially on a connected graph has a globalization to an action on a tree (called a
tree globalization). Recall [11] that a graph of groups (G, Y) consists of a con-
nected non-empty (oriented) graph Y, a group Gv for each vertex v2VðYÞ, a group
Ge for each edge e2EðYÞ (where we require Ge ¼ Ge	1 ), and, for each edge e, a
monomorphism Ge ! G!ðeÞ denoted by a 7! ae. Let T be a maximal tree of Y. Then
the fundamental group of (G, Y) at T, written �1ðG; Y ; TÞ, is the quotient of the free
product of the Gv and a free group on EþðYÞ induced by the relations: eaee	1 ¼
ae	1

and e2T ¼) e ¼ 1. It is shown in [11] that this group is independent of the
choice of T.

If G is a group acting partially on a non-empty connected graph X, then, follow-
ing Serre [11], we define a graph of groups as follows. Let Y ¼ X=G and choose a
maximal tree T of Y. Then [11, 3.1 Proposition 14], adapted to partial actions, shows
that there is a lift j :T ! X. We proceed, following [11, Section 5.4], to extend j to a
section j :EðYÞ ! EðXÞ. It suffices to define j on positively oriented edges. Since
j (T) contains a vertex from every orbit, given an edge e2EþðYÞ, we can choose j (e)
with �ðjðeÞÞ2 jðTÞ. Also, since !ðjðeÞÞ and jð!ðeÞÞ project to ! (e), we can find 	e

with !ðjðeÞÞ ¼ 	ejð!ðeÞÞ. We let 	e	1 ¼ 		1
e . Define, for e2E,


ðeÞ ¼ 0 e2EþðYÞ
1 e 2=EþðYÞ:

�

Then, for each edge e2EðYÞ, we have:

�ðjðeÞÞ ¼ 		
ðeÞ
e jð�ðeÞÞ

!ðjðeÞÞ ¼ 	1	
ðeÞ
e jð!ðeÞÞ:

We continue to use Gv, Ge, to denote the stabilizer of a vertex v, edge e,
respectively, of X under the partial action of G. Define a graph of groups (G, Y)
by letting, for v2VðYÞ, e2EðYÞ, Gv ¼ GjðvÞ, Ge ¼ GjðeÞ. The monomorphism
Ge ! G!ðeÞ is given by

a 7! ae ¼ 	
ðeÞ	1
e a	1	
ðeÞ

e :

One can verify easily that there is a homomorphism ’ : �1ðG; Y ; TÞ ! G defined
by the inclusion of Gv into G and e 7! 	e.

Theorem 7.1. There is a globalization (G, X, X0) such that X0 is a tree if and
only if ’ : �1ðG; Y ; TÞ ! G is an isomorphism (where we keep the above nota-
tion).

Proof. Suppose first that there is such a globalization; then, since X � X0 and
X0=G ¼ X=G ¼ Y , we see that T, j, and the 	e form an appropriate version of the
above construction for the action of G on X0 and so the result follows from [11, 5.4
Theorem 13].
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Suppose now that ’ is an isomorphism. We first claim that the partial action is
true. Indeed, it follows, since ’ is surjective that G is generated by the Gv and 	e

(where e is, say, a positively oriented edge). But for g2Gv; gv ¼ v and hence
g2DðGÞ. On the other hand, if e is a positively oriented edge, then 	ejð!ðeÞÞ ¼
!ðjðeÞÞ and so 	e 2DðGÞ. It follows, by Theorem 5.1, that X has a connected
globalization (G, X, X0). We show that X0 is a tree. Again, since X � X0 and X0=G ¼
X=G ¼ Y , we see that T, j, and the 	e form an appropriate version of the above
construction for the action of G on X0. Another application of [11, 5.4 Theorem 13]
then shows that X0 is a tree. &

We remark here that although we in some sense have cheated by using the
results of Bass-Serre theory to prove the above theorem, one could give a proof
from first principles. In fact, almost all of the proofs in [11] implicitly consider
globalizations of partial actions and this is in fact the approach taken by Dicks and
Dunwoody in their book [1].

More explicitly Dicks and Dunwoody speak of a presentation of a G-set as
consisting of a set X and a partial product G�X ! X. There is of course a free G
set on X, namely G�X, and one then takes the minimal G-set quotient on G�X
such that ðg; xÞ ¼ ð1; yÞ if gx ¼ y according to the partial product. One can easily
show that X need not inject in general into the G-set so presented; in fact, a partial
action is precisely a presentation in which X injects into the G-set given by this
presentation (which in this case turns out to be the globalization).

Starting with a graph of groups, Dicks and Dunwoody construct a true partial
action of the fundamental group of this graphs on a tree (using the language of
presentations). They then construct an action of the group on a tree via globaliza-
tion (again using the language of presentations).

With the tool of partial actions in hand, we quickly obtain the following
refinement of the usual Bass-Serre Theorem.

Theorem 7.2. Let (G, Y) be a graph of groups and T a maximal tree in Y. Then
�1ðG; Y ;TÞ acts partially on a tree T 0 with Y ¼ T 0=G and with a tree globalization.
Furthermore, the tree T 0 can be chosen so that the projection to Y is bijective on
edges (and hence an immersion). Conversely, any group acting partially on a tree
with tree globalization is isomorphic to the fundamental group of an appropriate
group of graphs.

Proof. The last statement has already been proven. As to the rest, it is shown in
[11] that �1ðG; Y ; TÞ acts on a tree T 00 with quotient Y. By performing the above
construction with X ¼ T 00 and choosing T 0 to be the smallest subgraph of T 00

containing j (Y), one obtains a tree so that the projection to T 0=G ¼ Y is bijective
on edges (and (G, T, T 00) is a tree globalization). &

Corollary 7.3. Let (G, Y) be a graph of groups with Y finite and let T be a
maximal tree. Then �1ðG; Y ; TÞ acts partially on a finite tree T 0 with T 0=G ¼ Y and
with a tree globalization.

So, for example, an amalgamated free product or HNN-extension acts partially
on a segment with tree globalization.
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8. Questions

This paper is only an introduction to the topic. As such, we end the paper with
several questions and problems. First, it would be useful to find necessary and
sufficient conditions for a true partial action of a group on a connected 2-complex
to have a simply connected globalization. A theorem of Macbeath [9] could then
be used to read off a presentation of the group.

Another interesting question is when a true partial action without fixed points
on a 2-complex has globalization which is planar. This could have applications to
the study of Fuchsian groups [8]. Similarly, it would be interesting to characterize
when a partial action of a group on a graph has a globalization which is connected
and hyperbolic (in the graph metric). An analogous question can be asked for 2-
complexes. Such an investigation would be useful in the study of word hyperbolic
groups.

A different, but, nonetheless, interesting line of investigation would be to see
what information about a group can be obtained from the inverse monoid GPr

mentioned in Section 3. Partial actions of G on a 2-complex correspond to actions
of GPr on a 2-complex, fixed point free translates to only idempotents can fix an n-
cell. Thus GPr can detect if G is finitely generated. What other information about
the group can be gleaned from this monoid? Exel [3] shows that this inverse
monoid has several interesting C�-algebra invariants which give information about
the group.

As a final observation, for which I am indebted to S. Margolis, we mention that
partial group actions can be used to approximate group actions. For example, the
natural left action of a group on its Cayley graph (or complex) can be approxi-
mated by or, more technically, is a direct limit of the partial actions obtained by
restricting the action to larger and larger neighborhoods of the identity. This type
of approximation, which can be viewed as a Todd-Coxeter type process, merits
further investigation. Indeed, a computer, with its finite memory space, can only
store such partial actions and so partial actions can be viewed as the study of
actions through a computer’s eye.
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