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1. Introduction

Let K be a convex set in the plane. Associated with K are a number of well-
known functionals: the area A = A(K), the perimeter p = p(K), the diameter
D = D(K), the minimal width w = w(K), the inradius r = r(K) and the circum-
radius R = R(K). For many years mathematicians have been interested in inequal-
ities involving these functionals; and moreover, in many cases the question arises
for which convex sets the equality sign is attained, that is, to determine the
extremal sets.

Each new inequality obtained is interesting on its own, but it is also possible to
ask if a collection of inequalities involving several geometric magnitudes is large
enough to determine the existence of the figure. Such a collection is called a
complete system of inequalities: a system of inequalities relating all the geometric
characteristics such that for any set of numbers satisfying those conditions, a
planar figure with these values of the characteristics exists in the given class.

In 1961, Santal6 [6] studied complete systems of inequalities concerning tri-
ples of the six classic geometric measures: he asked for a characterization of the
set of all points in E> of the form (a,(K), ay(K), a3(K)), where a;, i = 1,2,3
represent three of the six classic geometric quantities, as K ranges over the family
of all compact convex sets in E°. Following an approach by Blaschke [1], Santal6
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proposed mapping the family of compact planar convex sets into a compact region
of the unit square [0, 1] x [0, 1] C E?, which is called the Santal6 Diagram (see
Section 5). The extremal sets for the considered inequalities were mapped into the
boundary points of this diagram.

The solution is trivial for subsets consisting of a single quantity. Suitable
known inequalities form a complete system of inequalities for each pair of these
quantities, as observed by Santald [6], who also provided the solutions for (A4, p,
w), (A, p, ), (A, p, R), (A, D, w), (p, D, w), and (D, r, R). He left the remaining
cases as open problems. Recently, in [3], [4] and [5], the cases (D, w, R), (w, R, ),
(D, w, r), (A, D, R) and (p, D, R) have been settled by the second author and Segura
Gomis.

In this paper, we derive four new inequalities relating the area or the perimeter
with the circumradius and the inradius of a planar convex set (Theorems 1 and 2).
More precisely, we determine the sets with maximum and minimum area or
perimeter for fixed circumradius and inradius. Then, we will use these results to
obtain the complete systems of inequalities for the cases (A, R, r) and (p, R, r),
determining their corresponding Santalé Diagrams.

2. Results

For the sake of brevity, let us denote by B?(p) the disc centered in the origin of
coordinates O and with radius p.

For the area, the circumradius and the inradius of a planar convex set K, the
well-known relationships between pairs of these geometric measures are (see, for
instance, [2])

A < 7R*> Equality for the circle (1)
A > 7r*  Equality for the circle (2)
r <R Equality for the circle (3)

Now, for the perimeter, the circumradius and the inradius of K, the well-known
relationships between pairs of these geometric measures are (3) and

p <2wR Equality for the circle 4)
p = 4R Equality for the line segment (5)
p = 2nr  Equality for the circle (6)

(see also [2]).
But in both cases (A, R, r) and (p, R, r), no inequality relating the three
measures is known. We prove the following theorems.

Theorem 1. Let K be a compact convex set in the euclidean plane E*. Then,

A< 2<r\/R2 — 2+ R arcsinl—};> (7)
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Figure 1. The extremal sets for Theorems 1 and 2

and
p<4(\/R2—r2+RarcsinI—:>. (8)

In both inequalities, equality holds if and only if K is the circular symmetric slice,
i.e., the part of the disc B(R) bounded by two parallel lines equidistant from the
center O, at distance apart 2r. We denote it by K*.

Theorem 2. Let K be a compact convex set in the euclidean plane E*. Then,
A=2r <\/R2 —r24 rarcsin%) 9)

and

p>4<vR2—r2+rarcsin£). (10)

In both inequalities, equality holds if and only if K is the symmetric cap-body
generated by two points, i.e., the convex hull of the disc B*(r) and two centrally
symmetric points at distance apart 2R. We denote it by K5.

In the last section of this paper, we will use these inequalities to obtain the
solutions for the Santalé problems (A, R, r) and (p, R, r), i.e., we will prove the
following results.

Theorem 3. Inequalities (1), (3), (7) and (9) form a complete system of in-
equalities for the case (A, R, 7).

Theorem 4. Inequalities (3), (4), (8) and (10) form a complete system of in-
equalities for the case (p, R, r).

3. Maximizing the Area and the Perimeter

In this section we are going to prove Theorem 1. We will do it in different steps
by stating the following four preliminary lemmas.

Lemma 1. For a triangle T with inradius r and for a P€ T, let x,, x, and x5 be
the distances from P to each side of T. Then there exist i, j€{1,2,3} such that
Xi + Xj < 2r.
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Figure 2

Proof. The three radii of the incircle which are perpendicular to the sides of the
triangle, say ry, r, and rs3, divide T in three regions with empty intersection (see
Figure 2).

If P lies within the region determined by r; and r;, then it is easy to see that
X +x; < 2r. O]

Lemma 2. Let [, and I, be two secant lines to the disc B*(R) such that the
intersection point I} N I, lies outside the circle and the origin belongs to the strip
determined by these two lines. Let K be the convex region bounded by 1, |, and
B%(R) (see Figure 3). Now, let us denote by x and y the distances from the origin O
to Iy and 1y, respectively. If x +y < 2r then

A(K) < 2<r\/R2 —r2 4+ R? arcsinlg)
and

p(K) < 4<\/R2 —r? —I—Rarcsin%),

with equality, in both inequalities, if and only if x =y =r.

Proof. If we compute the area and the perimeter of K in terms of x and y, we
obtain

AK) =f(x,y) =xVR2 —x2 + y\/R? =y + R? (arcsin;C—e + arcsin%)

and

p(K) = g(x,y) =2|VR?> —x2 + \/R? — y? +R<arcsin%+ arcsin%)].

I

Figure 3
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Then, it is easy to check that the first derivatives of f and g in each variable equal
the positive functions

R —x R—y
= 2VR2 — x2 =2VR2 -2, g =24/, =2 [
/i x5 fy ¥, g Rex & Rty

So, f(x,y) and g(x,y) are increasing functions in each variable.

Now, let us suppose that x + y < 2r. Then, there exists a positive real number
x' such that (x+x) +y=2r, and both f(x,y)<f(x+x',y) and g(x,y)<
g(x+x,y). So it suffices to prove the lemma in the case when x 4+ y = 2r. For
we observe that in this case, the area and the perimeter of K are

27—
f(x) =xVR? —x2+ (2r — x)\/R> — (2r — x)2 + R? <arcsin% + arcsin rR x)

and

20—
glx) = 2[\/R2 — 24+ \/R2 — (2r —x)? +R<arcsin%+arcsin rR x)],

respectively, where 0 < x < 2r. An elementary computation assures us that the
first derivatives of both f and g,

7 :2(@— M) g'(x) :2<\/§:+§_ m)

vanish if and only if x = r; and also that f”(r) <0 and g"(r) <0. So, the absolute
maxima of f(x) and g(x) are attained only when x = r; hence

A(K) <f(r) = 2<WR2 —r? +R2arcsin;>

and
p(K) < g(r) = 4(\/R2 —r? —|—Rarcsin£>.
0

Lemma 3. For two positive real numbers r < R, let B, be a disc with radius
r contained in B*(R) and let s be the line that joins the centers of both discs
(see Figure 4). We denote by [ the tangent line to B, which is perpendicular to s
and whose distance from the origin is greater or equal than r. Finally, let [ and [,
be two tangent lines to the disc B, , symmetric with respect to s and such that the
intersection point l; N I (and so I, N 1) lies outside B*(R). If K is the convex region
bounded by 1y, l,, | and B*(R), then

AK) < 2<r\/R2 ~ P2+ R arcsin%)

and

p(K) < 4<\/R2 —r? —I—Rarcsin%).
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Figure 4

In both inequalities, equality holds if and only if B*>(R) and B, are concentric, and
Iy =1, is parallel to l; so, when K = K*.

Proof. Following the notation of Figure 4, it is easy to check that the following
relations hold:

h=r—xcosa, b:\/RZ—(r—xcosa)z,

. Fr—Xxcosa r —XCOS«
7y = arcsin 7R —q, cos 3 = 4R ,

d=b+htana = \/R2 — (r —xcos @)’ + (r — xcos a)tan av. (11)

Since x is the distance between the centers of both discs B*(R) and B, if we
compute the area and the perimeter of K we obtain

r+x

A(K) = (r +x)\/R? — (r +x)* + R? arcsin + (r — xcosa)d + R%7,

p(K) = 2( R? — (r+x)2+Rarcsinr;x> +2d + 2R~.

Using the relations of (11), A(K) and p(K) can be expressed as functions on the
distance x and the angle «, say A(K) = f(x, ) and p(K) = g(x, o). We are going
to see that f(x,a) < f(0,a) and g(x,®) < g(0, ), which means that the maxi-
mum for both the area and the perimeter is attained when B, = Bz(r), 1.e., when
B?(R) and B, are concentric.

_ The case of the area is easy. The first derivative with respect to x of the function
f(x, o) takes the value

filx,a) = 2( R — (r+x)* —dcosa).
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It is clear that \/R> — (r —|—x)2 < dcosa (see Figure 4), because the equality
would be attained only when both discs are concentric and the lines /; and [ are
parallel. Hence, f,(x, @) < 0, and so, f is a decreasing function in x for each fixed
value of a. Since x = 0, f(x,a) <f(0,a), as desired.
In the case of the perimeter, if we develop g(x, ) by replacing d and + by their
corresponding values in (11), we obtain
)

+ 2(\/R2 — (r—xcosa)? —I—Rarcsinw)

g(x,a) = 2( R? — (r—|—x)2—|—Ralrcsinr+

+ 2(r — xcos a)tan @ — 2Ra.
Thus,
g(x,a) = g(r +x,r —xcosa) + 2(r — xcos ) tan @ — 2Rav,

where g is the function defined in the proof of Lemma 2. From this proof it can be
deduced that g(u,v) < g(*4%,%:"). Therefore,

r 1—cosa
g(r+x,r—xcosa) < 4(\/R2 — (r—|—x"c%)2 +RarcsinTz).

Let us denote by h(x, «) the function

r_'_xlfcosa
h(x, o) = 4<\/R2 - (r—i—x#)z +RarcsinTz>

+2(r — xcos a)tan o — 2Ra.

Then, g(x, ) < h(x,«). Now, if we compute the first derivative of A(x, ) with
respect to x we obtain

R — (’, +x1—czosa)

%hx(x,a) =(1 —cosa)\/

1—
R+ (r +x=99)
Since the function /ﬁ is decreasing, and

— sin .

r—xcosa _ r+xl=gsa
<
R R

1 1 _ r—xlceosa
“he(x, o) < (1 —cosa)y | ——— 0 — sina.
2 1 + )C;Og(l

Finally, using (11), we obtain

1 1 -
Ehx(x, @) < (1 —cosa)y ,H%g_ sina = (1 — cos a)tan g— sin cv.

holds, we have
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Because of the construction of K, o + 3 < 7; hence, tan g <tan (5 —%) = ono,
and therefore h,(x, a)) < 0. Then, h(x, o) is a decreasing function in the variable x
and h(x,a) < h(0, ).

But 2(0, «) = g(0, «); so putting together the relations obtained for g and &, we
finally have g(x, a) < h(x, ) < h(0, ) = g(0, ), as desired.

Now, we know that both the area and the perimeter of K are maximum when
the discs B*(R) and B, are concentric. This fact implies that the distances from the
origin O to the lines [, [; and /, are the same and equal to r. Again, if we denote by
K’ the convex region bounded by I, /; and B?*(R), we obtain K C K’. Therefore
A(K) <A(K'), p(K) < p(K’), and Lemma 2 applied to this new set K’ leads to
the required result. The equality would be attained if K = K’ and, since r is the
inradius of the extremal set, if / and [; are parallel; hence, equality holds only if
K=K’ ]

The following lemma states an analogous result to the preceding one, but when
the symmetry condition on /; and I, is replaced by a more general hypothesis.

Lemma 4. For two positive real numbers r < R, let B, be a disc with radius r
contained in B*(R) and let s be the line that joins the centers of both discs. We
denote by | the tangent line to B, which is perpendicular to s and whose distance
from the origin is greater or equal than r. Finally, let I and I, be two tangent lines
to the disc B,, such that s separates the contact points of I, and I, with B,, and such
that the intersection points I} N[ and 1, N1 lie outside B*(R). Let us suppose also
that the angle ang(ly,1,) = w/2. If K is the convex region bounded by 1y, I, | and
B*(R), then

A(K) < Z(r\/R2 — r2 4+ R*arcsin %)

and

p(K) < 4(\/R2 — r? + Rarcsin ;)

In both inequalities, equality holds if and only if B*(R) and B, are concentric, and
Iy =1, is parallel to I; so, when K = K*.

Proof. Let K| and K, be the convex regions bounded by [}, /, s and B*(R), and
L, I, s and B?(R), respectively. Then, since s separates the contact points of /; and
I, with B, K; UK, is a disjoint union with K C K; U Kj.

We distinguish two cases. If the intersection point /; N s lies within B*(R), we
take the symmetral of K, about s, K fk , and the union K; U K 1* (see Figure 5). Then,
applying Lemma 3 to this set, we have

A(Ky) = A(Ky UK])/2 < rVR? — 2 + R* arcsin(r/R).

Let us denote by p'(K)) the relative perimeter of the set Ky, i.e., the difference
between the perimeter of K; and the length of the line segment s N K;. Then,
Lemma 3 also assures us that

P'(Ki) =p(Ki UK])/2 < 2(rvVR? — 12 + R arcsin(r/R)).
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Now, we suppose that [, intersects s outside B*(R). Let K| be the region
bounded by [, s and B*(R), which contains K,. The distance from the origin to
the line /; equals r — x cos « (see Figure 5). Since, by hypothesis, ang(l;,5,) = 7/2
and also s separates the contact points /; N B, and I N B,, it is clear that o < 7/2.
Hence, r — xcos a < r, and then

A(K1) SA(KY) = (r—xcosa)\/R2 — (r — xcos )’ + R*arcsin roreosa

< rVR? — 2 + R? arcsin I%

For the perimeter, we note that the distance from the point labelled A
in Figure 5 to s is always less or equal than the length of the arc AB, due to B
lies on the line s. So,

P(K) <p'(K}) = 2(\/R2 — (r—xcos oz)2 + R arcsin $>

< 2(@ + Rarcsin ;)
Using the same argument for the set K,, we can also see that
A(Ky) < rVR? — 12 + R arcsin I%’ P'(K>y) < 2(\/1327;’2+ R arcsin 1’;)
Therefore, we can conclude that
A(K) < A(K1 UKy) = A(K)) + A(K>) < 2<r\/ﬁ + R arcsin 1%)
and

p(K) < p(K1 UKy) =p'(Ky) +p'(K2) < 4(\/R2 — 12 4+ Rarcsin I%)
O
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Now we can conclude the proof of Theorem 1.

Let B?(R) and B, be the circumcircle and an incircle of K, respectively. It is
known (see [2]) that the incircle B, of K meets the boundary of K either in two
diametrically opposite points, or in three points that form the vertices of an acute-
angled triangle. In the first case, there will exist two parallel support lines to the
set K, [; and [,, through those two points, at distance apart 2r. Let K’ denote
the intersection of the strip determined by these lines with the disc B?(R). Then
K C K’ and so,

AK) AKK') and p(K) < p(K').

Since the sum of the distances from the origin O to both /; and /, is equal to 2r,
Lemma 2 leads to the result, with the equality only if both distances are equal to r
and hence, only if K = K*.

So, we can suppose that the incircle B, meets the boundary of K in three points.
Thus, there are three support lines to both B, and K, [}, I, and //, which form a
triangle 7 that contains K. Moreover, K C T N B?(R). Let us denote by x;, x, and
x' the distances from the origin O to each of those lines [, [, and /', respectively.
We have to distinguish two opposite cases:

Case 1. We suppose that there exist two sides of the triangle, say /; and [, such
that both the sum of the distances x; + x, < 2r and the intersection point [} N/,
lies outside the disc B*(R). Then, if K’ is the region bounded by [;, [, and B*(R),
K C K’, and applying Lemma 2 we obtain the result.

Case 2. Now we suppose that there are not two sides of the triangle such that
both facts occur simultaneously, i.e., the intersection point of both sides lies out-
side the circumcircle and also the sum of the distances from O to those lines is not
greater than 2r.

Since Lemma 1 assures us that there exist two sides, say /; and [, with
x1 + X, < 2r, the above assumption guarantees that /; NI, € B*(R). Therefore,
the other two vertices [y NI',l, NI'¢ int(B*(R)) because R is the circumradius
of K. But then, using again the assumption of this case, we have

x1+x>2r and x;+x'>2r. (12)

Let r; and r, denote the radii of B, which are perpendicular to /; and /5,
respectively (see Figure 6), and let 2 denote the kite determined by ry, 1, [
and /,. We also represent by [ the line tangent to B, which is perpendicular to
the one joining O and the center of B,; so, [ is the tangent line to B, whose distance
from the origin is the greatest possible.

Thus, the following properties hold:

(i) The conditions of (12) and Lemma 1 assure that O lies within the interior
of the kite 2.

(ii) Besides, since I; NI, €int B? (R), the triangle T contains a diameter of the
circumcircle, and also the angle ang(/y, ;) > m/2; otherwise, the circumradius of
K would be strictly less than R.
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Figure 6

Then, properties (i) and (ii) imply that the points /; N/ and I, N[ lie outside of
B%(R).

Let K be the region determined by the lines [y, l,, [ and the disc B*(R).
Lemma 4 assures us that

A(K) < 2<r\/R2 — 2 + R arcsin %), p(K) < 4(\/1‘32 — r? + Rarcsin %)

Now K C TNB*(R) yields that A(K) <A(TNB*(R)) and p(K) < p(TN
B%(R)). Moreover, as the distance from O to [ is greater or equal than the distance
from this point to 7, it is clear that A(T N B*(R)) < A(K) and p(T N B*(R)) <
p(K). Therefore we have verified that

A(K) <A(TNB*(R)) < A(K) < 2<rﬁe_2——r2' + R*arcsin 1%)
and
p(K) < p(TNB*R)) < p(K) < 4(\/R2 — r2 4+ R arcsin %)

The equality will be attained, in both inequalities, only when // =1, and because of
Lemma 4, only when K = K*. This concludes the proof of Theorem 1.

4. Minimizing the Area and the Perimeter

Now we prove Theorem 2. Let B*(R) and B, be the circumcircle and an incircle
of K respectively, with centers O and O'. It is known (see [2]) that the circumcircle
B%(R) either contains two points of the boundary of K, which are diametrically
opposite, or it contains three points of K that form the vertices of an acute-angled
triangle. We name these points P, Q and S (in the case of two symmetric points,
then Q = S = —P). Then, the diameter that passes through P, i.e., the line ( — P)P,
separates Q from S (see Figure 7). Besides, the segment lines PQ, QS and SP either
intersect or have to be tangent to the incircle B,; if not the inradius of K should be
strictly greater than r.
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Figure 7

Let us denote by x, y, z and ¢ the distances from the center of the incircle, O, to
each point —P, P, Q and S, respectively. Without loss of generality, we can
suppose that y >z >t It is clear that, on the boundary of the circumcircle
B%(R), there exists another point Q', whose distance from O is also z, the distance
from O’ to Q. Since z > ¢, this new point Q' lies on the boundary of B?(R) at the
right hand side of S (in clockwise order). Hence, all the points of the arc QQ' have
less distance to O’ than Q. Thus, x < z.

Let K3 be the convex hull of B, and the three points P, Q and S. We also denote by
K, the convex hull of B, and the points — P and P. Then, clearly r(K>) = r(K) =
r(K3) and R(K,) = R(K) = R(K3). Besides, K contains K3 and hence, A(K) >
A(K3) and p(K) = p(K3). Now, since — P is closer to O’ than Q (x < z), we have
that A(K;) < A(K3) and p(K;) < p(K3). Therefore, A(K) > A(K;) and p(K) >
p(Ka).

If we compute the formula for the area of K, in terms of x and y we obtain

AKy) = r(\/x2 — 12+ \/y? — r? + rarcsin "4 rarcsin K) = rf(x,y).
X y
We are going to show that f(x,y) > f(**,%2). For it suffices to see that the

function f(x, y) has a relative minimum in the point (a/2, a/2) under the condition
X +y = a, which is an elementary exercise of calculus. Besides, this minimum is
272

unique. So,
2
2
:2r< <m> ~ 2 4+ rarcsin — )
2 x+Yy

Since x +y = 2R and Vu? — r?> + rarcsin(r/u) is an increasing function in the
variable u, we can finally deduce inequality (9):

A(K) = 1 (x,) >rf(”y ”y)

AK) =2 A(K,) = 2r<\/R2 — r2 + rarcsin I%)
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On the other hand, a general cap-body (not necessarily symmetric) verifies
the relation 2A = pr (see [2]). In particular, this relation holds for our set K.
Therefore,

2
p(K) = p(Ky) = -A(K;) > 4<\/R2 — 72 + rarcsin %),
r

which proves inequality (10).

The equality, in both inequalities, will be attained when and only when K = K,
and x = y = R. As x = y = R is equivalent to the fact that O’ = O, the equality will
hold only when K = K5. This concludes the proof of Theorem 2.

5. Complete Systems of Inequalities for (A, R, r) and (p, R, 1)

Let (aj,az,a3) be any triple of the considered measures. Using Blaschke—
Santald’s approach, we can observe that the problem of finding a complete system
of inequalities for (a1, a2, a3) can be expressed by mapping each compact convex
set K to a point (x,y) € [0, 1]x]0, 1]. In this diagram, x and y represent particular
functions of two of the measures a;, a,, and as, which are invariant under dilata-
tions; each of these functions depends on the specific problem that is considered in
each case.

Blaschke’s convergence theorem states that any given infinite uniformly
bounded family of compact convex sets contains a sequence that converges to a
compact convex set. So, by Blaschke’s theorem, the range of this map & is a
closed subset of the square [0, 1]x[0, 1].

Each of the optimal inequalities relating a;, a,, and a3 determines part of the
boundary of &. As a consequence, the set of inequalities determines the whole
boundary of & if and only if these inequalities form a complete system; if some
inequality is missing, some part of the boundary of & remains unknown. But more-
over; the sets which are mapped into the boundary points of & are the extremal
sets of each considered inequality (i.e. the convex sets that maximize or minimize
a particular measure). So, from a geometric point of view, it is sufficient to find
the extremal sets of the corresponding inequalities to close the diagram.

5.1. Proof of Theorem 3: The case (A, R, ). Let us make the following choice
of coordinates:

A
=—— and =
. mR? Y

ANTR

Inequalities (1) and (3) assure us that 0 < x
[0, 1]x[0, 1].
If we rewrite inequality (7) in terms of the x and y coordinates, we obtain

mx < 2(yy/T— 32 + arcsiny),

and the equality is attained only for the circular symmetric slices. Therefore,
we have the lower part of the boundary of & determined by the curve mx =
2(y\/1 — y* + arcsiny), from the point O = (0, 0), which corresponds to the line

land 0 <y < 1. So, (x,y) €
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Figures 8-9. Santal6 Diagrams for the cases (A, R, r) and (p, R, 1)

segments to B = (1, 1), that is, the discs. The circular symmetric slices are mapped
to the points of the curve OB (see Figure 8).
Now we consider inequality (9), which is equivalent to

mx = 2y(y/1 — y* + yarcsiny).

The corresponding equation mx = Zy(\/ 1 — y? + yarcsin y) completes the bound-
ary of &: this curve connects the point O with the point B, and the family of the
cap-bodies is mapped to the points of this curve.

If we use inequality (2), we obtain a curve in which the equality holds just for
the disc, that is, for the point B = (1,1). Therefore, such a bound is too wide
because there are no other figures for which equality holds. It gives no informa-
tion, and hence, can be removed. Thus, we have determined the boundary of the
domain corresponding to the planar convex sets with given area, circumradius and
inradius.

To complete this case, we must also show that & is simply connected, i.e.,
some convex set is mapped into each interior point in the diagram. To this end, let
ro and Ry be two positive real numbers with ry < Ry. We construct a continuous
family of convex sets {K, : a € [0, arcsin(ry/Ry)]} in the following way:

Let us consider the concentric discs B*(ry) and B>(R,) with radius ry and Ry,
respectively. Now we take the sequence of 2-cap bodies

COHV{BZ(F()), (x0,0), (—x0,0)}, where xy = Ry,

whose limit when x, tends to infinity is the infinite strip with width 2r,. The
intersection of each of these sets with the disc B*(Ry) (see Figure 10) forms a
continuous family of sets K,, verifying R(K,) = Ro, r(K.) = ro, and such that the
area A(K,) is a continuous and increasing function, where « € [0, arcsin(ry/Ro)].
This area is expressed by means of the linear function

A(K,) = 2(”0\/@ + r(2) arcsin 1% + a(R(Z) — r2)>.

If &« =0 we obtain the symmetric 2-cap body K5, which will be mapped to
the point labelled A in Figure 8. When « = arcsin(rg/Ry) we obtain the circular
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Figure 10. Continuous family of sets that fills &

symmetric slice K*, which corresponds to the point labelled B in the diagram.
Since the circumradius and the inradius remain constant for the sets K, of the
family, and the area increases continuously, all these sets will be mapped to the
points of the horizontal line segment AB.

This completes the proof of the case, and allows us to state Theorem 3.

5.2. Proof of Theorem 4: The case (p, R, r). Now, we make the choice of
coordinates

p
= — d =
X 2R an y

AN DS

Inequalities (4) and (3) assure again that 0 < x
[0,1]x[0,1].
Using inequality (8), we can translate it in terms of x and y, obtaining

™ < 2(\/1 -y + arcsiny).

Thus, we have the lower part of the boundary of & determined by the curve
mx = 2(y/1 — y? + arcsiny), from the point S = (2/m,0), which corresponds to
the line segments to B = (1, 1), representing the discs. The circular symmetric
slices are mapped to the points of the curve SB (see Figure 9).

Inequality (10) is equivalent to

™ = 2(\/1 —y? —l—yarcsiny),

and hence, the equation mx = 2(\/ 1 — y? + yarcsin y) gives the upper part of the
boundary of &, joining S and B; the family of the cap-bodies is mapped to the
points of this curve.

Note that again, inequalities (5) and (6) give no further information, and hence,
they are superfluous for the complete system.

Following the same argument that we used in the precedent case, with the same
family of sets, we can see that the domain & bounded by these two curves is
simply connected. This finishes the proof of the case (p, R, r), and states the
theorem.

land 0 <y < 1. So, (x,y) €
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