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Abstract. In electron microbeam techniques, the par-

ticle beam is focused on the material to be analysed.

When the electron beam enters the target, the electrons

give rise to ionization processes producing secondary

electrons and photons, the latter being used to char-

acterize the material. As a consequence, a detailed

description of the photon diffusion requires the solu-

tion of two coupled equations describing respectively

electron and photon diffusion. The approach consider-

ing two transport equations, even if formally correct, is

almost unaffordable because of the high mathematical

complexity of the electron transport equation. In this

article, an alternative approach is suggested which is

based on the use of an approximate solution for the

electron transport using the Fokker-Planck equation

[5]. The resulting electron distribution, computed ana-

lytically as a solution of the above equation, is very

similar to the ionization distribution and is used as the

source term in the Boltzmann transport equation

describing the photon diffusion in the material. The

3D photon transport equation for unpolarised photons

with this source term is solved to obtain a detailed

description of the photon ¯uorescence from a homo-

geneous slab.
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In electron microbeam techniques, photon production

is stimulated by an electron beam focused on the

target. The process of electron diffusion and slowing

down is complicated. Energy losses occur through

various kinds of inelastic interactions between the

diffusing electrons and the target atoms. Most of the

interactions involve the excitation of atomic electrons

and gives rise to energy losses of few eV. Energy

losses of several keV also occur, when an inner shell is

ionized, but are relatively infrequent. An incident

electron of 10 keV or more undergoes several inter-

actions down to thermalisation, which is the reason

why the continuous slowing down approximation, as

introduced by Lewis and Spencer, is often used

[1 ± 4].

In this paper such approximation is removed and

the Fokker-Planck equation is used. The analytical

treatment is dif®cult without introducing some

simplifying hypothesis consisting in disregarding

one or another effect. Here the direction straggling

has been neglected and energy dependence consid-

ered, because the ionization cross sections depend on

energy. This simpler equation has been solved exactly,

obtaining the depth distribution and the energy

spectrum of the electrons. The ionization distribution

has been also evaluated and has been used as the

source term of a 3D photon transport equation for

unpolarised photons. Such equation has been solved

to obtain a detailed description of the photon

¯uorescence from a homogeneous slab with an inner

diffuse source. The prevailing photoelectric effect has

been considered for describing in ®rst approximation

the multiple scattering correction to source photons

escaping towards the detector.

The Electron Distribution

Let us consider a perpendicular plane electron source

hitting a target with speed v0. By denoting with � the

cosine of the angle between the direction of the
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electron travel and the initial velocity vector ~v0, the

Fokker-Planck equation for the distribution function is

given by [5]
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There is no dependence on the azimuth because of

the azimuthal isotropy of the Coulomb cross sections.

� is the dynamical friction coef®cient while 
 and �
are the coef®cients of the diffusion velocity tensor.

For Coulomb interactions they are expressed as

follows:
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where m0 is the reduced electron mass and �0 is the

minimum de¯ection angle in the center of mass

system.

During the slowing down, when v� (3 kT/mt)
1/2,

due to the anisotropy of the Coulomb scattering the

persistence of the velocity after a collision is

enhanced. So we assume that during the slowing

down the component of the velocity along v0 is

predominant (�� 1). The Fokker-Planck equation (1)

becomes
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With the boundary condition

lim
z!1 f �z; v� � 0 �4�

the following solution has been found [5]
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In this equation jp,n is the n-th zero of the Bessel

function of order p. The Bessel function order

depends on the characteristics of the medium accord-

ing to the relation

p � 1� �=�
4

: �6�

Starting from equation (5), it is also possible to

calculate the space dependence of the electron density

[5]:
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The evolution of the electron distribution function

with depth is reported in Fig. 1. The broadening of the

spectrum as the electrons enter the target is apparent.

Depth and speed are fractions of 4�=v4
0 and v0

respectively. To better illustrate the spectrum broad-

ening Fig. 2 shows the electron spectra for different

Fig. 1. Electron distribution function (5) as a function of dimen-
sionless energy (speed) and space (depth)
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path lengths. Figure 3 shows the electron density

variation law.

So far a plane electron source has been considered.

However since the angular straggling has been

neglected these results are assumed to be valid also

for a narrow electron beam. In this case N must be

considered as the electron density averaged over the

beam section.

Photon Transport

To predict how the photons, produced by electrons,

diffuse through the target the photon transport

equation must be considered [6, 7]. The particular

geometrical arrangement of the system suggests use

of the integral form of the transfer equation
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ÿ is the incoming angular ¯ux at the bounding

surface, q is an external source and k is the interaction

kernel describing the effects of the interactions of

photons with matter.

Instead of the actual source distribution, as obtained

by using Eqs. (5) and (7), let us consider a point

isotropic and monochromatic source within the slab.

Adopting a cylindrical coordinate system (�, z, �)

with z-axis normal to the target surface and with the

point source on it at depth z� z0, Eq. (8) becomes

Fig. 2. Dimensionless distribution function of the electrons as a
function of dimensionless energy (speed) at different depths,
computed with Eq. (5)

Fig. 3. Electron density number as a function of the depth,
computed with Eq. (7)
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where a is the thickness of the slab. The kernel is

composed of three terms corresponding to Compton

scattering, Rayleigh scattering and photoelectric

effect, which are the most important processes in the

X-ray regime. In this paper we are mainly interested

in photoelectric effect so the kernel will be simply

[8±10]
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Q�i is the emission probability for the i-th line which

is emitted only when �0 is lower that the absorption

edge wavelength �ei. The lines are assumed mono-

chromatic, neglecting their natural width. In the

computation of attenuation coef®cient all the pro-

cesses are considered.

The solution can be approached by constructing

a Neumann type series of the powers of the

equation kernel. This means that the angular ¯ux is

expressed as the sum of the angular ¯uxes of the

unscattered photons, of the once scattered photons

and so on. Since the complexity of the calculations

rapidly increases with the number of the iterations,

it will be possible to compute analytically only the

®rst terms of this series. However few terms are

suf®cient to give useful information on the radiation

®eld.

The ¯ux of the unscattered photons is found simply

neglecting the in-scattering term in (9)
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The ¯ux of the primary photons produced by

photoelectric effect is calculated by neglecting the

external source and by substituting f with f0 in the

in-scattering term obtaining Eqn. (12).

The solution can be used as Green function to

determine the primary photon radiation ®eld, when

the source distribution is known.

If a narrow electron beam enters the target, each

elementary length dz of the beam path can be

considered as an isotropic point source whose

intensity is estimated in electron per unit time byX
i
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where N is given by (7). Pi is the emission probability

of the i-th line, which depends on the ionization cross

sections and, consequently, on the energy spectrum of

the electrons.

Let us assume that all the ionization processes take

place on the axis of the beam, so that the ¯ux of the

source photons is given by
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The angular ¯ux of the primary photons is given by

Eqn. (15).

The description of the radiation ®eld of unscattered

and primary photons is complete and pointwise. The

result is useful not only for numerical computation but

also for a better insight into the photon diffusion and a

better interpretation of experimental result.
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As an example we have considered a binary target

composed of a mixture of 50% Al and 50% Si. In

order to show the descriptive power of the solution, in

Fig. 5a ± 5d we have reported the 3D polar plots of the

angular distributions of the primary photoelectric

photons, coming out of the slab from a well de®ned

point of the surface. These photons are emitted by

aluminum atoms excited by silicon photons. To

interpret the plots one must refer to the scheme

reported in Fig. 4, that explains the geometry of the

problem. In the polar plots the quantity�
4� d~!f �~r; ~!; ��=��#���'� has been reported with

�#��/100 and �'� 2�/100. The isotropy of the
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Fig. 4. System geometry

Fig. 5. Angular distribution of the primary photoelectric
photons at an emission point placed on the slab surface. (a)
3D view; (b) Side view; (c) Top view; (d) Front view
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photoelectric emission determines a full angular

spread of primary photons.

Conclusions

In this work electron slowing down has been studied

with the Fokker-Planck equation for a stationary and

monodimensional source. Directional straggling has

been neglected with respect to the much more

important energy dispersion. Energy and space electron

distribution function has been computed analytically,

by solving the equation. This is an important progress

in comparison with the continuous slowing down

approximation, where all the electrons are supposed to

have the same energy. The depth distribution of the

primary photon sources has been then evaluated by

averaging on energy the ionization cross sections.

The distribution in physical and momentum space

of the source photons produced has been also

determined, by using the integral form of the transport

equation. Then the ®rst order correction due to the

prevailing photoelectric effect has been described.

The effects of the geometry of the system and of the

boundary conditions have been fully considered.

The results have been presented in as general a

form as possible. It is worth noting that the two

equations of transfer have been solved separately. It is

foreseen a further development by considering higher

order terms of the series for the solution and a

comparison with the ZAF approach.
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